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ABSTRACT Graph theory is widely used to analyze the structure models in chemistry, biology, computer
science, operations research and sociology. Molecular bonds, species movement between regions, develop-
ment of computer algorithms, shortest spanning trees in weighted graphs, aircraft scheduling and exploration
of diffusion mechanisms are some of these structure models. LetG = (VG,EG) be a connected graph, where
VG and EG represent the set of vertices and the set of edges respectively. The idea of the edge version of
metric dimension is based on the distance of edges in a graph. Let REG be the smallest set of edges in a
connected graph G that forms a basis such that for every pair of edges e1, e2 ∈ EG, there exists an edge e
∈ REG for which dEG (e1, e) 6= dEG (e2, e) holds. In this paper, we show that the family of circulant graphs
Cn(1, 2) is the family of graphs with constant edge version of metric dimension.

INDEX TERMS Line graph, resolving sets, the edge version of metric dimension, circulant graphs.

I. INTRODUCTION
In research areas of sciences where networks constitute
the basic and fundamental study blocks, graph theory
(graph labeling, graph coloring etc.) is the most intu-
itive and fundamental approach to apply and study these
sciences [1]–[4]. For example: (i) in computer sciences [5],
data mining, database designing, image processing, network
algorithms, resource allocation, clustering of web docu-
ments [6], phone networks(GSM phones) and bi-processor
tasks. (ii) in chemistry, study of molecular bonds, molecular
descriptors, three dimensional complicated simulated struc-
ture of atoms and chemoinformatics are some study blocks.
(iii) in biology, protein-protein interaction networks, cell
biology structure, population genetics, bioinformatics and
sequences of cell-samples are some more examples. (iv) in
operations research, travelling salesman problem, optimiza-
tion using PERT (Project Evaluation Review Technique),
minimum sum coloring, job and time table scheduling [7],
[8] and game theory.

Let G be an undirected, connected and simple graph con-
sisting of a nonempty finite set VG of vertices and EG as a
set of edges. For any two vertices x, y ∈ VG, the distance
d(x, y) is the length of a shortest path between x and y. Let
R = {r1, r2, . . . , rp} ⊂ VG be an ordered set and let x ∈
VG, then r(x,R) representation of x with respect to R is the
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p-tuple
(
d(x, r1), d(x, r2), . . . , d(x, rp)

)
. If there exist differ-

ent representation of different vertices of G with respect to
R, then R is said to be a resolving set of G. The resolving set
consisting of minimum number of vertices is called a basis for
G and the size of the basis is known as the metric dimension
of G, written as dim(G). For R = {r1, r2, . . . , rp} ⊂ VG,
the qth component of r(x,R) is 0 if and only if x = rq.
Hence, to prove that R is a resolving set it is enough to show
that r(x,R) 6= r(y,R) for each pair x 6= y ∈ VG \ R. Slater
in [9] and Harary and Melter in [10] represented the idea of
resolvability and metric dimension. Applications of metric
dimension in different branches are robot [11], network dis-
covery and verification, navigation [11] and chemistry [12].
In [13], it has been proved that computing the metric dimen-
sion of a graph is an NP-hard problem. Metric dimension has
been deeply investigated for surveys see: [14] and [15]. Also,
metric properties of line graphs were studied to a great extent
in [16]–[26]. The line graph L(G) of a graph G is defined as,
the graphwhose vertices are the edges ofG, with two adjacent
vertices if the corresponding edges share the same vertex inG.
The technique of finding vertex distances is helpful in finding
edge distances. In [27] the edge version of metric dimension
is defined as:
Definition 1:

i) Let dEG (f , g) be the edge distance between two edges
f , g ∈ EG, which is the smallest length between ver-
tices f and g in the line graph L(G).
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ii) For the edge e ∈ EG to resolve two edges f and
g of EG, the condition dEG (e, f ) 6= dEG (e, g) must
hold.

iii) For an ordered set REG = {f1, f2, . . . , fk} ⊆ EG and an
edge e in EG, the k-tuple

(
dEG (e, f1), dEG (e, f2), . . . ,

dEG (e, fk )
)

is the edge version of representation
rEG (e,REG ) of e with respect to REG .

iv) The set REG is said to be the edge version of a
resolving set of G, whenever distinct edges of G have
distinct edge version of representations with respect
to REG .

v) The edge version of a resolving set having minimum
cardinality basically forms the edge version of metric
basis ofG. The cardinality of the edge version of metric
basis is denoted by dimE (G), and is called the edge
version of metric dimension of G.

It should be noted that the parameter edge version of metric
dimension studied here is actually the metric dimension of
the line graph of a graph (namely edges uniquely recognizing
edges) and is entirely different from the parameter edge met-
ric dimension (namely vertices uniquely recognizing edges)
defined in [28].

Recently, the edge version of metric dimension has been
investigated for few classes of graphs. The path graphs were
studied by G. Chartrand et al. in [12] for the edge ver-
sion of metric dimension. Complete bipartite graphs for the
edge version of metric dimension were studied by J. Cac-
eres et al. in [31]. In [14], R.F. Bailey and P.J. Cameron
worked on the edge version of metric dimension of complete
graphs. In [32], L. Eroh determined dimE (G) of bouquet
graphs and wheel graphs. R. Nasir et al. investigated the
edge version of metric dimension of the n-sunlet graphs
and the prism graphs in [27]. J.B. Liu et al. considered the
family of necklace graphs for the edge version of metric
dimension in [29]. Also, in [33] R. Nasir et al. discussed
the edge version of metric dimension for the families of grid
graphs and generalized prism graphs. In metric dimension,
the resolving sets are referred as detecting devices in com-
puter network problems while in the edge version of metric
dimension we consider the edge version of resolving sets for
the same purpose. Due to this reason graphs with constant
edge version of metric dimension become more exciting than
those graphs with variable edge version of metric dimen-
sion. With this motivation, we have studied those families
of graphs for which the edge version of metric dimension is
constant.

