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ABSTRACT Cognitive Impairments are cognitive deficits that are greater than expected for a person of
a given age and level of education, but which do not significantly interfere with the daily life of the
people affected. They range from mild to severe and are seen as a risk factor for Alzheimer’s disease,
currently the most common neurodegenerative brain disorder worldwide. In a previous study, we presented
an experimental protocol comprising different handwriting tasks to be carried out by patients and a healthy
control group: the aim was to investigate whether the analysis of the handwriting could be used as a tool
to support the diagnosis of this kind of impairment. In the study presented here, we used a well-known and
widely-used feature selection approach to determine the most effective features for predicting the symptoms
related to cognitive impairments via handwriting analysis. Our intention is to deepen the knowledge about the
different cognitive functions affected by the onset of these diseases, as well as to improve the performance of
the tools developed to support their diagnosis. The results showed that different sets of highly discriminant
features, closely related to the cognitive skills impaired, were selected for the handwriting tasks making up
the protocol, thus supporting our hypothesis that their use can be very helpful to support the diagnosis of
cognitive impairment.

INDEX TERMS Medical expert systems, cognitive impairments, feature selection.

I. INTRODUCTION
Mild Cognitive Impairment (MCI) (also known as minor
neurocognitive disorder), is diagnosed when individuals have
cognitive deficits that are greater than those that would be
statistically expected for their age and level of education, but
which do not significantly interfere with their daily activi-
ties. This condition is considered to be the transition state
between normal aging and dementia. More generally, cog-
nitive impairments (CI) range from mild to severe. People
affected by mild impairment may begin to notice changes in
their cognitive functions, but are still able to do their everyday
activities. Severe levels affect the understanding of the mean-
ing or importance of events; of things that are said; talking and
writing, resulting in the loss of independent living. Although
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MCI is characterized by a wide variety of symptoms, when
memory loss becomes the predominant symptom it is often
referred to as ‘‘amnestic MCI’’ (a-MCI) and is frequently
seen as a risk factor for Alzheimer’s disease (AD) [1]. AD is
the most common neurodegenerative brain disorder and typi-
cally progresses into severe cognitive impairment and loss of
autonomy (i.e. dementia) in old age.

To date, AD is diagnosed by doctors using imaging, blood
tests, and lumbar punctures (spinal sampling) amongst oth-
ers. Unfortunately, there is no remedial cure and early diag-
nosis would significantly improve the efficacy of available
treatments. Recently, researchers have shown that patients
affected by AD have altered spatial organization and poor
movement control. Therefore, the observation of motor activ-
ities should be used in the diagnosis of AD. Handwrit-
ing, which is the result of a complex network of cognitive,
kinesthetic and perceptive motor skills, can be significantly
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compromised. For example, in the clinical course of AD, dys-
graphia occurs both during the initial phase and progressively
[2], [3]. In this framework, many studies have been published
in the fields of medicine and psychology, in which standard
statistical tools have been used to study the relationship
between the disease and the variables used to describe the
handwriting of patients [4]–[7]. However, these studies over-
look the complex interactions that may occur between multi-
ple features. In many cases, single features weakly correlated
to the target class could significantly improve classification
accuracy if used together with some complementary features.
In contrast, individually relevant features may be redundant
when used together with other features.

Currently, researchers in the field of Artificial Intelligence
are paying increasing attention to the importance of inves-
tigating the characteristics and anomalies of handwriting
[8]–[10]. They are committed to modeling the complex inter-
actions between the features extracted from people’s hand-
writing, in order to predict their cognitive state [11]–[17]. The
aim is to develop tools that can provide further evidence of
cognitive impairment, especially in patients suffering from
neurodegenerative diseases (ND). However, to date, there
has been no investigation of the effectiveness of the features
extracted and the relationship between them and the diseases
they may help predict. This study would allow better use of
the information that can be extracted from handwriting, and it
could be based on the use of well-known and effective feature
selection approaches. Such techniques typically use a search
strategy to find good solutions (feature subsets) according
to a given evaluation function. The methods for defining
these functions are generally subdivided into three broad
classes; namely filter, wrapper and embedded methods. The
first takes into account statistical or geometrical properties of
the feature subset space; whereas wrapper ones consider the
performance achieved by a given classifier when adopting a
feature subset and embedded methods include feature selec-
tion as part of the training process.

