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ABSTRACT Dynamic networks are used in a wide range of fields, including social network analysis,
recommender systems and epidemiology. Representing complex networks as structures changing over time
allow network models to leverage not only structural but also temporal patterns. However, as dynamic
network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to
navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their
ability to perform well on a range of network science tasks, such as link prediction and node classification.
Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there
has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from
the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work
is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish
a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a
comprehensive survey of dynamic graph neural network models using the proposed terminology.

INDEX TERMS Dynamic network models, graph neural networks, link prediction, temporal networks.

I. INTRODUCTION
The bulk of network science literature focuses on static net-
works, yet every network existing in the real world changes
over time. In fact, dynamic network structure has been fre-
quently seen as a complication to be suppressed, to ease
progress in the study of networks [1]. Since networks have
been used as representations of complex systems in fields as
diverse as biology and social science, advances in dynamic
network analysis can have a large and far-reaching impact on
any field using network analytics [2].

Dynamic networks add a new dimension to network mod-
elling and prediction – time. This new dimension radically
influences network properties which enable a more power-
ful representation of network data which in turn increases
predictive capabilities of methods using such data [3], [4].
In fact, dynamic networks are not mere generalizations of
static networks, they exhibit different structural and algorith-
mic properties [5].
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This work is both broader and narrower in scope than previ-
ous works. The first part of this survey (section II) is broader
in scope than related surveys and introduces dynamic net-
works and dynamic network models (referring to the ’foun-
dations and modelling of dynamic networks’ part of the title).
The second part of this survey (section III and section IV) is
narrower in scope and more detailed than related surveys, and
is a survey on dynamic graph neural networks (referring to the
’using Dynamic Graph Neural Networks’ part of the title).

A. FOUNDATIONS OF DYNAMIC NETWORKS
Dynamic networks suffer from a known terminology prob-
lem [6]. Complex networks which change over time have
been referred to, among others, as; dynamic networks [7],
[8], temporal networks [2], [9], evolutionary networks [3]
or time-varying networks [10]. With models often work-
ing only on specific types of networks, a clear and more
detailed terminology for dynamic networks is necessary.
We describe dynamic networks foundations as well as pro-
pose and develop an associated taxonomy of dynamic net-
works to contextualize the models in this survey and enable
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a more thorough comparison between the models. We are
unaware of any work with a comprehensive taxonomy of
dynamic networks and therefore it can be considered as the
first major contribution of this paper.

Dynamic networks is a vast and interdisciplinary field.
Models of dynamic networks are designed by researchers
from different disciplines and they usually use mod-
elling methods from their fields. This survey provides a
cross-disciplinary overview of dynamic network models.
This overview is not intended to be seen as a dynamic models
survey, but rather as a context for dynamic graph neural
networks and as a reference point for further exploration of
the field of dynamic networks modelling.

We consider a dynamic network to be a network where
nodes and edges appear and/or disappear over time. Due
to the terminology problem establishing a terminology and
a clear definition of a dynamic network is a necessity for
a survey of any kind of dynamic network models such as
dynamic graph neural networks. In the process, we introduce
a specific and comprehensive terminology that enable future
works to forego the extensive definition process and simply
apply our terminology.

Related surveys [2], [6], [11] focus either on specific kinds
of dynamic networks, for example, temporal networks [2], [6]
or on specific types of models, for example, representation
learning [11]–[13]. We are unaware of any work which gives
as complete a picture of dynamic networks and dynamic
network models as we do. The first section is thus broader
in scope than other surveys that focus on only one network
type or one type of network model.

B. MODELLING DYNAMIC NETWORKS USING DYNAMIC
GRAPH NEURAL NETWORKS
A dynamic graph neural network (DGNN) is considered to
be a neural network architecture that can encode a dynamic
network and where the aggregation of neighbouring node
features is part of the neural network architecture. DGNNs
encode both structural and temporal patterns in dynamic net-
works. To encode structural patterns DGNNs often make use
of a graph neural network (GNN) and for temporal patterns,
they tend to use time series modules such as recurrent neu-
ral networks (RNN) or positional attention. Spatio-temporal
networks (graphs where the topology is static and only
node or edge features change [14]) are out of the scope of
this survey and thus so are Spatio-temporal graph neural
networks [14], [15].

DGNNs, like GNNs and other representation learning
models, are versatile in which tasks they can be applied to.
With different decoders and different data, different tasks are
possible. In practice, so far DGNNs have been applied to sim-
ilar tasks as GNNs, the most common of these tasks are node
classification [16]–[19] and link prediction [16], [18]–[20],
which both have diverse and interesting application across
many disciplines. Link predictionmay for example be applied
in knowledge graph completion [21], [22] or by recommender
systems [18], [19]. DGNNs have also been used for novel

tasks such as predicting path-failure in dynamic graphs [23],
quantifying scientific impact [24], and detecting dominance,
deception and nervousness [25].

There are several surveys on graph neural networks [8],
[26], [27] as well as surveys on network representation learn-
ing [28], [29], our work differs from theirs as we cover
GNNs which encode dynamic networks. Kazemi et al. [11],
Xie et al. [12] andBarros et al. [13] are theworksmost similar
to this paper as they survey dynamic network representation
learning. The distinction is that they survey the broader topic
of representation learning on dynamic networks whereas we
survey dynamic graph neural networks which is a subset of
representation learning on dynamic networks.We thus survey
a more narrow scope than dynamic representation learning
surveys and a different network type from the GNN surveys
which focus on static networks [8], [26], [27]. Wu et al. [27]
and Zhou et al. [8] also survey spatio-temporal graph neu-
ral networks, which encode spatio-temporal networks (static
networks with dynamic node attributes).

This survey’s contributions are: (i) A conceptual frame-
work and a taxonomy for dynamic networks, (ii) an overview
of dynamic network models, (iii) a survey of dynamic graph
neural networks (iv) an overview of how dynamic graph
neural networks are used for prediction of dynamic networks
(dynamic link prediction).

This work follows the encoder-decoder framework used by
Hamilton et al. [28] and is split into three distinct sections
each building upon the previous one.

1) Section II is a discussion on dynamic networks.
It serves as a foundation to the following sections.
In this section we explore different definitions of links
and introduce a novel dynamic network taxonomy.
We also give a brief overview of the dynamic network
model landscape, which contextualizes the rest of the
survey.

2) Section III is a survey of the deep learning models
for encoding dynamic network topology. This covers
dynamic network encoders.

3) Section IV is an overview of how the encoders from
section III are used for prediction. This includes
dynamic network decoders, loss functions and evalu-
ation metrics.

II. DYNAMIC NETWORKS
A complex network is a representation of a complex system.
A network that changes over time can be represented as a
dynamic network. A dynamic network has both temporal
and structural patterns, and these patterns are described by
a dynamic network model.

The definition of a link is essential to any network rep-
resentation. It is even more essential in dynamic networks,
as it dictates when a link appears and disappears. Differ-
ent link definitions affect network properties which in turn
affect which models are capable of representing the dynamic
network.
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Dynamic networks are complex networks that change over
time. Links and nodes may appear and disappear. With only
this insight we can form a general definition for dynamic
networks. Our definition is inspired by Rossetti and Caza-
bet [30].
Definition 1 (Dynamic Network): A Dynamic Network is

a graph G = (V ,E) where: V = {(v, ts, te)}, with v a
vertex of the graph and ts, te are respectively the start and
end timestamps for the existence of the vertex (with ts ≤ te).
E = {(u, v, ts, te)}, with u, v ∈ V and ts, te are respectively the
start and end timestamps for the existence of the edge (with
ts ≤ te).

This definition and any of the later definitions represent
unlabeled and undirected networks, but they can however
trivially be extended with both direction and labels taken into
account.

Whereas dynamic networks are defined as complex net-
works where links and nodes may appear and disappear,
dynamic network models are often designed to work on
specific kinds of dynamic networks and specific dynamic net-
work representations. It, therefore, makes sense to distinguish
between different kinds of dynamic networks and how they
are represented.

Table 7 an overview of the notation and Table 8 is an
overview of the abbreviations used in this work.

There are several surveys on dynamic network meth-
ods [2], [3], [6], [11], [30]–[35]. These surveys focus either on
specific kinds of dynamic networks or on a specific discipline
and limit the scope of the survey to models in that discipline.
To the best of our knowledge there is no comprehensive
survey of dynamic networks, nor does any dynamic network
model survey present a complete foundation or framework for
dynamic networks. The aim of this section is to set the stage
for the dynamic graph neural network survey by creating
a conceptual framework for dynamic networks with more
precise terminology and to add context by giving an overview
of methods used for modelling dynamic network topology.

A. DYNAMIC NETWORK REPRESENTATIONS
Dynamic networks can be represented in different ways and
there are advantages and disadvantages inherent to the differ-
ent representation types.

Dynamic network representations can be grouped into four
distinct levels ordered by temporal granularity: (i) static,
(ii) edge-weighted, (iii) discrete, and (iv) continuous net-
works [36].

Fig. 1 shows those four representations with increasing
model complexity as the model becomes more temporally
fine-grained:

• Static networks have no temporal information.
• Edge weighted networks have temporal information
included as labels on the edges and/or nodes of a static
network. The most straightforward example of this is a
static network with the edges labelled with the time they
were last active.

FIGURE 1. Network representations ordered by temporal granularity.
Static networks are the most coarse-grained and continuous
representations are the most fine-grained. With increasing temporal
granularity comes increasing model complexity. The figure is inspired by
Fig. 5.1 from Rossetti [36].

• Discrete networks are represented in discrete time inter-
vals. These can be represented by multiple snapshots of
the network at different time intervals.

• Continuous networks have no temporal aggregation
applied to them. This representation carries the most
information but is also the most complex.

Static and edge-weighted networks are used to model
stable patterns or the actual state of the network, whereas
discrete and continuous methods are used for more dynamic
modelling [30]. This work focuses on dynamic networks and
will therefore only cover discrete and continuous representa-
tions.

Fine-grained representations can be trivially aggregated
to produce coarser representations. For example, links in a
continuous representation can be aggregated into snapshots
(or time-windows) which is a discrete representation. Any
discrete representation can combine the snapshots, yielding
an edge-weighted representation and any edge-weighted rep-
resentation can discard the weights thus yielding a static
network.

1) DISCRETE REPRESENTATION
Discrete representations use an ordered set of graphs (snap-
shots) to represent a dynamic graph.

DG = {G1,G2, . . . ,GT }, (1)

where T is the number of snapshots. Discrete representa-
tions, often simply referred to as ‘‘snapshots’’ is common
for dynamic networks [2], [3], [9]. Using a discrete rep-
resentation of the dynamic network allows for the use of
static network analysis methods on each of the snapshots.
Repeated use of the static methods on each snapshot can then
collectively give insight into the network’s dynamics.

There are other approaches that effectively use snap-
shots as well. Overlapping snapshots such as sliding
time-windows [37] are also used in dynamic network analysis
to have less radical change from one network snapshot to the
next [38]. Discrete dynamic networks need not be represented
as an ordered set of graphs, they may also be represented as
a multi-layered network [39] or as a tensor [40].