In Section 2, we will study the family of circulant graphs
Cn(1, 2) for the edge version of metric dimension and will
show that dimE (Cn(1, 2)) = 4 for n ≥ 6. In the last section
we will conclude our findings.

II. THE EDGE VERSION OF METRIC DIMENSION FOR THE
FAMILY OF CIRCULANT GRAPHS
The family of circulant graphs, denoted by Cn(1, 2) is
the family of graphs with the vertex set VCn(1,2) =

FIGURE 1. The family of circulant graphs Cn(1, 2).

{v1, v2, . . . , vn} and the edge set ECn(1,2) = H ∪ L where
H = {hi = vivi+1 : 1 ≤ i ≤ n} and L = {li = vivi+2 : 1 ≤
i ≤ n} modulo n as shown in Figure. 1. Metric dimension of
Cn(1, 2) was studied in [34] and the result is given below:
Theorem 1: [34] Let Cn(1, 2) be the family of circulant

graphs with n ≥ 5, then dim(Cn(1, 2)) = 3 when n ≡
0, 2, 3(mod4) and dim(Cn(1, 2)) ≤ 4 otherwise.

For the edge version of metric dimension of the family of
circulant graphs, we have the following theorem:
Theorem 2: Let G be the family of circulant graphs

Cn(1, 2) for n ≥ 6, then dimE (G) = 4.
Proof: In order to compute the edge version of metric

dimension, we have the following cases:
Case 1: For n ≡ 0(mod4) i.e. n = 4k for k ≥ 2.
Consider the set of edges REG = {h1, h2, h n

2−1
, h n

2
}, then

representation of the edges h2i−1 with respect to REG is:

rEG (h2i−1,REG )

=



(0, 1, k, k) if i = 1;
(i, i− 1, k − i+ 1, k − i+ 1) if 2 ≤ i ≤ k − 1;
(k, k − 1, 0, 1) if i = k;
(i, k, 2, 1) if i = k + 1;
(2k − i+ 2, 2k − i+ 2,
i− k + 1, i− k) if k + 2 ≤ i ≤ 2k.

Representation of the edges h2i with respect to REG is:

rEG (h2i,REG )

=



(1, 0, k − 1, k) if i = 1;
(i, i, k − i, k − i+ 1) if 2 ≤ i ≤ k − 1;
(k, k, 1, 0) if i = k;
(2k − i+ 1, 2k − i+ 2,
i− k + 1, i− k + 1) if k + 1 ≤ i ≤ 2k.
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Representation of the edges l2i−1 with respect to REG is:

rEG (l2i−1,REG )

=



(1, 1, k − 1, k) if i = 1;
(i, i− 1, k − i, k − i+ 1) if 2 ≤ i ≤ k − 1;
(k, i− k + 4, i− k + 1, 1) if k ≤ i ≤ k + 1;
(2k − i+ 1, 2k − i+ 2,
i− k + 1, i− k) if k + 2 ≤ i ≤ 2k − 1;
(1, 2, k, k) if i = 2k.

Representation of the edges l2i with respect to REG is:

rEG (l2i,REG )

=



(i, i, k − i, k − i) if 1 ≤ i ≤ k − 1;
(k, k, i− k + 1, i− k + 1) if k ≤ i ≤ k + 1;
(2k − i+ 1, 2k − i+ 1,
i− k + 1, i− k + 1) if k + 2 ≤ i ≤ 2k − 1;
(1, 1, k, k) if i = 2k.

Case 2: For n ≡ 1(mod4) i.e. n = 4k + 1 for k ≥ 2.
Consider the set of edges REG = {h1, hb n2 c, hb n2 c+1, hn},

then representation of the edges h2i−1 with respect to REG is:

rEG (h2i−1,REG )

=



(0, k, k + 1, 1) if i = 1;
(i, k − i+ 1, k − i+ 2, i) if 2 ≤ i ≤ k;
(k + 1, 1, 0, k + 1) if i = k + 1;
(2k − i+ 2, i− k, i− k,
2k − i+ 2) if k + 2 ≤ i ≤ 2k;
(1, k + 1, k + 1, 0) if i = 2k + 1.

Representation of the edges h2i with respect to REG is:

rEG (h2i,REG )

=


(i, k − i+ 1, k − i+ 1, i+ 1) if 1 ≤ i ≤ k − 1;
(k, 0, 1, k + 1) if i = k;
(2k − i+ 2, i− k + 1,
i− k, 2k − i+ 1) if k + 1 ≤ i ≤ 2k.

Representation of the edges l2i−1 with respect to REG is:

rEG (l2i−1,REG )

=


(i, k − i+ 1, k − i+ 1, i) if 1 ≤ i ≤ k;
(2k − i+ 2, i− k,
i− k, 2k − i+ 1) if k + 1 ≤ i ≤ 2k;
(1, k, k + 1, 1) if i = 2k + 1.