In [18] we presented an experimental protocol consisting
of twenty-five handwriting tasks. These tasks ranged from
simple copy tasks, that required a low cognitive load, to more
complex ones, that involved high-level cognitive skills. The
purpose was to investigate whether and how the wide range
of cognitive skills and functions needed to perform the tasks
of the protocol are/were affected by ND and CI. We used the
protocol to acquire data from about one hundred and seventy
people, a much higher number than in the previous studies
presented in the literature. From the data we extracted both
dynamic and static features such as, for example, the velocity
or the total length of the ink trace. In [15], [19] we presented
some preliminary results, in which we used a subset of both
features and tasks under consideration in the study presented
here.

In this paper, we are presenting the results of the feature
analysis performed on the data acquired using the protocol
described above. In particular, for each task, we tried to
understand which were the most effective features for the

prediction of the symptoms related to CI and ND. The aim
of this analysis is twofold. On one hand, we want to improve
the performance of the tools used for prediction. On the other
hand, since each task involved different cognitive skills and
each feature is related to different aspects of these skills,
this analysis would provide doctors with further elements to
understand the areas of the brain that are damaged in the
early phases of CI and ND. The results showed that each
task of the protocol was characterized by a different set of
relevant features. This confirms our hypothesis that each of
the cognitive abilities tested by our protocol is affected by
damage to different areas of the brain, caused by CI or ND.

The remainder of the paper is organized as follows. After
a brief overview of the research activities related to our study
(Section II), in Section III we describe the protocol we used
to acquire the handwriting data. Section IV introduces the
problem of defining and selecting features as well as the
features used. Section V reports the experimental results, and
concluding remarks are discussed in Section VI.

II. RELATED WORK
Once the raw data of the handwriting movements have been
collected, the features must be extracted. There are two
types: function features and parameter features. The differ-
ence between function features and parameter features is
that the former are time-dependent, while the latter refer to
the entire handwriting movement. The most common func-
tion features are: (x, y) coordinates, pen pressure, azimuth,
altitude, displacement, velocity and acceleration. Some of
these features are directly recorded by the acquisition device,
e.g. coordinates and pressure, whereas others are numeri-
cally derived. Typically, the most used function features are
velocity and acceleration: the former contains information
related to the slowness of movements, whereas changes in
acceleration allow jerk to be revealed.

The most common parameter features are total duration,
absolute size, horizontal size, in-air time, stroke number.

Furthermore, handwriting movements can be subdivided
into two categories: ‘‘on-paper’’ and ‘‘in-air’’ [20]. The first
are recorded when the pen tip touches the surface on which
the person is writing, whereas the second records the move-
ments of the pen tip when it is lifted from the surface, but
within a maximum distance from the paper.1 It has been
recently demonstrated that features extracted from in-air
movements allow a better characterization of the movements
of people affected by AD [5], [21]. Indeed, it has been shown
that the total in-air time is related to functional decline, as well
as to difficulties in activity planning. In [5] and [21] the
authors also found that handwriting fluidity anomalies are
much more evident during in-air movements than on-paper
ones, observing that these anomalies increase with task com-
plexity, whereas other values (e.g. pressure) remain constant.
Moreover, they also found that in copy tasks the in-air time

1Note that the features mentioned can be separately extracted both for
function features and parameter features
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reflects the person’s hesitations. Some of the parameter fea-
tures have been specifically designed with the aim of investi-
gating their relationships with ND [11], [13], [22].

An interesting review on the topic was presented in [23].
Handwriting features can be evaluated at the global or local
level. The first are obtained from the entire task, whereas
the second are obtained from single strokes. The former
implies computations covering all movements performed to
execute a given task, whereas the latter requires the analysis at
the individual ‘‘stroke’’ level. A stroke is defined as the single
component making up a handwritten movement, and it is
represented by sequence of points recorded by the acquisition
device. The number of strokes per second can be used as
a measure of handwriting frequency: in [24], for example,
the authors observed that AD patients had a significantly
lower writing frequency than the control group. Jerk, which
typically characterizes the handwriting of PD patients, can
be measured in terms of changes in acceleration over time
and is often used in conjunction with changes in velocity.
In the literature, it has been also observed that features like
entropy and energy can be used to characterize handwriting
‘‘noise’’, i.e. the randomness of movements typically caused
by tremor and irregular muscle contractions [25]. In [26],
the authors introduced a metric based on the velocity variabil-
ity: the observations that low-level control of the muscular
systems occurs in terms of milliseconds, while the control
of conscious movements cannot be at the same frequency.
Time-varying (x, y) coordinates can also be seen as a signal to
be processed. In [22], for example, the authors decomposed
handwriting movements into a small, finite number of com-
ponents that can be processed using well-known frequency
analysis techniques. However, to date, most of these tech-
niques have not been well investigated. A very successful
theory for modelling handwriting movements is that devel-
oped by Plamondon [27], [28]. This model has found many
applications, including, amongst others, the early diagnosis
of ND [12], [20], [29].