2) CONTINUOUS REPRESENTATION
Continuous network representations are the only represen-
tations that have exact temporal information. This makes
them the most complex but also the representation with the
most potential. We cover three continuous representations:
(i) the event-based; (ii) the contact sequence; and (iii) the
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graph streams. The first two representations are taken from
the temporal network literature and they are suitable for
networks where links do not persist for long [2], [6], [9]. The
third representation, i.e. the graph stream, is used in dynamic
networks where edges persist for longer [3]. The focus in
these representations is on when edges are active, with no
mention of change on nodes. All three representations are
described in more detail below:

1) The event-based representation includes the time
interval at which the edge on a graph is active [9].
An event is synonymous with a link in this case. It is a
representation for dynamic networks focusing on link
duration. The network is given by a time-ordered list
of events which include the time at which the event
appeared and the duration of the event.

EB = {(ui, vi, ti,1i); i = 1, 2, . . .}, (2)

where ui and vi is a node pair on which the i-th event
occurs, ti is the timestamp for when the event starts and
1i is the duration of the event. This is very similar to,
and serves the same purpose as, the interval graph [2].
The difference is that the interval graph has the time at
which the event ends while the event-based representa-
tion has the duration of the event.

2) The contact sequence representation is a simplifi-
cation of the event-based representation. In a contact,
sequence the link is instantaneous and thus no link
duration is provided.

CS = {(ui, vi, ti); i = 1, 2, . . .}, (3)

It is common to consider event times in real systems
instantaneous if the duration of the event is short or
not important [2], [9]. Examples of systems where this
representation is suitable, include message networks
such as text message and email networks.

3) The graph stream representation is used to represent
static graphs that are too large to fit in memory but
can also be used as a representation of a dynamic
network [32]. It is similar to the event-based repre-
sentation, however, it treats link appearance and link
disappearance as separate events.

GS = {e1, e2, . . .} , (4)

where ei = (ui, vi, ti, δi), and ui and vi is the node pair
on which the i-th event occurs, ti is the time at which
the event occurs, and δi ∈ {−1, 1}where−1 represents
an edge removal and 1 represents that an edge is added.
The original representation (used for large graphs) does
not include timestamped information of when an edge
is added/removed [32]. Timestamps will have to be
added for retrieving temporal information.
Since graph streams are mostly used to circumvent
hardware limitations rather than a limitation of network
representations, we will not survey them in detail here.
For a more in-depth discussion of the graph streams,
we refer the interested reader to [3], [32], [34].

FIGURE 2. Temporal and evolving networks on the link duration
spectrum. The spectrum go from 0 (links have no duration) to infinity
(links last forever).

Which of the above representations is suitable for the
network depends on the link duration with the intricacies of
link duration covered in the next section.

B. LINK DURATION SPECTRUM
Dynamic networks go by many names and sometimes these
names indicate specific types of dynamic networks. There
is substantial literature on ’temporal networks’ [2], [6], [9]
which focuses on highly dynamic networks where links may
represent events such as human interactions or a single email.
On the other hand, there is also literature that refers to
slowly evolving networks, where links represent persistent
relations [3]. To the best of our knowledge, there are only
two works that take note of this distinction, Rossetti and
Cazabet [30], and Holme [6].

Rossetti and Cazabet [30] refer to temporal interaction
and relational networks (our temporal and evolving networks
respectively), but they do not categorize or make a formal
distinction between the different networks.

Holme [6] suggests that temporal networks can be dis-
tinguished by two requirements: (i) The dynamics on the
network being at the same or at a similar time scale as the
dynamics of the network; and (ii) The dynamic network is
non-trivial at any given time (an instantaneous snapshot yield
little to no network structure).

The distinction manifests itself in networks even when not
considering dynamics on the networks, and this work is lim-
ited to the dynamics of the network. Therefore we distinguish
temporal networks purely based on network topology.We use
the second requirement noted by Holme [6].

This work not only provides a way to distinguish between
temporal networks and dynamic networks, but it also pro-
poses a framework in which all networks of dynamic topol-
ogy fit. We do this by introducing the link duration spectrum.

Fig. 2 shows different types of networks on the link dura-
tion spectrum. The scale goes from interactions with no link
duration to links that have infinite link duration. No link ever
disappears in a network with infinite link duration. Temporal
networks reside on the lower end of the link duration spec-
trum, whereas evolving networks reside on the higher end.
The distinction is as follows:

• Temporal networks. Highly dynamic networks
which are too dynamic to be represented statically.
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FIGURE 3. Examples of networks on the link duration spectrum.

The network is at any given time non-trivial. These net-
works are studied in the temporal network literature [2],
[9]. Network properties such as degree distribution and
clustering coefficient cannot be adopted directly from
static networks and are non-trivial to define. It is more
natural to think of a link as an event with a duration.

• Evolving networks. Dynamic networks where events
persist for long enough to establish a network struc-
ture. An instantaneous snapshot yields a well-defined
network. Network properties such as degree distribution
and clustering coefficient can be adopted from static
networks and gradually updated. These are the networks
most often referred to when the term dynamic network
is used. Links persist for so long that it is more natural
to think of link appearance as an event and link disap-
pearance as another event.

Furthermore, there is one notable special case for each of
the dynamic network types. These are types of networks that
reside on the extreme ends of the link duration spectrum:
• Interaction networks. A type of temporal network
where links are instantaneous events. These networks
are studied in the temporal network literature and often
represented as contact sequences [2], [9].

• Strictly evolving networks.A type of evolving network
where events have infinite duration. This implies that the
links never disappear.

Fig. 3 shows examples of networks on the link duration
spectrum.
• An email is a nearly instantaneous event,1 an email
network can therefore be considered an interaction
network.

• Proximity networks are used as an example of a temporal
network in [2]. The link is defined by who is close to
whom at what time. Links require maintenance and do
not typically last very long.

• Employment networks are social networks where links
are formed between employees and employers. The link
requires an action after it has been established (termi-
nation of contract) to change its state, but also mainte-
nance (continued work from the employee). This net-
work resides in the fuzzy area between temporal and
evolving networks and can be treated as either.

1If you model information propagation then in practice it takes time from
the moment an email is sent until it is read, so that case considering the email
an instantaneous event is an approximation.

• The Internet is an example of the network where we
consider nodes linked if data-packets can flow between
nodes. A link tends to persist for a long time once
established and thus the internet can be thought of as an
evolving network.

• Citation networks where links are defined as one paper
citing another have the most persisting links. Once a
paper cites another paper, the link lasts forever. This
leads to a strictly growing network where no edges
disappear. These networks have the additional special
characteristic that edges only appear when new nodes
appear.

Link definitions influence link duration, which in turn
influences a network type. Links can be modified in ways
that alter their link duration (also known as time to live,
TTL [30]). An email network could define a link as: Actors
have once sent an email between each other. This would
modify the email link, which is usually nearly instant in
duration to a link that will never disappear. This modification
moves the network all the way to the right on the spectrum
shown in Fig. 2. It transforms an interaction network into
a strictly evolving one. Another example of a modification
is to use a time-window to force forgetting. A time-window
can be applied to a citation network such that only citations
which occurred during the time-window appear as links.
This will move the network to the left on the link duration
spectrum. Depending on the size of the time-window the
modified network may be either an evolving or a temporal
network.

An additional theoretical special case that is not covered
by this concept is a network where links may only disappear.
This special case may justify another dimension along which
dynamic networks should be distinguished.

C. NODE DYNAMICS
Another distinguishing factor among dynamic networks is
whether nodes may appear or disappear. When modelling
networks, it is sometimes simpler to assume that the number
of nodes may not change so that the only possible new links
are links between already existing nodes.

Many evolving network models assume that edges
appear as a new node appears. These models include
pseudo-dynamic models such as preferential attachment [41],
forest fire [42] and GraphRNN [43]. This is fitting for a
citation network where every node is a paper and the edges
are cited papers, though, in many real-world networks, edges
can appear and disappear regardless of whether nodes appear.

With respect to node change, we can distinguish between
two kinds of networks.

• Static where the number of nodes stays static over time;
and

• Dynamic where the nodes may appear and disappear.

A notable special case of node-dynamic networks are the
networks where nodes may only appear:
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TABLE 1. Dynamic network types by node dynamics and link duration,
excluding special cases.

• Growing networks are those where nodes may only
appear. We consider this a special case of node-dynamic
networks.

We are unaware of any real-world networks where nodes
may only disappear. But it should be noted as at least a
theoretical special case. Node growing networks on the other
hand are rather common.

Any kind of node dynamics can be combined with any kind
of link duration network. We can thus have, a growing evolv-
ing network or a node-static temporal network. Similarly to
the edge duration spectrum, a node duration spectrum could
theoretically be established, but it has no direct impact on
dynamic network structure and we, therefore, chose to keep
node dynamics a discrete distinction.

The node dynamics is an important consideration when
modelling the network. Some models support node dynamics
whereas others do not.

D. THE DYNAMIC NETWORK CUBE
Many models assume that nodes disappear when there are no
longer any links connected to such nodes. This scheme can
work for evolving networks, but in temporal networks, it is
common that nodes have no links for the majority of the time.
Thus for a temporal network, it makes sense to model node
dynamics separately from link dynamics.

Different aspects of dynamic network representation have
been covered in the previous sections. Section II-A defined
different dynamic representations ordered by temporal gran-
ularity, section II-B defined network types by link duration
and section II-C defined network types by node dynamics.
This section will consider these previous sections jointly and
discuss how the different network types fit together.

Table 3 includes a comprehensive list of the different
dynamic network types. The types are grouped by node
dynamic, temporal granularity and link duration type. Types
of networks in each group can generally be combined, thus
we can have a continuous node-static temporal network. The
three groups can be thought of as dimensions of a space where
different points in the space would represent different types
of dynamic networks.

The 3D network type space resulting from excluding
special cases is visualised in Fig. 4. When excluding spe-
cial cases there are two types of networks along each
dimension. The nodes are organised along three dimen-
sions: temporal granularity (discrete and continuous) from
Section II-A, the link duration spectrum (temporal and evolv-
ing) from Section II-B and node dynamics (node-dynamic
and node-static) from Section II-C.

Additionally, Table 2 presents the suggested terminol-
ogy for each of the dynamic network types. The precise
dynamic network term column show the suggested terms
for the different network types. These eight types represent
domain-independent types of dynamic networks.

E. DYNAMIC NETWORK MODELS
This brief discussion on dynamic network models is intended
to give a high-level overview of the dynamic model landscape
without discussing different kinds of models in detail. For a
detailed discussion, we refer to dedicated works. The aim of
this section, is to give the reader the background and context
needed to navigate through the field of dynamic network
models.

A network model may model a variety of different net-
work characteristics or dynamics. In this work, we focus on
models of dynamic network structure. Many models define
rules for how links are established [41], [42]. The rules are
defined such that a network evolved with those rules express
some desired features. These features are often observed in
real-world networks and then included in models as a rule.
The search for a good dynamic network model is thus also a
search for accurate rules on link formation.

Network models might aim to replicate characteristics like
node degree distribution or average shortest path between
nodes [44]. The models define probabilistic rules for how
links form such that the emerging network has certain dis-
tributions of given characteristics observed in real-world
networks [44]. Some dynamic network models, particu-
larly temporal network models, focus on temporal aspects.
An example of a temporal characteristic is the distribution of
inter-event times [9].