Representation of the edges l2i with respect to REG is:

rEG (l2i,REG )

=


(i, k − i, k − i+ 1, i+ 1) if 1 ≤ i ≤ k − 1;
(k, 1, 1, k + 1) if i = k;
(2k − i+ 1, i− k + 1,
i− k, 2k − i+ 1) if k + 1 ≤ i ≤ 2k.

Case 3: For n ≡ 2(mod4) i.e. n = 4k + 2 for k ≥ 1.
Consider the set of edges REG = {h1, h n

2−1
, h n

2
, hn},

then representation of the edges h2i−1 with respect to
REG is:

rEG (h2i−1,REG )

=



(0, k, k + 1, 1) if i = 1;
(i, k − i+ 1, k − i+ 2, i) if 2 ≤ i ≤ k;
(k + 1, 1, 0, k + 1) if i = k + 1;
(2k − i+ 3, i− k, i− k,
2k − i+ 2) if k + 2 ≤ i ≤ 2k + 1.

Representation of the edges h2i with respect to REG
is:

rEG (h2i,REG )

=



(i, k − i+ 1, k − i+ 1, i+ 1) if 1 ≤ i ≤ k − 1;
(k, 0, 1, k + 1) if i = k;
(2k − i+ 2, i− k + 1,
i− k, 2k − i+ 2) if k + 1 ≤ i ≤ 2k;
(1, k + 1, k + 1, 0) if i = 2k + 1.

Representation of the edges l2i−1 with respect to REG
is:

rEEG(l2i−1,REG )

=


(i, k − i+ 1, k − i+ 1, i) if 1 ≤ i ≤ k;
(2k − i+ 2, i− k, i− k,
2k − i+ 2) if k + 1 ≤ i ≤ 2k + 1.

Representation of the edges l2i with respect to REG
is:

rEG (l2i,REG )

=



(i, k − i, k − i+ 1, i+ 1) if 1 ≤ i ≤ k − 1;
(k, 1, 1, k + 1) if i = k;
(2k − i+ 2, i− k + 1, i− k,
2k − i+ 1) if k + 1 ≤ i ≤ 2k;
(1, k, k + 1, 1) if i = 2k + 1.

Case 4: For n ≡ 3(mod4) i.e. n = 4k + 3 for k ≥ 1.
Consider the set of edgesREG = {h1, hn−2, hb 3n2 c−1

, h
b
3n
2 c
},

then representation of the edges h2i−1 with respect to
REG is:

rEG (h2i−1,REG )

=



(0, 2, k, k + 1) if i = 1;
(i, i+ 1, k − i+ 1, k − i+ 2) if 2 ≤ i ≤ k;
(k + 1, k + 1, 1, 1) if i = k + 1;
(2k − i+ 3, 2k − i+ 2, i− k,
k − i− 1) if k + 2 ≤ i ≤ 2k;
(2, 0, k + 1, k) if i = 2k + 1;
(1, 2, k + 1, k + 1) if i = b n+12 c.
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Representation of the edges h2i with respect to REG is:

rEG (h2i,REG )

=



(i, i+ 2, k − i+ 1, k − i+ 1) if 1 ≤ i ≤ k − 1;
(i, 2k − i+ 1, 1, 1) if k ≤ i ≤ k + 1;
(2k − i+ 3, 2k − i+ 1,
i− k, i− k) if k + 2 ≤ i ≤ 2k;
(2, 1, k + 1, k + 1) if i = 2k + 1.

Representation of the edges l2i−1 with respect to REG is:

rEG (l2i−1,REG )

=



(i, i+ 1, k − i+ 1, k − i+ 1) if 1 ≤ i ≤ k − 1;
(i, 2k − i+ 1, 2, k − i+ 1) if k ≤ i ≤ k + 1;
(2k − i+ 3, 2k − i+ 1, i− k,
i− k − 1) if k + 2 ≤ i ≤ 2k;
(i− 2k + 1, i− 2k, 3k − i+ 2,
i− k − 1) if 2k + 1 ≤ i ≤

b
n+1
2 c.

Representation of the edges l2i with respect to REG is:

rEG (l2i,REG )

=



(i, i+ 2, k − i, k − i+ 1) if 1 ≤ i ≤ k − 1;
(i, 2k − i+ 1, i− k, 2) if k ≤ i ≤ k + 1;
(2k − i+ 2, 2k − i+ 1,
i− k, i− k) if k + 2 ≤ i ≤ 2k;
(1, 1, k + 1, k + 1) if i = 2k + 1.

From the above representations it is clear that no two edges
have the same representations, so all the edges have distinct
representations which imply that REG is the edge version
of resolving set and hence dimE (G) ≤ 4. Next, we have
to show that dimE (G) ≥ 4. Suppose, to the contrary that
dimE (G) = 3, then we have the following possibilities and
in all possibilities we will consider indices modulo n along
with h0 = hn or lo = ln:

Case 1: For n ≡ 0(mod4) i.e. n = 4k for k ≥ 2.
A) Let REG = {hi, hj, hk} be the edge version of resolving

set from the edge set H .

i) For j − i ≤ n
2 − 3 and i ≤ k ≤ n

2 + i − 2,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
n
2 + i− 1 ≤ k ≤ i− 1.

ii) For n2 − 2 ≤ j− i ≤ 3n
4 + 1 :

a) i + j odd: When i − 1 ≤ k ≤ n
2 + i − 3, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2+ i−