From the brief literature review outlined, it can be noted
that there is no study devoted to the analysis of the features
extracted from the handwriting of ND and CI patients, and in
particular to the complex interactions that may occur among
multiple features. Most of the studies presented only inves-
tigated the relationship between these diseases and each of
the considered features, overlooking the complex interactions
that may occur among multiple features [30].

III. THE ACQUISITION PROTOCOL
As mentioned in the Introduction, we have defined a protocol
for the acquisition of data related to handwriting movements,
both from patients affected by CI and a healthy control group.
The protocol includes twenty five tasks, belonging to the
following categories (see Tables 1, 2 and 3):

• Graphic tasks: to test the patient’s ability in writing
elementary traits, joining some points and drawing geo-
metrical figures (simple or complex);

TABLE 1. Graphic tasks.

TABLE 2. Copy and reverse copy tasks.

TABLE 3. Memory and dictation tasks.

• Copy and Reverse Copy tasks: to evaluate patient’s
abilities in repeating complex graphic gestures, which
have semantic meaning such as letters, words and
numbers;

• Memory tasks: to test the changes in the writing pro-
cess of words previously memorized or associated with
objects shown in a picture;

• Dictation tasks: to investigate how handwriting varies
when the working memory is used.

It is worth noting that each task was designed with the aim
of testing either function features or parameter features.

Note that task #17, in which the person is asked to write
six different words, has been used in two different ways:
in the first, we averaged feature values over the entire set
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of words. In the second, we averaged feature values over
each single word: this means that we split task #17 into
six further tasks (from #26 to #31). The same occurred in
task #14, in which the person is asked to memorize and
rewrite the words ‘‘telefono’’ (telephone), ‘‘cane’’ (dog) and
‘‘negozio’’ (shop) (tasks from #32 to #34). The rationale
behind this choice is to evaluate the effects of fatigue, i.e.
to assess whether writing performance degrades more rapidly
in subjects affected by neurodegenerative diseases when they
have to write several words consecutively.

For recruitment to the study we used standard clinical tests,
such as the Mini-Mental State Examination (MMSE) [31],
the Frontal Assessment Battery (FAB) [32], the Montreal
Cognitive Assessment (MoCA) [33]. In these tests, the cogni-
tive abilities of the subject are assessed using questionnaires
covering many areas, ranging from orientation in time and
place to registration recall. To avoid any bias, we chose
the people forming the control group in such a way as to
match the patient group in terms of average age, level of
education, gender and type of work (manual or intellectual)
as shown in Table 5. Finally, from both groups, we excluded
people taking psychotropic medication, or any other drugs
influencing their cognitive abilities. Note that patients were
referred to the study by medical experts, excluding patients
whose cognitive abilities were too compromised.

As acquisition tool we used a Wacom Bamboo Folio
smartpad, equipped with a pen that allowed participants to
normally write ink traces on A4 white paper sheets placed on
it. For each task, the smartpad recorded the x-y coordinates
of pen movements (at a frequency of 200Hz) on the plane
represented by the paper sheet surface. The smartpad also
recorded the pressure exerted by participant when the pen tip
was touching the sheet as well as the ‘‘in-air’’ movements,
i.e. the pen tip x-y coordinates when it was lifted from the
sheet, within a maximum distance of 3cm. During the acqui-
sition the smartpad was positioned about seventy centimeters
from the participant. Note that the participants had the same
conditions during the acquisition.

IV. FEATURE EXTRACTION AND SELECTION
The following subsections detail the features extracted from
the data acquired by using the protocol described above,
and the feature selection technique we used to find the most
discriminative features for each task.