There are several use cases for network models. They
may be used as reference models [2], [6] or as realistic
models [45]–[47], and depending on their purpose there are
several tasks the model can be used for. These include:
• Reference models are used in the analysis of static net-
works to study the importance and role of structural
features of static networks. Referencemodels aim to pre-
serve some characteristic such as node degree distribu-
tion and otherwise create maximally random networks.
The goal is to determine how the observed network is
different from a completely random network with the
same characteristics. This approach has been adapted to
temporal networks [2].

• Realistic models aim to replicate the change in the
network as closely as possible. They can be used for
several tasks such as network prediction [11], [47], [48]
and community detection [30]. Examples include prob-
abilistic models such as the dynamic stochastic block
model [49] and representation learning based models
such as E-LSTM-D [47]. Some realistic models aim to
generate (simulate) realistic networks [43], [50].

We establish a typology of models for dynamic network
topology. The typology is based on the type of method used
to model the network (see Fig. 5).
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FIGURE 4. The dynamic network cube. The cube is a novel framework that succinctly represents different kinds
of dynamic networks. Each node represents a specific type of dynamic networks. The nodes are organised along
three dimensions: temporal granularity (discrete and continuous) from Section II-A, the link duration spectrum
(temporal and evolving) from Section II-B and node dynamics (node-dynamic and node-static) from Section II-C.
The complete list of terminology from the cube is presented in Table 2.

TABLE 2. Terminology of the dynamic network cube.

TABLE 3. Types of dynamic networks along three dimensions. Static
networks and edge-weighted networks are not dynamic networks, but
they are included for completeness. If we exclude special cases, we are
left with two elements in each dimension.

We group models intended for inference or identifying
statistical regularities under statistical models. These include
dynamic random graph models, probabilistic models, activ-
ity driven models and relational event models. Random
graph models (RGM) and Exponential random graph mod-
els (ERGM) are random graph models which produce ran-
domly connected graphs while following known common
network topology [44]. Activity driven models are fit to inter-
action networks by modelling the activity of each node [51].
Relational event models are continuous-time models for
interaction networks, they define the propensity for a future
event to happen between node pairs.

Latent space models and stochastic block models are
generative probabilistic models. Latent space models require

the fitting of parameters with Markov chain Monte
Carlo (MCMC) methods and are very flexible but scale to
only a few hundred nodes [52]. Stochastic block models,
on the other hand, scale to an order of magnitude larger
networks, at a few thousand nodes [52].

Stochastic actor oriented models (SAOM) are continuous-
time models which consider each node an actor and model
actor behaviour. SAOMs learn to represent the dependencies
between a network structure, the position of the actor and the
actor behaviour [53].

Dynamic network representation learning includes a
diverse set of methods that can be used to embed the dynamic
graph in a latent space. Representation learning on dynamic
networks includes models based on tensor decomposition,
random walks and deep learning. Since latent space models
and stochastic block models also generate variables in a latent
space they are closely related to dynamic network represen-
tation learning.

Tensor decomposition is analogous to matrix factoriza-
tion where the extra dimension is time [11]. Random walk
approaches for dynamic graphs are generally extensions of
random walk based embedding methods for static graphs or
they apply temporal random walks [9]. Deep learning models

VOLUME 9, 2021 79149



J. Skarding et al.: Foundations and Modeling of Dynamic Networks Using DGNNs: Survey

FIGURE 5. An overview of dynamic network models with dynamic graph neural networks outlined. Statistical models are models intended for
inference or identifying statistical regularities in dynamic networks. Representation learning models are models which automatically detect features
needed for the intended task. Stochastic actor oriented models are agent-based models. Dynamic network representation learning consist of
shallow (tensor decomposition and random walk based) methods and deep learning based methods. This work explores dynamic graph neural
networks in detail.

include deep learning techniques to generate embeddings
of the dynamic network. Deep models can be contrasted
with the other networks representation learningmodels which
are shallow models. We distinguish between two types of
deep learning models: (i) Temporal restricted Boltzmann
machines and (ii) Dynamic graph neural networks. Temporal
restricted Boltzmann machines are probabilistic generative
models which have been applied to the dynamic link predic-
tion problem [4], [54]–[56]. Dynamic graph neural networks
combine deep time series encoding with the aggregation of
neighbouring nodes. Often discrete versions of these models
take the form of a combination of a GNN and an RNN.
Continuous versions of dynamic graph neural networks can-
not make direct use of a GNN since a GNN require a static
graph. Continuous DGNNs must therefore modify how node
aggregation is done.

A detailed survey of all kinds of dynamic network mod-
els is too broad a topic to cover in detail by one survey.
Deep learning based models for dynamic networks is a
rapidly growing and exciting field, however, no existing sur-
vey focuses exclusively on dynamic graph neural networks
(Kazemi et al. [11], Xie et al. [12] and Barros et al. [13] being
the closest).

For the models not discussed in section III there are
several works describing and discussing them in detail.
Random reference models for temporal networks are sur-
veyed in [2] and [6]. For activity-driven models see
Perra et al. [51] and for an introduction to the Relational

Event Model (REM) see Butts [57]. See Hanneke et al. [58]
for Temporal ERGMs (TERGM) on discrete dynamic net-
works. Block et al. [59] provides a comparison of TERGM
and SAOM. Fritz et al. [33] provide a comparison of a
discrete-time model, based on the TERGM, and the Rela-
tional Event Model (REM), a continuous-time model. Gold-
enberg et al. [60] survey dynamic network models and their
survey include dynamic random graph models and proba-
bilistic models. Kim et al. [31] surveys latent space mod-
els and stochastic block models for dynamic networks. For
an introduction to SOAM see Snijders et al. [53]. For sur-
veys of representation learning on dynamic networks see
Kazemi et al. [11], Xie et al. [12] and Barros et al. [13], and
for a survey of dynamic link prediction, including Temporal
restricted Boltzmann machines, see Divakaran et al. [54].

F. DISCUSSION AND SUMMARY
We have given a comprehensive overview of dynamic net-
works. This establishes a foundation on which dynamic net-
work models can be defined and thus sets the stage for the
survey on dynamic graph neural networks. Establishing this
foundation included the introduction of a new taxonomy
for dynamic networks and an overview of dynamic network
models.

Section II-A presents representations of dynamic networks
and distinguishes between discrete and continuous dynamic
networks. In section II-B we introduce the link duration
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TABLE 4. Suitable dynamic network representations for temporal and
evolving networks.

spectrum and distinguish between temporal and evolving
networks, and in section II-C node dynamics is discussed,
we distinguish between node-static and node-dynamic net-
works. Section II-D brings together the previous sections to
arrive at a comprehensive dynamic network taxonomy.

Discrete representations have seen great success in use
on evolving networks with slow dynamics. Graph streams
are used on evolving networks that update too frequently
to be represented well by snapshots [3]. Both discrete and
continuous representations are used to represent tempo-
ral networks [2], [9]. Table 4 combines information from
section II-A and section II-B and summarizes the existing
representations in terms of temporal granularity and link
duration.

Discrete representations have several advantages. A model
which works on the static network case can be extended to
dynamic networks by applying it on each snapshot and then
aggregating the results of the model [11], [31]. This makes it
relatively easy, compared to the continuous representation to
design dynamic networkmodels. Furthermore, the distinction
between an evolving and a temporal network is less impor-
tant. If modelling a temporal network, one only needs tomake
sure that a time-window size is large enough that the network
structure emerges in each snapshot. However, the discrete
representations have their disadvantages too. Chief among
them is coarse-grained temporal granularity.Whenmodelling
a temporal network the use of a time-window is a must.
By using a time-window the appearance order of the links
and temporal clustering (links appearing frequently together)
is lost.

Reducing the size of the time-window or the interval
between snapshots is a way to increase temporal granularity.
There are however some fundamental problems with this.
In the case of a temporal network, a small time-window will
eventually yield a snapshot with no network structure. In the
case of an evolving network, we will have a sensible network
no matter how small the time-window, however, there is a
trade-off with run-time complexity. Discrete models tend to
process the entire graph in each snapshot. In which case the
run-time will increase linearly with the number of snapshots.
The run-time problem is exacerbated by the fact that a lot of
real-world graphs are huge which make the run-time on each
snapshot significant.

Continuous representations offer superior temporal gran-
ularity and thus theoretically a higher potential to model
dynamic networks. However, continuous-time models tend to
be more complex and require either completely new models
or significant changes to existing ones to work on the con-
tinuous representation. Continuous models are less common

than discrete-time models [3], [11], [30]. This is likely due
to continuous methods being significantly more difficult to
develop than discrete methods [3].

Whenmodelling dynamic networks in continuous time it is
essential to specify which kind of network is being modelled.
As models for temporal and evolving networks may not be
mutually exclusive and many models work on only specific
types of networks. In these cases, it might be possible to
modify the link duration of a network to run a model on the
network. This modification may come at the loss of infor-
mation, for example when modifying an interaction network
to a strictly evolving network, any reappearing link will be
removed.

This entire background section establishes a foundation
and a conceptual framework in which dynamic networks can
be understood. By providing an overview of dynamic network
models, it maps out the landscape around deep learning on
dynamic graphs thus providing the necessary context. The
following sections will explore dynamic graph neural net-
works in detail.

III. DYNAMIC GRAPH NEURAL NETWORKS
Network representation learning and Graph Neural Net-
works (GNN) have seen rapid progress recently and they
are becoming increasingly important in complex network
analysis. Most of the progress has been done in the
context of static networks, with some advances being
extended to dynamic networks. Particularly GNNs have
been used in a wide variety of disciplines such as chem-
istry [61], [62], recommender systems [63], [64] and social
networks [65], [66].

GNNs are deep neural network architectures that encode
graph structures. They do this by aggregating features of
neighbouring nodes together. One might think of this node
aggregation as similar to the convolution of pixels in convo-
lutional neural networks (CNN). By aggregating features of
neighbouring nodes together GNNs can learn to encode both
local and global structure.

Several surveys exist of works on static graph representa-
tion learning [29], [67] and static graph neural networks [8],
[26], [27]. Time-series analysis is relevant for work on
dynamic graphs, thus recent advances in this domain is of
relevance. For and up to date survey of deep learning on time
series we refer to Fawaz et al. [68].

If dealing with an evolving graph, a static graph algorithm
can be used to maintain a model of the graph. Minor changes
to the graph would most likely not change the predictions of
a static model too much, and the model can then be updated
at regular intervals to avoid getting too outdated. We suspect
that a spatial GNN is likely to stay accurate for longer than a
spectral GNN, since the spectral graph convolution is based
on the graph laplacian which will go through more changes
than the local changes in a spatial GNN.

It is important to define what we mean by a dynamic
graph neural network (DGNN). Informally we can say that
a DGNN is a neural network that encodes a dynamic graph.
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FIGURE 6. An overview of the different types of dynamic graph neural networks. This is an extension of Fig 5
where we zoom in on graph neural networks. Different models are first grouped by which type of network they
encode (pseudo-dynamic, edge-weighted, discrete or continuous). Discrete models are grouped by whether the
structural layers and temporal layers are stacked, or integrated into one layer. Continuous models are grouped by
how they encode temporal patterns.