2 ≤ k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n+i−3 ≤ i−2,we have

rEG (hi+2,REG ) = rEG (li+2,REG ), a contradiction.
b) i + j even: When i ≤ k ≤ n

2 + i − 2, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for

n
2 + i− 1 ≤

k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =

rEG (h n
2+i−3

,REG ) and for n+i−3 ≤ i−1,we have
rEG (hi+3,REG ) = rEG (li+3,REG ), a contradiction.

iii) For 3n
4 + 2 ≤ j− i ≤ n− 1 :We have rEG (lj−2,REG ) =

rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n
2 ,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is odd
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
even with j− i− n

2 + 1 ≤ k ≤ j− i, a contradiction.
B) Let REG = {li, lj, lk} be the edge version of resolving

set from the edge set L.

i) For j − i ≤ 4 : When i ≤ k ≤ n
2 + i −

1, we have rEG (li−2,REG ) = rEG (hi−1,REG ). When
i + k is even then, rEG (li−3,REG ) = rEG (hi−2,REG ),
rEG (li−2,REG ) = rEG (hi−1,REG ) for i+k odd with

n
2 +

i ≤ k ≤ n+ i− 5 and rEG (lj+2,REG ) = rEG (hj+2,REG )
with n+ i− 4 ≤ k ≤ i− 1, a contradiction.

ii) For 5 ≤ j − i ≤ n
2 − 2 : When i ≤ k ≤ n

2 + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−2,REG ) = rEG (hi−1,REG ) and
rEG (li−3,REG ) = rEG (hi−2,REG ) for i + k even with
n
2 + i ≤ k ≤ n+ i− 5. For odd i+ j, rEG (li+2,REG ) =
rEG (hi+2,REG ) and rEG (li+3,REG ) = rEG (hi+3,REG )
for even i+jwith n+i−4 ≤ k ≤ i−1, a contradiction.

iii) For n2 − 1 ≤ j− i ≤ 3n
4 :

a) i + j odd: When i ≤ k ≤ n
2 + i − 1, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for n
2 + i ≤

k ≤ n + i − 3, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n+i−2 ≤ i−1,we have

rEG (hi+2,REG ) = rEG (li+2,REG ), a contradiction.
b) i + j even: When i − 1 ≤ k ≤ n

2 + i − 2, we
have rEG (li−3,REG ) = rEG (hi−2,REG ), for

n
2+ i−

1 ≤ k ≤ n + i − 3, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n+i−2 ≤ i−2,we have

rEG (hi+3,REG ) = rEG (li+3,REG ), a contradiction.
iv) For 3n

4 + 1 ≤ j− i ≤ n− 1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n

2 ,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ),when j+k is odd
with j− i− n

2 + 1 ≤ k ≤ j− i− 4. Also for j− i− 3 ≤
k ≤ j − i, we get rEG (li+2,REG ) = rEG (hi+2,REG ), a
contradiction.

C) Let REG = {hi, hj, lk} be the edge version of resolving
set with hi, hj ∈ H and lk ∈ L.

i) For j − i ≤ n
2 − 3 and i ≤ k ≤ n

2 + i − 1, we
have rEG (li−2,REG ) = rEG (hi−1,REG ). When i + k
is even then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for odd i + k with
n
2 + i ≤ k ≤ n + i − 5. When n + i − 4 ≤ k ≤ i − 1,
we have:
a) i + j odd: rEG (li+2,REG ) = rEG (hi+2,REG ).
b) i + j even: rEG (li+1,REG ) = rEG (hi+1,REG ).

ii) For n2 − 2 ≤ j− i ≤ 3n
4 + 2 :

a) i + j odd: When i − 1 ≤ k ≤ n
2 + i − 2, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2+ i−

1 ≤ k ≤ n + i − 3, we have rEG (l n2+i−4,REG ) =
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rEG (h n
2+i−3

,REG ) and for n + i − 2 ≤ k ≤ i −
2, we have rEG (hi+2,REG ) = rEG (li+2,REG ), a
contradiction.

b) i + j even: When i ≤ k ≤ n
2 + i − 1, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for n
2 + i ≤

k ≤ n + i − 3, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n + i − 2 ≤ k ≤

i − 1, we have rEG (hi+1,REG ) = rEG (li+1,REG ),
a contradiction.

iii) For 3n
4 + 3 ≤ j− i ≤ n− 1 :We have rEG (lj−2,REG ) =

rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n
2 ,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ),when j+k is odd
with j− i− n

2 + 1 ≤ k ≤ j− i− 4. Also for j− i− 3 ≤
k ≤ j− i, we have rEG (li+2,REG ) = rEG (hi+2,REG ), a
contradiction.