A. FEATURE EXTRACTION
The features extracted from the raw data available, i.e. (x, y)
coordinates, pressure and timestamps, were calculated on the
strokes 2 making up the handwritten traits and then averaged
over the entire task. Our goal is to describe, for each task,
the behavior of a subject taking into account a fixed number
of features. Since the number of strokes varies strongly from

2 A stroke is defined as the single component making up a handwritten
trait, and it is represented by the sequence of points between two consec-
utive segmentation points. We considered as segmentation points: pen-up,
pen-down and zero-crossing velocity along the y-axis.

subject to subject and from task to task, we have averaged the
values extracted from each single stroke on the total number
of strokes. We extracted both static and dynamic features.
The first are computed taking into account the shape or the
position of the strokes, whereas the second are related to
quantities like velocity and acceleration. Table 4 shows the
list of the extracted features.

As many studies in the literature show significant dif-
ferences in patients’motor performance between in-air and
on-paper traits, each feature was calculated separately for
the in-air or on-paper traits. In particular, we extracted four
groups of features:
• On-paper: the features extracted from the written traits
(i.e. during pen-down and the successive pen-up). Note
that in this case each sample was represented by twenty
six features. These features are described as ’P’ in the
following;

• In-air: the features extracted from the in-air traits (i.e.
those acquired by the system when the pen is lifted
from the sheet, within themaximum acquisition distance
of 3 cm). These movements characterize the planning
activity for positioning the pen tip between two succes-
sive written traits. Note that in this case we extracted
twenty five features because pressure (feature #21) is
always zero. These features are described as ’A’ in the
following;

• All: in this case, each sample is represented by a fea-
ture vector containing both in-air and on-paper fea-
tures, i.e. by adding the vector of in-air features to
the vector of on-paper one. The aim was twofold.
On one hand, we wanted to perform a direct comparison
between in-air and on-paper features. On the other hand,
we wanted to investigate the interactions between in-air
and on-paper features. Note that in this case the total
number of features extracted was forty-seven (personal
features and pressure were not repeated). These features
are described in the following as ‘‘AL’’;

• In-air and on-paper: these features are computed with-
out distinguishing between in-air and on-paper traits.
In practice, for each task, each of the twenty six features
listed in Table 4 was extracted averaging the values
on both in-air and on-paper traits. This represented a
different way of providing all the information to the
classification systems. Moreover, they also allowed us
to assess the effectiveness of the split between in-air and
on-paper features. These features are described in the
following as ‘‘AP’’.

In order to take into account the differences due to age,
education or work, we have also added the following
‘‘personal’’ features: gender, age, type of work, and level of
education.

Summarizing, we used four groups of features, each repre-
sented by thirty-four files (one for each task), each containing
one hundred and eighty samples, each made of a number
dependent on the feature type. In particular, we extracted
twenty-six features (see Table 4) both for the on-paper (P)
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TABLE 4. Feature list. Feature types are: dynamic (D), static (S), and personal (P).

and in-air and on-paper (AP) categories, twenty-five in-air
features (A) (because pen pressure was not used), and
forty-four for the category All (AL).

B. FEATURE SELECTION
To find the features that allow better discrimination between
the patients affected by CI and the control group, we used
a well-known feature selection technique based on a wrap-
per evaluation function, named recursive feature elimination
(RFE in the following) [34]. RFE performs a greedy search
to find the best performing feature subset, based on the
backward elimination strategy. Starting from the whole set
of available features, the RFE algorithm iteratively creates
models and determines the worst-performing feature at each
iteration. Then, it builds the subsequent models with the
features leftover until all the features are explored. If the
data contain N features, in the worst case RFE evaluates N 2

subsets. The algorithm provides as output the feature subset
providing the best performance among those tested. As an
evaluation function we used the accuracy, computed by using
the K-fold cross-validation technique, achieved by using the
xgboost classifier. Note that the RFE iterative algorithm tends
to select features that are few correlated with each other.
To explain the mechanism that allows RFE to select few
correlated features let us give an example. Let f1 and f2 be
two correlated features in Si, the subset of features left over
at the i–th iteration; the algorithm tests both S ′ = {Si −
{f1}} and S ′′ = {Si − {f2}}. Since f1 and f2 are correlated,

TABLE 5. Average demographic data of participants. Standard deviations
are shown in parentheses.

S ′ and S ′′ achieve very similar performance. As a conse-
quence, most probably RFEwill exclude one of them from the
subset Si+1.

The data used for the experiments reported in Section V
were obtained from one hundred eighty people. Ninety one
of them (forty six females and forty five males) were patients
with different levels of cognitive impairments, whereas the
remaining eighty nine were healthy control group (fifty
females and thirty nine males).