However, there are some representation learning models for
dynamic graphs using deep methods, which we do not con-
sider dynamic graph neural networks. A key characteris-
tic of a graph neural network is an aggregation of neigh-
bouring node features (also known as message passing) [8].
Thus, if a deep representation learning model aggregates
neighbouring nodes as part of its neural architecture we call
it a dynamic graph neural network. In the discrete case,
a DGNN is a combination of a GNN and a time series
model. Whereas in the continuous case we have more variety
since the node aggregation can no longer be done using
traditional GNNs. Given this definition of representation
learning, network models where RNNs are used but network
structure is learned using other methods than node aggrega-
tion (temporal randomwalks for example), are not considered
DGNNs.

The previous section (Section II) introduced a framework
for dynamic networks and an overview of dynamic network
models. The overview presented in Fig. 5 shows dynamic
graph neural networks to be a part of deep representation
learning, which in turn is part of dynamic network representa-
tion learning.We further extend the overview in Fig. 5 to show
a hierarchical overview of dynamic graph neural networks,
Fig. 6.

An overview of the types of DGNN encoders is seen
in Fig. 6. The encoders are grouped first by which type of

network they encode, then by model type. The pseudo-
dynamic approaches model a network with changing topol-
ogy, but not time. Discrete DGNNs model discrete networks
and continuous DGNNs model continuous networks. A dis-
crete DGNNs encode the network snapshot by snapshot and
encode a snapshot all at once, similar to how a GNN encode a
static network. A continuous DGNN iterate over the network
edge by edge and is thus completely independent of any
snapshot size.

Common to all DGNNs is that the encoders aim to capture
both structural and temporal patterns and store these pat-
terns in embeddings. A stacked DGNNs separate encoding
of structural and temporal patterns in separate layers, having
one layer for structural patterns (using a static GNN) and
one layer for temporal patterns (often using some form of
an RNN), these models often make use of existing layers
and combine them in new ways to encode dynamic networks.
Integrated DGNNs combine structural and temporal patterns
in one layer. This means that integrated DGNNs require the
design of new layers, not just a combination of existing layers.
The continuous DGNNs consist of RNN, Temporal point
process (TPP) and time embedding based methods.

A timeline of dynamic network models with a focus on
DGNNs is shown in Fig. 7. The timeline includes the first
appearance of each of the models found in Fig. 5, significant
network embedding models preceding DGNNs and DGNNs.

79152 VOLUME 9, 2021



J. Skarding et al.: Foundations and Modeling of Dynamic Networks Using DGNNs: Survey

FIGURE 7. Timeline of dynamic graph models and dynamic graph neural networks. The timeline shows the first dynamic network models of each type
of model from Fig 5 and significant representation learning models leading up to the first DGNN. After the first DGNNs (GCRN-M1 and GCRN-M2 [69]) in
Dec 2016, only DGNNs are marked on the timeline. DGNNs are marked by the month they were first publicised as they appeared in tight succession. The
timeline indicates when a model was first publicized (the timeline may therefore show a different year than that in the citation if the paper was
pre-published).

We consider the Albert-Barabasi model [45] the
first dynamic network model, although it is only a
pseudo-dynamic model (see section III-A). The Dynamic
Social Network in Latent space’’ (DSNL) model [70] is
the first dynamic latent space model [31]. The Temporal
Exponential Random Graph Model (TERGM) [58] a type
of dynamic random graph model was introduced in 2009.
Snijders et al. introduced Stochastic Actor Oriented Mod-
els (SAOM) [53] for dynamic networks in 2010. The
first dynamic stochastic block model (DSBM) was intro-
duced by Yang et al. [71]. The first restricted boltzmann
machine (RBM) for static social networks [56] in 2013 was
shortly followed by the first RBM for dynamic networks,
the Temporal Restricted Boltzmann Machine (TRBM)
in 2014.

Prior to DGNNs there were several influential static
embedding methods and graph neural networks. The first
GNN [72] was introduced in 2008. Deepwalk [73], a highly
influential node embedding fueled by random walks was
introduced in 2014. Some Graph Convolutional Neural
networks (GCN) [74], [75] which function as building
blocks and inspiration for several DGNNs were released
in 2016.

The first DGNNs were discrete DGNNs. First (GCRN-M1
& GCRN-M2) was introduced by Seo et al. [69], followed
by Manessi et al. [76] a few months later. Know-Evolve [21]
a TPP based model was the first continuous model, which
in turn directly inspired DyREP [48] by the same author.
JODIE [77] is notable as the RNN based DGNN, and it
was quickly followed by Streaming GNN [78] which was
the first DGNN for continuous strictly evolving networks.
DySAT [17] introduced the first discrete DGNN which
was based solely on attention, thus not using an RNN.
EvolveGCN [16] introduced the first design that had an RNN
feed into a GCN, rather than what the previous models did,
which was to have a GCN feed into an RNN. The first
pseudo-dynamicGNN,G-GCNwas introduced in early 2019.
TGAT [18] is the first DGNN to encode inter-event time as
a vector, while TGN [19] adds a memory module to TGAT.
HDGNN showed how to use DGNNs for encoding discrete
heterogeneous dynamic networks and TDGNN although

simple was the first GNN to explicitly weight the edges to
enable interaction network encoding.

This section surveys DGNNs, identifies different types of
DGNNs and covers how embeddings are encoded. The next
section (Section IV) covers decoding of the embeddings.

A. PSEUDO-DYNAMIC MODELS
Goldenberg et al. [60] refer to network models as ‘‘pseudo-
dynamic’’ when they contain dynamic processes, but
the dynamic properties of the model are not fit to the
dynamic data. A well-known example of a non-DGNN
pseudo-dynamic model is the Barabasi-Albert model [45].

G-GCN [79] can be seen as an extension of the Variational
Graph Autoencoder (VGAE) [80] which is able to predict
links for nodes with no prior connections, the so-called cold
start problem. It uses the same encoder and decoder asVGAE,
namely a GCN [75] for encoding and the inner product
between node embeddings as a decoder. The resulting model
learns to predict links of nodes that have only just appeared.

B. EDGE-WEIGHTED MODELS
As noted earlier in Section II-A, dynamic network representa-
tions can be simplified. One way to simplify the modelling is
to convert the dynamic network to an edge-weighted network
and then use a static GNN on the edge-weighted network.
This is exactly what Temporal Dependent GNN (TDGNN)
does [81]. They convert an interaction network to an edge
weighted network by using an exponential distribution.
An edgewhich appearedmore recently gets a highweight and
one that appeared long ago gets a low weight. After the con-
version an standard GCN [75] is applied to the edge-weighted
network. While the conversion from interaction network
(a continuous network) to edge-weighted is done as part of the
model in the original work, there appears to be is no reason
why it cannot be done as a pre-processing step and thus we
classify it as an edge-weighted model.

C. DISCRETE DYNAMIC GRAPH NEURAL NETWORKS
Modelling using discrete graphs has the advantage that static
graph models can be used on each snapshot of the graph.

VOLUME 9, 2021 79153



J. Skarding et al.: Foundations and Modeling of Dynamic Networks Using DGNNs: Survey

Discrete DGNNs use a GNN to encode each graph snapshot.
We identify two kinds of discrete DGNNs: Stacked DGNNs
and Integrated DGNNs.

Autoencoders use either static graph encoders or DGNN
encoders, however since they are trained a little differently
from DGNNs and generally make use of (and thus extend)
a DGNN encoder they are here distinguished from other
models.

A discrete DGNN combines some form of deep time-series
modelling with a GNN. The time-series model often comes
in the form of an RNN, but self-attention has also been used.

Given a discrete graph DG = {G1,G2, . . . ,GT } a discrete
DGNN using a function f for temporal modelling can be
expressed as:

zt1, . . . , z
t
n = GNN

(
Gt
)

htj = f
(
ht−1j , ztj

)
for j ∈ [1, n] (5)

where f is a neural architecture for temporal modelling (in the
methods surveyed f is almost always an RNN but can also be
self-attention), zti ∈ Rl is the vector representation of node i at
time t produced by the GNN, where l is the output dimension
of the GNN. Similarity hti ∈ Rk is the vector representation
produced by f , where k is the output dimension of f .
This can also be written as:

Z t = GNN
(
Gt
)

H t
= f

(
H t−1,Z t

)
(6)

Informally we can say that the GNN is used to encode each
network snapshot and f (the RNN or self-attention) encodes
across the snapshots.

Seo et al. [69] introduce two deep learning models which
encode a static graph with dynamically changing attributes.
Whereas the modelling of this kind of graph is outside the
scope of the survey, the twomodels they introduced are, to the
best of our knowledge, the first DGNNs. They introduce
both a stacked DGNN and an integrated DGNN: (i) Graph
Convolutional Recurrent Network Model 1 (GCRN-M1)
and (ii) GCRNmodel 2 (GCRN-M2) respectively. Very simi-
lar encoders have been used in later publications for dynamic
graphs.

1) STACKED DYNAMIC GRAPH NEURAL NETWORKS
The most straightforward way to model a discrete dynamic
graph is to have a separate GNN handle each snapshot of
the graph and feed the output of each GNN to a time series
component, such as an RNN. We refer to a structure like this
as a stacked DGNN.

There are several works using this architecture with dif-
ferent kinds of GNNs and different kinds of RNNs. We’ll
use GCRN-M1 [69] as an example of a stacked DGNN. This
model stacks the spectral GCN from [74] and a standard
peephole LSTM [82]:

zt = GNN (Xt)

i = σ (Wizt + Uiht−1 + wi � ct−1 + bi)

f = σ
(
Wf zt + Uf ht−1 + wf � ct−1 + bf

)
ct = ft � ct−1

+ it � tanh (Wczt + Ucht−1 + bc)

o = σ (Wozt + Uoht−1 + wo � ct + bo)

ht = o� tanh (ct) (7)

Let Xt ∈ Rn×d , W ∈ Rk×nl , U ∈ Rk×k and
h,w, c, b, i, f , o ∈ Rk . The gates which are normally vectors
in the LSTM are now matrices. Also, zt ∈ Rnl×1 is a vector
and not amatrix. Even though theGNNused by Seo et al. [69]
can output features with the same structure as the input,
they reshaped the matrix into a vector. This allows them to
use a one-dimensional LSTM to encode the entire dynamic
network.

Whereas [69] use a spectral GCN and a peephole LSTM
this is not a limitation of the architecture as any GNN and
RNN can be used. Other examples of stacked DGNNs are:
RgCNN [83] which use the Spatial GCN, PATCHY-SAN [84]
stackedwith a standard LSTMandDyGGNN [85] which uses
a gated graph neural network (GGNN) [86] combined with a
standard LSTM.

Manessi et al. [76] present two stacked DGNN encoders:
Waterfall Dynamic-GCN (WD-GCN) and Concatenated
Dynamic-GCN (CD-GCN). These architectures are distinct
in that they use a separate LSTM per node (although the
weights across the LSTMs are shared). The GNN in this
case is a GCN [75] stacked with an LSTM per node. The
WD-GCN encoder with a vertex level decoder is shown
in Fig. 8. WD-GCN and CD-GCN differ only in that
CD-GCN adds skip-connections past theGCN. The equations
below are for the WD-GCN encoder.