D) Let REG = {li, lj, hk} be the edge version of resolving
set with li, lj ∈ L and hk ∈ H .

i) For j − i ≤ n
2 − 2 and i ≤ k ≤ n

2 + i − 2,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
n
2 + i− 1 ≤ k ≤ i− 1.

ii) For n2 − 1 ≤ j− i ≤ 3n
4 :

a) i + j even: When i − 1 ≤ k ≤ n
2 + i − 3, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2+ i−

2 ≤ k ≤ n + i − 3, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for k = n

2 + i − 1, n +
i − 2 ≤ k ≤ i − 2, we have rEG (hi+3,REG ) =
rEG (li+3,REG ), a contradiction.

b) i + j odd: When i ≤ k ≤ n
2 + i − 2, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for
n
2 + i− 1 ≤

k ≤ n + i − 3, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n + i − 2 ≤ k ≤

i − 1, we have rEG (hi+2,REG ) = rEG (li+2,REG ),
a contradiction.

iii) For 3n
4 + 1 ≤ j− i ≤ n− 1 :We have rEG (lj−2,REG ) =

rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n
2 − 1,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is odd
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
even with j− i− n

2 ≤ k ≤ j− i, a contradiction.
Case 2: For n ≡ 1(mod4) i.e. n = 4k + 1 for k ≥ 2.
A) Let REG = {hi, hj, hk} be the edge version of resolving

set from the edge set H .

i) For j − i ≤ b n2c − 2 and i ≤ k ≤ b n2c + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i + k
is even then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k odd with
b
n
2c + i ≤ k ≤ i− 1.

ii) For b n2c − 1 ≤ j− i ≤ b 3n4 c + 2 :
a) i + j even: When i − 1 ≤ k ≤ b n2c + i − 2, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2+ i−

1 ≤ k ≤ n + i − 5, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n+i−4 ≤ i−2,we have

rEG (hi+3,REG ) = rEG (li+3,REG ), a contradiction.

b) i + j odd: When i ≤ k ≤ b n2c + i − 1, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for n

2 + i ≤
k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n + i − 3 ≤ k ≤

i − 1, we have rEG (hi+2,REG ) = rEG (li+2,REG ),
a contradiction.

iii) For b 3n4 c+3 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − b n2c,
rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
odd with j− i− b n2c + 1 ≤ k ≤ j− i, a contradiction.

B) Let REG = {li, lj, lk} be the edge version of resolving
set from the edge set L.

i) For j − i ≤ 4 : When i ≤ k ≤ b n2c + i −
2, we have rEG (li−2,REG ) = rEG (hi−1,REG ). When
i + k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ),
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
b
n
2c + i − 1 ≤ k ≤ n + i − 5 and rEG (lj+2,REG ) =
rEG (hj+2,REG ) with n + i − 4 ≤ k ≤ i − 1, a
contradiction.

ii) For 5 ≤ j − i ≤ b n2c − 3. When i ≤ k ≤ b n2c +
i− 2, we have rEG (li−2,REG ) = rEG (hi−1,REG ). When
i + k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ),
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
b
n
2c + i − 1 ≤ k ≤ n + i − 5 and rEG (lj+2,REG ) =
rEG (hj+2,REG ) with n + i − 4 ≤ k ≤ i − 1. When
i + j is odd then, rEG (li+2,REG ) = rEG (hi+2,REG ) and
rEG (li+3,REG ) = rEG (hi+3,REG ) for i + j even with
n+ i− 4 ≤ k ≤ i− 1, a contradiction.

iii) For b n2c − 2 ≤ j− i ≤ b 3n4 c + 1 :
a) i + j even: When i ≤ k ≤ b n2c + i − 2, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for b
n
2c + i −

1 ≤ k ≤ n+ i−4, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 3 ≤ k ≤ i −
1, we have rEG (hi+3,REG ) = rEG (li+3,REG ), a
contradiction.

b) i + j odd: When i − 1 ≤ k ≤ b n2c + i − 3,
we have rEG (li−3,REG ) = rEG (hi−2,REG ), for
k = b n2c + i − 2, we have rEG (lb n2 c+i−5,REG ) =
rEG (hb n2 c+i−4,REG ) and for b n2c + i − 1 ≤
k ≤ n + i − 4, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 3 ≤ k ≤
i − 2, we have rEG (hi+2,REG ) = rEG (li+2,REG ),
a contradiction.

iv) For b 3n4 c+2 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − b n2c − 2,
rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
odd with j− i− n

2 − 1 ≤ k ≤ j− i, a contradiction.
C) Let REG = {hi, hj, lk} be the edge version of resolving

set with hi, hj ∈ H and lk ∈ L.

i) For j − i ≤ b n2c − 2 and i ≤ k ≤ b n2c + i − 2,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for even i + k with
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b
n
2c+i−1 ≤ k ≤ n+i−5.When n+i−4 ≤ k ≤ i−1,

we have:
a) i + j odd: rEG (li+2,REG ) = rEG (hi+2,REG ).
b) i + j even: rEG (li+1,REG ) = rEG (hi+1,REG ).

ii) For b n2c − 1 ≤ j− i ≤ b 3n4 c + 1 :
a) i + j even:When i−1 ≤ k ≤ b n2c+i−3,we have

rEG (li−3,REG ) = rEG (hi−2,REG ), for b
n
2c + i −

2 ≤ k ≤ n+ i−5, we have rEG (lb n2 c+i−4,REG ) =
rEG (hb n2 c+i−3,REG ) and for n + i − 4 ≤ k ≤ i −
2, we have rEG (hi+1,REG ) = rEG (li+1,REG ), a
contradiction.

b) i + j odd: When i ≤ k ≤ b n2c + i − 2, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for b

n
2c + i −

1 ≤ k ≤ n+ i−5, we have rEG (lb n2 c+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n + i − 4 ≤ k ≤ i −

1, we have rEG (hi+1,REG ) = rEG (li+1,REG ), a
contradiction.

iii) For b 3n4 c+2 ≤ j− i ≤ n−1.We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 2 ≤ k ≤ j-i − b n2c − 2,
rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ),when j+k is odd
with j− i− n

2 − 1 ≤ k ≤ j− i− 4. Also for j− i− 3 ≤
k ≤ j− i, we have rEG (li+2,REG ) = rEG (hi+2,REG ), a
contradiction.