Z1, . . . ,Zt = GNN(A1,X1), . . . ,GNN(At ,Xt )

H = v-LSTMk (Z1, . . . ,Zt ) (8)

Let A ∈ Rn×n be the adjacency matrix, n be the number of
nodes, d be the number of features per node and Xt ∈ Rn×d

be the matrix describing the features of each node at time t .
Zt ∈ Rn×l where l is the output size of the GNN and H ∈
Rk×n×t where k is the output size of the LSTMs.

v-LSTMk (Z1, . . . ,Zt ))=

LSTMk (V ′1Z1, . . . ,V
′

1Zt )
...

LSTMk (V ′nZ1, . . . ,V
′
nZt )

 (9)

where LSTM is a normal LSTM [87] and Vp ∈ Rn is defined
as Vp = δpi where δ is the Kronecker delta. Due to the
v-LSTM layer the encoder can store a hidden representation
per node.

Since a set of snapshots is a time-series, one is not restricted
to the use of RNNs and other works have stacked GNNs with
other types of deep time-series models. Sankar et al. [17]
present a stacked architecture that consists completely of
self-attention blocks. They use attention along the spatial and
temporal dimensions. For the spatial dimension, they use the
Graph Attention Network (GAT) [88] and for the temporal

79154 VOLUME 9, 2021



J. Skarding et al.: Foundations and Modeling of Dynamic Networks Using DGNNs: Survey

FIGURE 8. Stacked DGNN structure from Manessi et al. [76]. The graph convolution layer (GC) encode the graph structure in each
snapshot while the LSTMs encode temporal patterns.

dimension, they use a transformer [89]. Wang et al. [25],
[90] stacks a GNN with 1D temporal convolution (TNDCN)
similar to the dilated convolution in WaveNet [91].

StackedDGNNarchitectures also exist for specific types of
dynamic networks. There is HDGNN [24] for heterogeneous
dynamic networks and TeMP [22] for knowledge networks.

When encoding graphs one option is to split the graph into
sub-graphs and use a GNN to project each sub-graph as done
by Zhang et al. [92] for static GNNs. This approach has also
been applied to DGNNs by Cai et al. [93], where they split
each snapshot into sub-graphs and use a stacked DGNN for
anomaly detection.

2) INTEGRATED DYNAMIC GRAPH NEURAL NETWORKS
Integrated DGNNs are encoders that combine GNNs and
RNNs in one layer and thus combine modelling of the spatial
and the temporal domain in that one layer.

Inspired by convLSTM [94] Seo et al. [69] introduced
GCRN-M2. GCRN-M2 amounts to convLSTM where the
convolutions are replaced by graph convolutions. ConvLSTM
uses a 3D tensor as input whereas here we are using a
two-dimensional signal since we have a feature vector for
each node.

ft = σ
(
Wf ∗G Xt + Uf ∗G ht−1 + wf � ct−1 + bf

)
it = σ

(
Wi ∗G Xt + Ui ∗G ht−1 + wi � ct−1 + bi

)
ct = ft � ct−1

+ it � tanh
(
Wc ∗G Xt + Uc ∗G ht−1 + bc

)
ot = σ

(
Wo ∗G Xt + Uo ∗G Ht−1 + wo � ct + bo

)
ht = o� tanh (ct) (10)

where xt ∈ Rn×d , n is the number of nodes and xi is a
signal for the i-th node at time t . W ∈ RK×k×l and U ∈
RK×k×k where k is the size of the hidden layer and K is the
number of Chebyshev coefficients.Wf ∗Gxt denotes the graph
convolution on xt .
EvolveGCN [16] integrates an RNN into a GCN. The RNN

is used to update the weights W of the GCN. [16] name
their layer the Evolving Graph Convolution Unit (EGCU) and

present two versions of it: (i) EGCU-H where the weightsW
are treated as the hidden layer of the RNN and (ii) EGCU-O
where the weights W are treated as the input and output of
the RNN. In both EGCU-H and EGCU-O, the RNN operate
on matrices rather than vectors as in the standard LSTM. The
EGCU-H layer is given by the following equations, where (l)
indicates the neural network layer:

W (l)
t = GRU

(
H (l)
t ,W

(l)
t−1

)
H (l+1)
t = GNN

(
At ,H

(l)
t ,W

(l)
t

)
(11)

And the EGCU-O layer is given by the equations:

W (l)
t = LSTM

(
W (l)
t−1

)
H (l+1)
t = GNN

(
At ,H

(l)
t ,W

(l)
t

)
(12)

The RNN in both layers can be replaced with any other RNN,
and the GCN [75] can be replaced with any GNN given minor
modifications.

Other integrated DGNN approaches are similar to GCRN-
M2. They may differ in which GNN and/or which RNN they
use, the target use case or even the kind of graph they are built
for, but the structures of the neural architecture are similar.
Examples of these include GC-LSTM [20], LRGCN [23],
RE-Net [95] and TNA [96].

Chen et al. [20] present GC-LSTM, an encoder very similar
to GCRN-M2. GC-LSTM takes the adjacency matrix At at
a given time as an input to the LSTM and performs a spec-
tral graph convolution [74] on the hidden layer. In contrast,
GCRN-M2 runs a convolution on both the input and the
hidden layer.

LRGCN [23] integrates an R-GCN [97] into an LSTM as
a step towards predicting path failure in dynamic graphs.

RE-Net [95] encodes a dynamic knowledge graph by inte-
grating an R-GCN [97] in several RNNs. Other modelling
changes enable them to encode dynamic knowledge graphs,
thus extending the use of discrete DGNNs to knowledge
graphs.

VOLUME 9, 2021 79155



J. Skarding et al.: Foundations and Modeling of Dynamic Networks Using DGNNs: Survey

FIGURE 9. Integrated DGNN structure of EvolveGCN with an EGCU-O layer [16]. The EGCU-O layer constitutes the GC (graph
convolution) and the W-LSTM (LSTM for GC weights). W-LSTM is used to initialize the weights of the GC.

A temporal neighbourhood aggregation (TNA) layer [96]
stacks a GCN, a GRU and a linear layer. Bonner et al. designs
an encoder that stacks two TNA layers, to achieve a 2-hop
convolution and employs variational sampling for use on link
prediction. This architecture is arguably a stacked DGNN,
but since the authors define the TNA as one layer, we clas-
sify it as an integrated DGNN, despite the layer itself being
stacked.

3) DYNAMIC GRAPH AUTOENCODERS AND GENERATIVE
MODELS
The Dynamic Graph Embedding model (DynGEM) [98]
uses a deep autoencoder to encode snapshots of dis-
crete node-dynamic graphs. Inspired by an autoencoder
for static graphs [99] DynGEM makes some modifica-
tions to improve computation on dynamic graphs. The
main idea is to have the autoencoder initialized with
the weights from the previous snapshot. This speeds up
computation significantly and makes the embeddings sta-
ble (i.e. no major changes from snapshot to snapshot).
To handle new nodes the Net2WiderNet and Net2DeeperNet
approaches from [100] are used to add width and depth to
the encoder and decoder while the embedding layer stays
fixed in size. This allows the autoencoder to expand while
approximately preserving the function the neural network is
computing.

Dyngraph2vec [101] is a continuation of the work done
on DynGEM. dyngraph2vec considers the last l snapshots in
the encoding and can thus be thought of as a sliding time-
window. The adjacency matrices At , . . . ,At+l are used to
predictAt+l+1, it is assumed that no new nodes are added. The
architecture comes in three variations: (1) dyngraph2vecAE,
an autoencoder similar to DynGEM except that it leverages
information from the past to make the future prediction;

(2) dyngraph2vecRNN, where the encoder and decoder con-
sist of stacked LSTMs; (3) dyngraph2vecAERNN, where the
encoder has first a few dense feed-forward layers followed by
LSTM layers and the decoder is similar to dyngraph2vecAE,
namely a deep feed-forward network.

E-LSTM-D [47] like DynGEM, encode and decode with
dense layers, however, they run an LSTM on the encoded hid-
den vector to predict the new embeddings. Although trained
like an autoencoder, the model aims to perform a dynamic
link prediction.

Hajiramezanali et al. [102] introduce two variational
autoencoder versions for dynamic graphs: the Varia-
tional Graph Recurrent Neural Network (VGRNN) and
Semi-implicit VGRNN (SI-VGRNN). They can operate on
node-dynamic graphs. Both models use a GCN integrated
into an RNN as an encoder (similar to GCRN-M2 [69]) to
keep track of the temporal evolution of the graph. VGRNN
uses a VGAE [80] on each snapshot that is fed the hid-
den state of the RGNN ht−1. This is to help the VGAE
take into account how the dynamic graph changed in the
past. Each node is represented in the latent space and the
decoding is done by taking the inner product decoder of
the embeddings [80]. By integrating semi-implicit variational
inference [103] with VGRNN they create SI-VGRNN. Both
models aim to improve dynamic link prediction.

Generative adversarial networks (GAN) [104] have proven
to be very successful in the computer vision field [105]. They
have subsequently been adapted for dynamic network gen-
eration as well. GCN-GAN [106] and DynGraphGAN [107]
are two such models. Both models are aimed towards the
dynamic link prediction task. The generator is used to gen-
erate an adjacency matrix and the discriminator tries to dis-
tinguish between the generated and the real adjacency matrix.
The aim is to have the generator, generate realistic adjacency
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matrices which can be used as a prediction for the next time
step.

GCN-GAN use a stacked DGNN as a generator and a
dense feed-forward networks as a discriminator [106] and
DynGraphGAN use a shallow generator and a GCN [75]
stacked with a CNN as a discriminator [107].

D. CONTINUOUS DYNAMIC GRAPH NEURAL NETWORKS
Currently, there are three DGNN approaches to continuous
modelling. RNN based approaches where node embeddings
are maintained by an RNN based architecture, temporal point
based (TPP) approaches where temporal point processes are
parameterized by a neural network and time embedding
approaches where positional embedding of the time is used
to represent time as a vector.

1) RNN BASED MODELS
These models use RNNs to maintain node embeddings in
a continuous fashion. A common characteristic for these
models is that as soon as an event occurs or there is a change
to the network, the embeddings of the interacting nodes are
updated. This enables the embeddings to stay up to date con-
tinuously. There are two models in this category, Streaming
graph neural networks (SGNN) [78] which encode directed
strictly evolving networks and JODIE [77] which encodes
interaction networks.

The Streaming graph neural network [78] maintains a hid-
den representation in each node. The architecture consists
of two components: (i) an update; and (ii) a propagation
component. The update component is responsible for updat-
ing the state of the nodes involved in an interaction and the
propagation component propagates the update to the involved
node’s neighbours.

The update and propagation component consist of 3 units
each: (i) the interact unit; (ii) the update / propagate unit;
and (iii) the merge unit. The difference between the update
component and the propagation component is thus the second
unit where the update component makes use of the update
unit and the propagate component makes use of the propagate
unit.

Themodel maintains several vectors for each node. Among
them are: (i) a hidden state for the source role of the node;
and (ii) a hidden state of the target role of the node. This
is required to treat source and target nodes differently. The
model also contains a hidden state which is based on both
the source and target state of the node. The interact unit
and merge units can be thought of as wrappers that handle
many node states. The interact unit generates an encoding
based on the interacting nodes and this can be thought of as
an encoding of the interaction. The merge unit updates the
combined hidden state of the nodes based on the change done
to the source and target hidden states by the middle unit.

The middle units and core of the update and propagate
components are the update and the propagate units. The
update unit generates a new hidden state for the interacting
nodes. It is based on a Time-aware LSTM [108], which is

a modified LSTM that works on time-series with irregular
time intervals. The propagate unit updates the hidden states of
the neighbouring nodes. It consists of an attention function f ,
a time decay function g and a time based filter h. f estimates
the importance between nodes, g gauges the magnitude of
the update based on how long ago it was and h is a binary
function which filters out updates when the receiving node
has too old information. h has the effect of removing noise as
well as making the computation more efficient.

By first running the update component and afterwards
propagating, information of the edge update is added to the
hidden states of the local neighbourhood.

The secondmethod is JODIE [77]. JODIE embeds nodes in
an interaction network. It is however targeted towards recom-
mender systems and built for user-item interaction networks.
The intuition is that with minor modifications this model can
work on general interaction networks.

JODIE uses an RNN architecture to maintain the embed-
dings of each node. With one RNN for users (RNNu) and one
RNN for items (RNNi), the formula for each RNN is identical
except that they use different weights. When an interaction
happens between a user and an item, each of the embeddings
is updated according to equation 13.

u(t) = σ
(
W u

1 u
(
t̄
)
+W u

2 i
(
t̄
)
+W u

3 f +W
u
41u

)
i(t) = σ

(
W i

1i
(
t̄
)
+W i

2u
(
t̄
)
+W i

3f +W
i
41i

)
(13)

where u(t) is the embedding of the interacting user, i(t) the
embedding of the interacting item, u(t̄) the embedding of the
user just before the interaction and similarly i(t̄) is the embed-
ding of the item just before the interaction. The superscript
on the weights indicates which RNN they are parameters of,
so W u

1 is a parameter of RNNu. f is the feature vector of the
interaction and 1u is the time since the user interacted with
an item and similarly for Deltai.

An additional functionality of JODIE is the projection
component of their architecture. It is used to predict the
trajectory of the dynamic embeddings. Themodel predicts the
future position of the user or item embedding and is trained
to improve this prediction.

2) TEMPORAL POINT PROCESS BASED MODELS
Know-Evolve [21] is the precursor to the rest of the
dynamic graph temporal point process models discussed in
this section. It models knowledge graphs in the form of
interaction networks by parameterizing a temporal point
process (TPP) by a modified RNN. With some minor mod-
ifications, the model should be applicable to any interac-
tion network, but since the original model is specifically
for knowledge graphs we will rather focus on its successor,
DyREP [48].

DyREP uses a temporal point process model which is
parameterised by a recurrent architecture [48]. The tem-
poral point process can express both dynamics ‘‘of the
network’’ (structural evolution) and ‘‘on the network’’
(node communication). By modelling this co-evolution of
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both dynamics they achieve a richer representation than most
embeddings.

The temporal point process (TPP) is modelled by events
(u, v, t, k) where u and v are the interacting nodes, t is the time
of the event and k ∈ {0, 1} indicates whether the event is a
structural evolution, k = 0 (edge added) or a communication
k = 1.

The conditional intensity function λ describes the probabil-
ity of an event happening. λ is parameterised by two functions
f and g.

λ
u,v
k fk (g

u,v
k (t̄)) (14)

where t̄ is the time just before the current event, g is a
weighted concatenation of node embeddings z, gu,vk (t̄) =
ωT
k ·

[
zu(t̄); zv(t̄)

]
. f is a modified softplus, fk (x) =

ψk log (1+ exp (x/ψk)), ωk and ψk are four parameters
which enable the temporal point process to be modelled on
two different time scales.

The TPP is parameterised by an RNN. The RNN incor-
porates aggregation of local node embeddings, the previous
embedding of the given node and an exogenous drive.

zv
(
tp
)
= σ (W structhustruct (t̄p)+W

reczv(t̄vp)W
t (tp − t̄vp)) (15)

where hustruct is given by an attention mechanism that aggre-
gates embeddings of neighbours of u. The attention mecha-
nism uses an attention matrix S which is calculated and main-
tained by the adjacency matrix A and the intensity function λ.
In short, the λ parameterises the attention mechanism used
by the RNN which in turn is used to parameterise λ. Thus λ
influences the parameterisation of itself.

With λ well parameterised it serves as a model for the
dynamic network and its conditional intensity function can be
used to predict link appearance and time of link appearance.

Latent dynamic graph (LDG) [109] uses Kipf et al.’s Neu-
ral Relational Inference (NRI) model [110] to extend DyREP.
The idea is to re-purpose NRI to encode the interactions
on the graph, generate a temporal attention matrix which is
then used to improve upon self-attention originally used in
DyREP.

Graph Hawkes Network (GHN) [111] is another method
that parameterizes a TPP through a deep neural architecture.
Similarly to Know-Evolve [21], it targets temporal knowl-
edge networks. A part of the architecture, the Graph Hawkes
Process, is an adapted continuous-time LSTM for Hawkes
processes [112].

3) TIME EMBEDDING BASED MODELS
Some continuous models rely on time embedding meth-
ods. This includes using positional encoding to represent
the time dimension as introduced by Vaswani et al. [89].
An example of a time embedding method is time2vec [113].
This is a positional encoding, similar to the transformer but
especially focused on encoding temporal patterns. Another
example, is the functional time embedding introduced by
Xu et al. [114] which converts learning temporal patterns to
the kernel learning problem and learns the kernel function.

They apply classical functional analysis to enable functional
learning. These time embedding methods are particularly
aimed at capturing temporal difference ti−tj, which is of sub-
stantial benefit when modelling interaction networks since it
enables them to effectively capture inter-event time.

Temporal Graph Attention (TGAT) [18] was the first con-
tinuous DGNN to use a time embedding. The authors use the
functional time embedding they introduced separately [114],
however when comparing different versions of the embed-
ding they end up using a non-parametric version (Equa-
tion 16) which is near identical to time2vec [113].

8d (t, t1) =
[
cos (ω1 (t − t1)+ ϕ1) , . . . ,

cos (ωd (t − t1)+ ϕd )
]

(16)

where ωi and ϕi are learned weights and d is the size of the
time embedding.

A TGAT layer concatenates together the node features,
edge features (optional) and time features of each neigh-
bouring node as well as the target node. It then applies
masked-attention similar to the attention in GAT [88]. For
each layer added an additional hop of neighbours is added.
The authors found 2 layers (2 hops) to be optimal, as addi-
tional hops exponentially increase run-time.

Z (t) =
[
h̃(l−1)0 (t) ‖e0,0 (t0) ‖8dT (0),

h̃(l−1)1 (t1) ‖e0,1 (t1) ‖8dT (t − t1) ,

. . . ,

h̃(l−1)N (tN ) ‖e0,N (tN ) ‖8dT (t − tN )
]>

(17)

Z (t) is an entity-temporal feature matrix which include
features of nodes, edges and inter-event time. l is the layer.
In line with self-attention Z (t) is linearly projected to obtain
the ’query’, ’key’ and ’value’.

q(t) = [Z (t)]0WQ

K (t) = [Z (t)]1:NWK

V (t) = [Z (t)]1:NWV (18)

[Z (t)]0 is the features of the target node (the node we want
to compute the embedding for) and [Z (t)]1:N is the features
of its neighbours. TGAT applies its attention to Z (t) to obtain
h(t), the hidden representation of the node.

h(t) = softmax(
q(t)K (t)
√
dk

)V (t) (19)

Finally, the hidden representation is concatenated with
the (static) node embedding of the target node, x0, and passed
to a feed-forward network.

h̃(l)0 (t) = FFN (h(t)‖x0) (20)

Temporal Graph Networks (TGN) [19] extends TGAT by
adding a memory module. The memory module embeds the
history of the node. The memory vector is added to Z (t) in
Equation 17.
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E. DISCUSSION AND SUMMARY
Deep learning on dynamic graphs is still a new field, however,
there are already promising methods that show the capacity
to encode dynamic topology. This section has provided a
comprehensive and detailed survey of deep learning models
for dynamic graph topology encoding.

The encoders are summarised and compared in Table 6.
Models are listed based on their encoders and the encoders
capacity to model link and node dynamics. Any model
which cannot model link deletion or link duration can only
model strictly evolving networks or interaction networks (see
section II-B).
Table 6 list many models as not supporting link deletion,

it is possible to model link deletion by link deletion events
and thus an interaction network can model a persistent link
disappearing. Any continuous model should also be able
to model node deletion by removing the node from node
neighbourhood aggregation to effectively delete it. However,
while these ways of modelling dynamics have been discussed
by earlier works [19], to the best of our knowledge, they have
not been implemented in practice.

Most methods focus on discrete graphs which enable
them to leverage recent advances in graph neural networks.
This allows for modelling of diverse graphs, including
node-dynamic graphs, dynamic labels on nodes and due to
the use of snapshots, temporal networks can also be han-
dled. Continuous models currently exist for strictly grow-
ing networks and interaction networks. This leaves many
classes of dynamic graphs unexplored. Since continuous
models have some inherent advantages over discrete graphs
(see section II-F), expanding the repertoire of dynamic net-
work classes for continuous models, is a promising future
direction.

All discrete DGNNs use a GNN to model graph topology
and a deep time-series model, typically an RNN, to model
the time dependency. Two types of architectures can be
distinguished: (i) the stacked DGNN and (ii) the integrated
DGNN.Different stackedDGNNs only differ in which spatial
and temporal layers are used to stack (which GNN they use
and which time series layer), while the integrated DGNNs
may differ not only by how they model spatial and temporal
patterns but also in how they integrate the spatial and temporal
modules. Given the same graph, a stacked DGNN would
generally have fewer parameters than a typical integrated
DGNN (such as GCRN-M2 [69]). Both approaches offer
great flexibility in terms of which GNN and RNN can be
used. They also are rather flexible in that they can model
networks with both appearing and disappearing edges as well
as dynamic labels.

Discrete models tend to treat every snapshot as a static
graph, thus the complexity of the model is proportional to the
size of the graph in each snapshot and the number of snap-
shots. Whereas a continuous model complexity is generally
proportional to the number of changes in the graph. If a dis-
crete approach creates snapshots using time-windows, then
it can trade off temporal granularity (and thus theoretically

TABLE 5. DGNN model types and network types. All continuous DGNNs
work on specific types of networks, such as directed or knowledge
networks, therefore there are no continuous DGNNs for any general
purpose dynamic network.

modelling accuracy) for faster computation by using larger
time-windows for each snapshot.

Table 6 shows that every continuous DGNN is aimed
at a special type of continuous network. This is reflected
in Table 5 which shows that there is, as of yet, no continuous
DGNN encoder for any general-purpose dynamic network.