D) Let REG = {li, lj, hk} be the edge version of resolving
set with li, lj ∈ L and hk ∈ H .

i) For j − i ≤ b n2c − 3 and i ≤ k ≤ b n2c + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
b
n
2c + i ≤ k ≤ i− 1.

ii) For b n2c − 2 ≤ j− i ≤ b 3n4 c :
a) i + j odd: When i−1 ≤ k ≤ b n2c+ i−2,we have

rEG (li−3,REG ) = rEG (hi−2,REG ), for b
n
2c + i ≤

k ≤ n + i − 5, we have rEG (lb n2 c+i−5,REG ) =
rEG (hb n2 c+i−4,REG ) and for k = b

n
2c + i− 1, n+

i − 4 ≤ k ≤ i − 2 we have rEG (hi+2,REG ) =
rEG (li+2,REG ), a contradiction.

b) i + j even: When i ≤ k ≤ b n2c + i − 1, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for b

n
2c + i ≤

k ≤ n + i − 5, we have rEG (lb n2 c+i−5,REG ) =
rEG (h n

2+i−4
,REG ) and for n + i − 4 ≤ k ≤ i −

1, we have rEG (hi+3,REG ) = rEG (li+3,REG ), a
contradiction.

iii) For 3n
4 + 1 ≤ j− i ≤ n− 1 :We have rEG (lj−2,REG ) =

rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n
2 − 1,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is odd
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
even with j− i− n

2 ≤ k ≤ j− i, a contradiction.
Case 3: For n ≡ 2(mod4) i.e. n = 4k + 2 for k ≥ 1.
A) Let REG = {hi, hj, hk} be the edge version of resolving

set from the edge set H .

i) For j − i ≤ n
2 − 2 and i ≤ k ≤ n

2 + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +

k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
n
2 + i ≤ k ≤ i− 1.

ii) For n2 − 1 ≤ j− i ≤ b 3n4 c + 2 :

a) i + j odd: When i − 1 ≤ k ≤ n
2 + i − 2, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2+ i−

1 ≤ k ≤ n + i − 2, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n+i−1 ≤ i−2,we have

rEG (hi+3,REG ) = rEG (li+3,REG ), a contradiction.
b) i + j even: When i ≤ k ≤ n

2 + i − 1, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for n

2 + i ≤
k ≤ n + i − 2, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n + i − 1 ≤ k ≤

i − 1, we have rEG (hi+2,REG ) = rEG (li+2,REG ),
a contradiction.

iii) For b 3n4 c+3 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n

2 ,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is odd
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
even with j− i− n

2 + 1 ≤ k ≤ j− i, a contradiction.

B) Let REG = {li, lj, lk} be the edge version of resolving
set from the edge set L.

i) For j − i ≤ 4 : When i ≤ k ≤ n
2 + i −

2, we have rEG (li−2,REG ) = rEG (hi−1,REG ). When
i + k is even then, rEG (li−3,REG ) = rEG (hi−2,REG ),
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k odd with
n
2 + i − 1 ≤ k ≤ n + i − 5 and rEG (lj+2,REG ) =
rEG (hj+2,REG ) with n + i − 4 ≤ k ≤ i − 1, a
contradiction.

ii) For 5 ≤ j − i ≤ n
2 − 3 : When i ≤ k ≤ n

2 + i − 2,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−2,REG ) = rEG (hi−1,REG ) and
rEG (li−3,REG ) = rEG (hi−2,REG ) for i + k even with
n
2+i−1 ≤ k ≤ n+i−5. For odd i+j, rEG (li+2,REG ) =
rEG (hi+2,REG ) and rEG (li+3,REG ) = rEG (hi+3,REG )
for even i+jwith n+i−4 ≤ k ≤ i−1, a contradiction.

iii) For n2 − 1 ≤ j− i ≤ b 3n4 c + 1 :

a) i + j odd: When i ≤ k ≤ n
2 + i − 2, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for
n
2 + i− 1 ≤

k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n+i−3 ≤ i−1,we have

rEG (hi+2,REG ) = rEG (li+2,REG ), a contradiction.
b) i + j even: When i − 1 ≤ k ≤ n

2 + i − 2, we
have rEG (li−3,REG ) = rEG (hi−2,REG ), for

n
2+ i−

2 ≤ k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n+i−3 ≤ i−2,we have

rEG (hi+3,REG ) = rEG (li+3,REG ), a contradiction.

iv) For b 3n4 c+2 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n

2 ,

rEG (lj−3,REG ) = rEG (hj−2,REG ),when j+k is odd and
rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is even
with j− i− n

2 + 1 ≤ k ≤ j− i− 4. Also for j− i− 3 ≤
k ≤ j − i, we get rEG (li+2,REG ) = rEG (hi+2,REG ), a
contradiction.
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C) Let REG = {hi, hj, lk} be the edge version of resolving
set with hi, hj ∈ H and lk ∈ L.

i) For j − i ≤ n
2 − 2 and i ≤ k ≤ n

2 + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for even i + k with
n
2 + i ≤ k ≤ n + i − 5. When n + i − 4 ≤ k ≤ i − 1,
we have:

a) i + j odd: rEG (li+2,REG ) = rEG (hi+2,REG ).
b) i + j even: rEG (li+1,REG ) = rEG (hi+1,REG ).

ii) For n2 − 1 ≤ j− i ≤ d 3n4 e + 2 :

a) i + j odd: When i − 1 ≤ k ≤ n
2 + i − 2, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2+ i−

1 ≤ k ≤ n + i − 3, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n + i − 2 ≤ k ≤ i −

2, we have rEG (hi+2,REG ) = rEG (li+2,REG ), a
contradiction.

b) i + j even: When i ≤ k ≤ n
2 + i − 1, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for n
2 + i ≤

k ≤ n + i − 3, we have rEG (l n2+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n + i − 2 ≤ k ≤

i − 1, we have rEG (hi+1,REG ) = rEG (li+1,REG ),
a contradiction.

iii) For d 3n4 e+3 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n

2 − 1,
rEG (lj−3,REG ) = rEG (hj−2,REG ),when j+k is even and
rEG (lj−2,REG ) = rEG (hj−1,REG ),when j+k is oddwith
j−i− n

2 ≤ k ≤ j−i−4.Also for j−i−3 ≤ k ≤ j−i,we
have rEG (li+2,REG ) = rEG (hi+2,REG ), a contradiction.

D) Let REG = {li, lj, hk} be the edge version of resolving
set with li, lj ∈ L and hk ∈ H .

i) For j − i ≤ n
2 − 3 and i ≤ k ≤ n

2 + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
n
2 + i ≤ k ≤ i− 1.

ii) For n2 − 2 ≤ j− i ≤ d 3n4 e + 1 :

a) i + j even: When i − 1 ≤ k ≤ n
2 + i − 2, we

have rEG (li−3,REG ) = rEG (hi−2,REG ), for
n
2 +

i ≤ k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for k = n

2 + i − 1, n +
i − 3 ≤ k ≤ i − 2, we have rEG (hi+3,REG ) =
rEG (li+3,REG ), a contradiction.

b) i + j odd: When i ≤ k ≤ n
2 + i − 1, we have

rEG (li−2,REG ) = rEG (hi−1,REG ), for n
2 + i ≤

k ≤ n + i − 4, we have rEG (l n2+i−4,REG ) =
rEG (h n

2+i−3
,REG ) and for n + i − 3 ≤ k ≤

i − 1, we have rEG (hi+2,REG ) = rEG (li+2,REG ),
a contradiction.

iii) For d 3n4 e+2 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − n

2 ,

rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is odd
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
even with j− i− n

2 + 1 ≤ k ≤ j− i, a contradiction.

Case 4: For n ≡ 3(mod4) i.e. n = 4k + 3 for k ≥ 1.
A) Let REG = {hi, hj, hk} be the edge version of resolving

set from the edge set H .

i) For j − i ≤ b n2c − 1 and i ≤ k ≤ d n2e + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i + k
is even then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k odd with
d
n
2e + i ≤ k ≤ i− 1.

ii) For b n2c ≤ j− i ≤ b
3n
4 c + 2 :

a) i + j even:When i−1 ≤ k ≤ d n2e+i−2,we have
rEG (li−3,REG ) = rEG (hi−2,REG ), for d

n
2e + i −

1 ≤ k ≤ n+ i−3, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 2 ≤ k ≤ i −
2, we have rEG (hi+3,REG ) = rEG (li+3,REG ), a
contradiction.

b) i + j odd: When i ≤ k ≤ d n2e + i − 1, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for d

n
2e + i ≤

k ≤ n + i − 3, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 2 ≤ k ≤ i −
1, we have rEG (hi+2,REG ) = rEG (li+2,REG ), a
contradiction.

iii) For b 3n4 c+3 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − b n2c,
rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
odd with j− i− b n2c + 1 ≤ k ≤ j− i, a contradiction.

B) Let REG = {li, lj, lk} be the edge version of resolving
set from the edge set L.

i) When j − i ≤ 4. For i ≤ k ≤ b
n
2c + i −

1, we have rEG (li−2,REG ) = rEG (hi−1,REG ). When
i + k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ),
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
b
n
2c + i ≤ k ≤ n + i − 5 and rEG (lj+2,REG ) =
rEG (hj+2,REG ) with n + i − 4 ≤ k ≤ i − 1, a
contradiction.

ii) For 5 ≤ j − i ≤ b n2c − 1 : When i ≤ k ≤ b n2c +
i− 1, we have rEG (li−2,REG ) = rEG (hi−1,REG ). When
i + k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ),
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k even with
b
n
2c + i ≤ k ≤ n + i − 5. When i + j is odd then,
rEG (li+2,REG ) = rEG (hi+2,REG ) and rEG (li+3,REG ) =
rEG (hi+3,REG ) for i+ j even with n+ i−4 ≤ k ≤ i−1,
a contradiction.

iii) For b n2c ≤ j− i ≤ b
3n
4 c + 1 :

a) i + j even: When i ≤ k ≤ b n2c + i − 1, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for b

n
2c + i ≤

k ≤ n + i − 4, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 3 ≤ k ≤
i− 1 we have rEG (hi+3,REG ) = rEG (li+3,REG ), a
contradiction.

b) i + j odd: When i−1 ≤ k ≤ b n2c+ i−2,we have
rEG (li−3,REG ) = rEG (hi−2,REG ), for b

n
2c + i −

1 ≤ k ≤ n+ i−4, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 3 ≤ k ≤ i −
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2, we have rEG (hi+2,REG ) = rEG (li+2,REG ), a
contradiction.

iv) For b 3n4 c+2 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − b n2c − 1,
rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
odd with j− i−b n2c ≤ k ≤ j− i− 4. rEG (li+2,REG ) =
rEG (hi+2,REG ), for j−i−3 ≤ k ≤ j−i, a contradiction.