So which one should you chose? Converting the dynamic
network to an edge-weighted network is a simple, and
depending on the application, possibly ‘‘good enough’’
approach. A practitioner only need to come up with some
scheme to weight edges, and then feed that to an opti-
mized implementation of a standard GNN, e.g. GCN [75]
or GAT [88]. TDGNN [81] shows a good example of such
a scheme by weighting the edges using an exponential dis-
tribution, which weighs more recent edges higher than old
edges.

Another approach which should be considered before try-
ing any large DGNNmodel is whether applying a static GNN
on a discrete representation might yield good enough results.
Given the same number of features and layer size, it will train
faster and generally be a simpler model.

The choice between discrete and continuous depends
on the data and the intended problem. If temporal gran-
ularity and performance is not a concern then one of the
advanced discrete approaches such as DySAT or EvolveGCN
will likely be a great fit for most dynamic network prob-
lems. Since they naturally support link deletion, node addi-
tion and node deletion, they provide good general-purpose
functionality.

The Discrete DGNNs covered in this work all iterate over
snapshots to encode, while the continuous DGNNs iterate
edge-by-edge. The continuous therefore tend to take longer
to train compared to the discrete models. This is especially
true if the network is rather dense.

Evolving networks are well served by any discrete
approach, however, with the recent dominance of attention
architectures [89], we would expect DySAT to do well in a
comparative test. EvolveGCN is expected to train fast on an
evolving network with little change between snapshots. The
discrete methods are also suited for temporal networks given
that the length of the time-windows covered by snapshots is
well selected.

If node dynamics is an important feature of the network
you wish to model, then you should choose a model that can
encode node dynamics such as DySAT [17], EvolveGCN [16]
or HDGNN [24].

If you have an interaction network with detailed times-
tamps, then TGAT [18] or TGN [19] are likely good fits.
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TABLE 6. Deep encoders for dynamic network topology. While we note which GNNs are used in each of the discrete models it is usually trivial to replace
it with another GNN.

If run-time complexity and time granularity are essential to
the dynamic complex network at hand (for example in the
case of a temporal network), then non-deep learning meth-
ods that are not covered by this survey are recommended.
Those methods can be explored in the literature referred to
in section II-E.

IV. DEEP LEARNING FOR PREDICTION OF NETWORK
TOPOLOGY
Any embedding method can be thought of as a concatena-
tion of an encoder and a decoder [28]. Until now, we have
discussed encoders, but the quality of embeddings depend on
the decoder and the loss function as well. While the encoders
in Section III can be paired with a variety of decoders and
loss functions depending on the intended task, we focus in
this section on one of the most commonly tackled problems -
link prediction.

Prediction problems can be defined for many different
contexts and settings. In this survey, we refer to the prediction
of the future change to the network topology. Much work has
been done on the prediction of missing links in networks,
which can be thought of as an interpolation task. This section
explores how dynamic graph neural networks can be used
for link prediction and deal exclusively with the extrapolation
(future link prediction) task.

Predictions can be done in a time-conditioned or
time-predicting manner [11]. Time-predicting means that
a method predicts when an event will occur and
time-conditioned means that a method predicts whether an
event will occur at a given time t . For example, if the method
predicts the existence of a link in the next snapshot, it is a
time-conditioned prediction. If it predicts when a new link
between nodes will appear, it is a time-predicting prediction.

Prediction of links often focuses only on the prediction
of the appearance of a link. However, link disappearance is
less explored but also important for the prediction of network
topology. We refer to link prediction based on a dynamic
network as dynamic link prediction.

For embedding methods, what is predicted and how is
decided by the decoder. You can have both time-predicting
and time-conditioned decoders. The prediction capabilities
will depend on the information captured by the embeddings.
Thus, an embedding that captures continuous-time informa-
tion has a higher potential to model temporal patterns. Well
modelled temporal and structural embeddings offer a better
foundation for a decoder and thus potentially better predic-
tions.

If dealing with discrete data and few timestamps,
a time-conditioned decoder can be used for time prediction.
This can be done by applying the time-conditioned decoder
to every candidate timestamp t and then consider the t where
the link has the highest probability of appearing.

The rest of this section is a description of how the
surveyed models from the previous section can be used
to perform predictions. This includes mainly a discus-
sion on decoders and loss functions. Since the surveyed
models aim to predict the time-conditioned existence of
links, the focus will be on the dynamic link prediction
task.

Autoencoders can use the same decoders and loss functions
as other methods. Their aim is typically a little different.
The decoder is targeted at the already observed network
and tries to recreate the snapshot. A prediction for a snap-
shot at time t + 1 is marginally different from the decoder
of an autoencoder which is targeted at already observed
snapshots.
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A. DECODERS
Of the surveyed approaches which apply a predicting
decoder, almost all apply a time-conditioned decoder. A pre-
diction is then often an adjacency matrix Âτ which indicates
the probabilities of an edge at time τ . Often τ = t + 1.
We consider decoders to be the part of the architecture that

produces Âτ from Z the dynamic graph embeddings.
Since encoders make node embeddings and predicting a

link involves two nodes decoders tend to aggregate two node
embeddings to predict a link. The simplest way to aggregate
is to apply an operator, e.g. the inner product [80] (shown
in Equation 21), concatenation, mean or Hadamard prod-
uct [81]. This combines the node embeddings and gives a
probability of a link appearing. These simple approaches
require that the encoder is able to embed the nodes in a
space such that nodes that are likely to connect are close to
each other or otherwise able to be decoded by the simple
decoder.

Another simple decoder is to use a simple feed-forward
network. The decoder as before receives two node embed-
dings and gives out a probability for whether the link
appeared or didn’t appear. This approach is used by sev-
eral models for link prediction [16], [47], [101]. While
this requires more parameters, the decoder is can easily be
dwarfed in size by the encoder and it enables decoding of
non-linear relationships between node embeddings.

p
(
Atij = 1|zti , z

t
j

)
= σ

(
(zti )
>ztj
)

(21)

where zk is the node embedding of node k . An inner product
decoder works well if we only want to predict or reproduce
the graph topology. If we would like to decode the feature
matrix then a neural network should be used [102].

Wu et al. [115] uses GraphRNN, a deep sequential genera-
tive model as a decoder [43]. What is unique with GraphRNN
is that it reframes the graph generation problem as a sequen-
tial problem. The GraphRNN authors claim increased perfor-
mance over feed-forward auto-encoders.

In general, there are many options for how decoding can be
done. A decoder might be viable as long as the probability for
each edge is produced from the latent variables and the archi-
tecture can be efficiently optimized with back-propagation.

The only surveyed method using a time-predicting decoder
is DyRep [48]. DyRep uses the conditional intensity func-
tion of its temporal point process to model the dynamic
network.

While the focus in this section is on decoders that are
used directly for the forecasting task, it is important to
note that downstream learning can also be used. This is
the DGNN trained on a task and the node embeddings are
used for a different task. For example, the DGNN can be
trained on node classification and then the node embed-
dings are used later for link prediction. An example of
this is seen in [17], where a logistic regression classifier is
trained on the node embeddings of snapshot t to predict links
at t + 1.

B. LOSS FUNCTIONS
The loss function is central to any deep learning method,
as it is the equation that is being optimized. Regarding loss
functions, we can make a distinction between (i) link pre-
diction optimizing methods; and (ii) autoencoder methods.
As the prediction methods optimize towards link prediction
directly, an autoencoder optimizes towards the recreation of
the dynamic graph. Despite have slightly different aims, both
approaches have been used for link prediction and have been
shown to perform well.

1) LINK PREDICTION
Prediction of edges is seen as a binary classifica-
tion task. Traditional link prediction is well known for
being extremely unbalanced [52], [116]. For predicting
methods the loss function is often simply the binary
cross-entropy [16], [17], [85].

Some models use negative sampling [16], [17]. This trans-
forms the problem of link prediction from a multiple output
classification (a prediction for each link) to a binary classifi-
cation problem (is the link a ‘‘good’’ link or a ‘‘bad’’ link).
This speeds up computation and deals with the well-known
class imbalance problem in link prediction. The rate of nega-
tive samples used vary from work to work, EvolveGCN [16]
use 1 to 100 for training, while TGAT [18] and TGN [19] use
1 to 1.

LCE =
n∑
i=1

n∑
j=1

Atij log(Â
t
ij) (22)

Equation 22 is an example of a binary cross entropy loss
adapted from [20].

DySAT [17] sums the loss function only over nodes that
are in the same neighbourhood at time t . The neighbourhoods
are extracted by taking nodes that co-occur in random walks
on the graph. The inner product is calculated as a part of
the summation in the loss function. This means that the
inner product will be calculated only for the node pairs that
the loss is computed on. Together it reduces the number of
nodes that are summed up and should result in a training
speed up. Any accuracy trade-off is not discussed by the
authors.

2) AUTOENCODERS
Autoencoder approaches [47], [98], [101] aim to reconstruct
the dynamic network. All surveyed autoencoders operate
on discrete networks. Therefore the reconstruction of the
network is reduced to the reconstruction of each snapshot.
This entails creating a loss function that penalizes wrong
reconstruction of the input graph. Variational autoencoder
approaches [79], [102] also aim to be generative models.
To be generative, they need to enable interpolation in latent
space. This is achieved by adding a term to the loss function
which penalizes the learned latent variable distribution for
being different from a normal distribution. It is also common
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to add regularization to the loss functions to avoid overfitting.

L =
n∑
i=1

n∑
j=1

(
Atij − Â

t
ij

)
∗ Pij (23)

Equation 23 is the reconstruction penalizing component of
E-LSTM-D’s loss function [47].P is a matrix which increases
the focus on existing links. pij = 1 if Atij = 0 and pij = β > 1
if Atij = 1.

3) TEMPORAL POINT PROCESSES
DyRep [48] models a dynamic network by parameterising a
temporal point process. Its loss function influences how the
temporal point process is optimized.

L = −
P∑
p=1

log
(
λp(t)

)
+

∫ T

0
3(τ )dτ (24)

where P is the set of observed events, λ is the intensity
function and 3(τ ) =

∑n
u=1

∑n
v=1

∑
k∈{0,1} λ

u,v
k (τ ) is the

survival probability for all events that did not happen. Sur-
vival probability indicates the probability of an event not
happening [117]. The first term thus rewards a high intensity
when an event happens, whereas the second term rewards a
low intensity (high survival) of events that do not happen.

Trivedi et al. [48] further identify that calculating the inte-
gral of 3 is intractable. They get around that by sampling
non-events and estimating the integral using Monte Carlo
estimation, this is done for each mini-batch.

4) REGULARIZATION
There are several different approaches for adding regular-
ization to loss functions to avoid overfitting. The total loss
function (equation 25) is composed of the reconstruction loss
and the regularization with an optional constant α to balance
the terms. Here we cover the methods that use regularization,
however many models chose to not use regularization as they
find that they don’t have a problemwith overfitting [16], [18],
[19], [48].

Ltotal = L+ αLreg (25)

A commonway to regularize is through summing up all the
weights of the model, thus keeping the weights small and the
model less likely to overfit. The L2 norm is commonly used
for this [20], [47].

The variational autoencoder methods use a different reg-
ularizer. They normalize the node embeddings compared to
a prior. In traditional variational autoencoders, this prior is a
Normal distribution with mean 0 and standard deviation 1.
In dynamic graph autoencoders [79], [102], the prior is still
a Gaussian, but it is parameterised by previous observations.
Equation 26 is the regularization term from [102].