C) Let REG = {hi, hj, lk} be the edge version of resolving
set with hi, hj ∈ H and lk ∈ L.

i) For j − i ≤ b n2c − 1 and i ≤ k ≤ b n2c + i − 1,
we have rEG (li−2,REG ) = rEG (hi−1,REG ). When i +
k is odd then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for even i + k with
b
n
2c + i ≤ k ≤ n+ i− 5. When n+ i− 4 ≤ k ≤ i− 1,

we have:
a) i + j odd: rEG (li+2,REG ) = rEG (hi+2,REG ).
b) i + j even: rEG (li+1,REG ) = rEG (hi+1,REG ).

ii) For b n2c ≤ j− i ≤ d
3n
4 e + 2 :

a) i + j even:When i−1 ≤ k ≤ b n2c+i−2,we have
rEG (li−3,REG ) = rEG (hi−2,REG ), for b

n
2c + i −

1 ≤ k ≤ n+ i−3, we have rEG (lb n2 c+i−3,REG ) =
rEG (hb n2 c+i−2,REG ) and for n + i − 2 ≤ k ≤ i −
2, we have rEG (hi+1,REG ) = rEG (li+1,REG ), a
contradiction.

b) i + j odd: When i ≤ k ≤ b n2c + i − 1, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for b

n
2c + i ≤

k ≤ n + i − 3, we have rEG (lb n2 c+i−3,REG ) =
rEG (h n

2+i−2
,REG ) and for n + i − 2 ≤ k ≤ i −

1, we have rEG (hi+2,REG ) = rEG (li+2,REG ), a
contradiction.

iii) For d 3n4 e+3 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − b n2c − 1,
rEG (lj−3,REG ) = rEG (hj−2,REG ),when j+k is even and
rEG (lj−2,REG ) = rEG (hj−1,REG ),when j+k is oddwith
j−i− n

2 ≤ k ≤ j−i−4.Also for j−i−3 ≤ k ≤ j−i,we
have rEG (li+2,REG ) = rEG (hi+2,REG ), a contradiction.

D) Let REG = {li, lj, hk} be the edge version of resolving
set with li, lj ∈ L and hk ∈ H .

i) For j − i ≤ b n2c − 2 and i ≤ k ≤ b n2c + i, we
have rEG (li−2,REG ) = rEG (hi−1,REG ). When i + k
is even then, rEG (li−3,REG ) = rEG (hi−2,REG ) and
rEG (li−2,REG ) = rEG (hi−1,REG ) for i + k odd with
b
n
2c + i+ 1 ≤ k ≤ i− 1.

ii) For b n2c − 1 ≤ j− i ≤ b 3n4 c + 1 :
a) i + j odd: When i−1 ≤ k ≤ b n2c+ i−1,we have

rEG (li−3,REG ) = rEG (hi−2,REG ), for b
n
2c + i ≤

k ≤ n + i − 4, we have rEG (lb n2 c+i−4,REG ) =
rEG (hb n2 c+i−3,REG ) and for b

n
2c+i ≤ k ≤ +i−4,

n+ i− 3 ≤ k ≤ i− 2, we have rEG (hi+2,REG ) =
rEG (li+2,REG ), a contradiction.

b) i + j even: When i ≤ k ≤ b n2c + i, we have
rEG (li−2,REG ) = rEG (hi−1,REG ), for b

n
2c + i +

1 ≤ k ≤ n+ i−4, we have rEG (lb n2 c+i−4,REG ) =

rEG (hb n2 c+i−3,REG ) and for n + i − 3 ≤ k ≤
i − 1, we have rEG (hi+3,REG ) = rEG (li+3,REG ),
a contradiction.

iii) For b 3n4 c+2 ≤ j−i ≤ n−1 :We have rEG (lj−2,REG ) =
rEG (hj−1,REG ) with j − i + 1 ≤ k ≤ j-i − b n2c − 1,
rEG (lj−3,REG ) = rEG (hj−2,REG ), when j + k is even
and rEG (lj−2,REG ) = rEG (hj−1,REG ), when j + k is
odd with j− i− n

2 ≤ k ≤ j− i, a contradiction.
All the above possibilities lead to contradiction. Hence,

there is no edge version of resolving set of order 3 in the edge
set EG, which implies that dimE (G) = 4.

III. CONCLUSION
In this paper, we have investigated the notion of the edge
version of metric dimension of the family of circulant graphs
Cn(1, 2) which is the least cardinality over all the edge version
of resolving sets of Cn(1, 2). It is interesting to consider the
family of the circulant graphs because its edge version of
metric dimension is independent of parity of n. Finally, we get
dimE (Cn(1, 2)) = 4 for n ≥ 6.
Open Problem 1: Find the edge version of metric dimen-

sion of the family of circulant graphs Cn(1, 3).
Open Problem 2: Find the edge version of metric dimen-

sion of the family of circulant graphs Cn(1, 2, 3).
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