KL(q
(
Z t |A≤t ,X≤t ,Z<t

)
‖p
(
Z t |A<t ,X<t ,Z<t

)
) (26)

where q is the encoder distribution and p is the prior distribu-
tion. KL is the Kullback-Leibler divergence which measures

the difference between two distributions. The A<t indicate all
adjacency matrices up to, but not including t and similarly
for the other matrices. We can see that the prior is influ-
enced by previous snapshots, but not by the current. Whereas
the encoder is influenced by the previous and the current
snapshot.

C. EVALUATION METRICS
Link prediction is plagued by high class imbalance. It is a
binary classification, a link either exists or not and most links
will not exist. In fact, actual links tend to constitute less
than 1% of all possible links [118]. AUC and precision@k
are two commonly used evaluation metrics in static link pre-
diction [116], [119]. If dynamic link prediction requires the
prediction of both appearing and disappearing edges, the eval-
uation metric needs to reflect that. Furthermore, traditional
link prediction metrics have shortcomings when used in a
dynamic setting [52].

For a detailed discussion on the evaluation of link pre-
diction, we refer to Yang et al. [116] for static link predic-
tion and Junuthula et al. [52] for dynamic link prediction
evaluation.

1) Area under the curve (AUC). The area under the
curve (AUC) is used to evaluate a binary classification
and has the advantage of being independent of the
classification threshold. The AUC is the area under
the receiver operating characteristic (ROC) curve. The
ROC is a plot of the true positive rate and the false
positive rate.
The AUC evaluates predictions based on how well the
classifier ranks the predictions, this provides a measure
that is invariant of the classification threshold. In link
prediction, there has been little research into finding the
optimal threshold [120], using the AUC for evaluation
avoids this problem.
Yang et al. [116] note that AUC can show deceptively
high performance in link prediction due to the extreme
class imbalance. They recommend the use of PRAUC
instead.

2) PRAUC. The PRAUC is similar to the AUC except
that it is the area under the precision-recall curve. The
metric is often used in highly imbalanced information
retrieval problems [52].
PRAUC is recommended by Yang et al. [116] as a suit-
able metric for traditional (static) link prediction due
to the deceptive nature of the ROC curve and because
PRAUC shows a more discriminative view of classi-
fication performance. And recommended for the same
reasons by Li et al. for dynamic link prediction [118].
One way of calculating the PRAUC is by using Mean
Average Precision (MAP). MAP is the mean of the
average precision (AP) per node.

3) Fixed-threshold metrics. One of the most common
fixed threshold metrics in traditional link prediction is
Precision@k. It is the ratio of items that are correctly
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TABLE 7. A summary of notation used in this work.

predicted. From the ranking prediction the top k predic-
tions are selected, then precision is the ratio kr

k , where
kr is the number of correctly predicted links in the top
k predictions.
While a higher precision indicates a higher prediction
accuracy, it is dependent on the parameter k . k might
be given on web-scale information retrieval, where we
care about the accuracy of the highest k ranked arti-
cles, in link prediction it is difficult to find the right
cut-off [120].
A fixed-threshold can be applied to other common
metrics including accuracy, recall and F1 among
others [116]. These methods suffer from instability
in their predictions, where a change of thresholds
can lead to contradictory results [116]. This prob-
lem is also observed in dynamic link prediction [52].
Fixed-threshold metrics are not recommended unless
the targeted problem has a natural threshold [116].

4) Sum of absolute differences (SumD). Li et al. [118]
pointed out that models often have similar AUC scores
and suggested SumD as a stricter measurement of accu-
racy. It is simply, the number of mispredicted links.
The metric has different meanings depending on how
many values are predicted since it is not normalized
according to the total number of links. Chen et al.
considers SumD misleading for this reason [47]. The
metric strictly punishes false positives, since there are
so many links not appearing, a slightly higher rate of
false positives will have a large impact on this metric.

5) Error rate. Since SumD suffers from several draw-
backs an extension is suggested by Chen et al. [47].

Error rate normalizes SumD by the total number of
existing links.

Error Rate =
Nfalse

Ntrue
(27)

where Nfalse is the number of mispredicted links and
Ntrue is the number of existing links. The error rate is
very similar to recall, except that recall focuses on true
positives, where the error rate focuses on false posi-
tives. Another difference between recall and error rate
is that recall is normalized between 0 and 1, while the
error rate may be above 1 if the number of mispredicted
links outnumber the number of existing links The error
rate is a good metric if the number of false positives
is a major concern. In dynamic link prediction, false
positives become a major issue due to the massive class
imbalance of the prediction problem.

6) GMAUC. After a thorough investigation of evaluation
metrics for dynamic link prediction, Junuthula et al.
suggests GMAUC as an improvement over other
metrics [52]. The key insight is that dynamic link pre-
diction can be divided into two sub-problems: (i) pre-
dicting the disappearance of links that already exist
or the appearance of links that have once existed;
and (ii) predicting links that have never been seen
before. When the problem is divided in this way, each
of the sub-problems takes on different characteristics.
Prediction of links that have never been seen before
is equivalent to traditional link prediction, for which
PRAUC is a suitable metric [116]. Prediction of already
existing links is both the prediction of once seen links
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TABLE 8. A summary of abbreviations used in this work. Some model
names in the text look like abbreviations but are in fact simply the name
of the model (or the authors do not explicitly state what the abbreviation
stand for). These include: PATCHY-SAN, DyGGNN, RgGNN, StrGNN,
EvolveGCN, JODIE, GC-LSTM, GCN-GAN, DynGraphGAN and DyREP.

appearing and existing links disappearing. This is a
more balanced problem than traditional link prediction,
thus AUC is a suitable measure. [52] note that both the
mean and the harmonic mean will lead to either the
AUC or the PRAUC to dominate, thus the geometric
mean is used to form a unified metric.

GMAUC=

√√√√PRAUCnew−
P

P+N

1− P
P+N

· 2
(
AUCprev−0.5

)
(28)

PRAUCnew is the PRAUC score of new links, AUCprev
is the AUC score of previously observed links.
The authors note the advantages of GMAUC:

• Based on threshold curves, thus avoids the pitfall
of fixed-threshold metrics

• Accounts for differences between predicting new
and already observed edges without having the
metric to be dominated by either sub-problem.

• Any predictor that predicts only new edges or only
previously observed edges gets a score of 0.

However, it does hinge on the assumption that reoccurring
edges is a balanced enough prediction problem that AUC is
suitable. And that is not necessarily the case.Many real-world
networks are much more sparse than the two networks used
by Junuthula et al. [52].

D. DISCUSSION AND SUMMARY
In this section we have provided an overview of how, given a
dynamic network encoder, one can perform network topol-
ogy prediction. The overview includes how methods from
section III use their embeddings for prediction. This com-
pletes the journey from establishing a dynamic network,
to encoding the dynamic topology, to predicting changes in
the topology.

Prediction using a deep model requires decoding and
the use of a loss function that captures temporal and
structural information. Prediction is largely focused on
time-conditioned link prediction and the two main mod-
elling approaches are (1) an architecture directly aimed
at prediction; and (2) an architecture aimed at generating
node embeddings which are then used for link prediction
in a downstream step. Most dynamic network models sur-
veyed fall into the second category, including all autoencoder
approaches. All else being equal wewould expect an architec-
ture directly aimed at prediction to perform better than a two
step architecture. This is because the first case will allow the
entire architecture to optimize itself towards the prediction
task.

The massive class imbalance makes the evaluation of
dynamic link prediction is non-trivial. If the target prob-
lem has a natural fixed threshold, then adding a fixed
threshold to a common metric such as F1 is likely a
good fit. PRAUC (MAP) and Error rate are good metrics
that avoids the class imbalance problem and are suit-
able for both link prediction and dynamic link predic-
tion. The GMAUC metric incorporates the observation that
reappearing and disappearing links are not an imbalanced
classification. Usage of GMAUC however hinges on the
assumption that reoccurring links are a reasonably bal-
anced classification, this is not necessarily true and depends
on the data. An evaluation of new methods should report
the PRAUC of newly appearing links and the PRAUC or
AUC of reappearing links separately. The combined score
should also be reported as either the PRAUC, Error rate or
GMAUC.

Prediction on dynamic networks is in its infancy. Deep
models are largely focused on unattributed time-conditioned
discrete link appearance prediction. This leaves opportunities
for future work in a large range of prediction tasks, with
some types of prediction still unexplored. Prediction based on
continuous-time encoders is a particularly interesting frontier
due to the representations inherent advantages and due to the
limited amount of works in that area.
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V. CHALLENGES AND FUTURE WORK
There are plenty of challenges and multiple avenues for the
improvement of deep learning for both modelling and predic-
tion of network topology.

Expanding modelling and prediction repertoire. In this
workwe have exclusively focused on dynamic network topol-
ogy. However, complex networks are diverse and not only
topology may vary. Topology dynamics can be represented as
a 3-dimensional cube (Section II-D). However, real networks
can be much more complex. Complex networks may have
dynamic node and edge attributes, they may have directed
and/or signed edges, be heterogeneous in terms of nodes and
edges and be multilayered or multiplex. Each of these cases
can be considered another dimension in the dynamic network
hypercube. Designing deep learning models for encoding
these network cases expand the repertoire of tasks on which
deep learning can be applied. Which types of networks can
be encoded can be expanded as well as an expansion of
what kind of predictions can be made on those networks.
For example, most DGNN models (and most GNN models)
encode attributed dynamic networks but predict only graph
topology without the node attributes.

Adoption of advances in closely related fields. Dynamic
graph neural networks are based on GNNs and thus advances
made to GNNs trickle down and can improve DGNNs.
Challenges for GNNs include increasing modelling depth as
GNNs struggle with vanishing gradients [121] and increasing
scalability for large graphs [67]. As advancements are made
in deep neural networks for time series and in GNNs these
advancements can be applied to dynamic network modelling
and prediction to improve performance. Similarly, improve-
ments in deep time-series modelling can easily be adapted to
improve DGNNs.

Continuous DGNNs.Modelling temporal patterns is what
distinguishes modelling dynamic graphs from modelling
static graphs. Capturing these temporal patterns is key to
making accurate predictions. However, most models rely on
snapshots which are coarse-grained temporal representations.
Methods modelling network change in continuous time will
offer fine-grained temporal modelling. Future work is needed
for modelling and prediction of continuous-time dynamic
networks.

Scalability. Large scale datasets is a challenge for dynamic
network modelling. Real-world datasets tend to be so large
that modelling becomes prohibitively slow. Dynamic net-
works either use a discrete representation in the form of
snapshots, in which case processing of each snapshot is the
bottleneck or continuous-time modelling which scales with
the number of interactions. A snapshot model will need to
have frequent snapshots in order to achieve high temporal
granularity. In addition, frequent snapshots might undermine
the capacity to model a temporal network. Improvements in
continuous-time modelling are likely to improve the perfor-
mance of deep learning modelling on dynamic networks both
in terms of temporal modelling capacity and ability to handle
large networks.

Dynamic graph neural networks is a new exciting research
direction with a broad area of applications. With these oppor-
tunities, the field is ripe with potential for future work.
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