V. EXPERIMENTAL FINDINGS
In order to perform the feature analysis (the objective of
this study), we performed three sets of experiments, using
the data described in Section III. In the first, we assessed
the importance of each feature across the thirty-four tasks
of the protocol. In the second, we assessed the effectiveness
of the feature selection procedure used and verified if one of
the four feature categories outperformed the others. Finally,
in the third set, we investigated the relationship between
the selected features and the cognitive functions and skills
involved.
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FIGURE 1. Histogram for the in-air features selected using the RFE algorithm. The average number of features selected, computed on the
thirty four tasks, is 10.41, with a standard deviation equal to 6.81.

FIGURE 2. Histogram for the on-paper features selected using the RFE algorithm. The average number of features selected, computed on the thirty
four tasks, is 13.15, with a standard deviation equal to 6.57.

For all the experiments reported in the following
we used Scikit-learn, an open-source machine learning
library [35]. The results reported have been achieved after a
hyper-parameter optimization step. We used the grid search
procedure provided by Scikit-learn. Once a set of values has
been defined for each of the parameters to be tuned, this
procedure exhaustively tests all parameter combinations. The
set of values tested for each of the hyper-parameter tuned is
shown in Table 6.

The experiments performed are detailed in the following
subsections.

A. FEATURE EVALUATION
In this first set of experiments we tried to answer the fol-
lowing question: among the features we extracted, are there
some that are more important than others (useful for many
or even most of the tasks of the protocol)? To answer this,
for each feature category, we plotted a histogram report-
ing how many times each feature was selected by RFE
across the thirty-four tasks. These histograms are shown
in Fig. 1-4. From the figures we can observe that the four
histograms show the same trend, with few peaks and valleys,
and most of the features selected in a range between ten and
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FIGURE 3. Histogram for the all features selected using the RFE algorithm. The average number of features selected, computed on the thirty four
tasks, is 23.50, with a standard deviation equal to 7.53.

FIGURE 4. Histogram for the in-air and on-paper features selected using the RFE algorithm. The average number of features selected, computed
on the thirty four tasks, is 16.65, with a standard deviation equal to 5.42.

twenty. This trend confirms our hypothesis that the features
that best distinguish the handwriting of the CI patients from
that of healthy people vary across the tasks. In the peaks, age
is common among the four categories of features, confirming,
in this case, that age affects handwriting processes and must
be taken into account. A further feature mostly selected is the
peak vertical velocity, confirming, in this case, the importance
of velocity as a discriminating feature, both for the in-air
and on-paper traits. Duration and loop surface, instead, were
the least selected features. Most probably, the first was not

selected because it is correlated with peak velocity, which is
more discriminating. Therefore, according to the rationale of
the RFE iterative algorithm (see Section IV), a feature was
not selected if it correlated with previously selected ones. The
non-selection of the loop surface, its non-selection confirmed
that handwriting size is not affected by CI.

For the in-air features, from the histogram (Fig. 1) it can
be noted that the feature reporting the number of strokes
was selected twenty-six times. This value confirms that the
in-air movements of CI patients are longer and typically
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TABLE 6. Values of the classifier hyper-parameters used in the
experiments.

more unsteady than those of the control group, as reported
in previous studies [5], [11].

Regarding the on-paper features, from the histogram
(Fig. 2) it can be seen that the most selected features, apart
from the age and the peak of vertical velocity discussed
above, are: start vertical position, the number of peaks of
acceleration, and pressure. The first most probably reveals
the spatial orientation difficulties of CI patients, whereas
the second and the third features indicate that the hand-
writing of CI patients is also unsteady during the on-paper
movements.

As for the all features, from the histogram (Fig. 3), first
of all we can observe that there is no ‘‘predominance’’ of
one category over the others; this confirms that in-air and
on-paper features contribute equally in distinguishing CI
patients from the control group. It is also worth noting that,
in this case, there was a different interaction among the
whole set of features, both in-air and on-paper. The effect
of this interaction is that features rarely or never selected
in the previous two cases were selected several times. For
example, duration on-paper which was never selected in the
previous case, was selected eighteen times. This indicates
that this feature, interacting with one or more in-air features,
allows the achievement of good classification performance.
The histogram also suggests the comparison between each
couple of in-air and on-paper features, to understand which
kind of feature is more useful. For example, for the number
of strokes, in-air are more selected than on-paper, confirming
that in-air movements of CI patients are more unsteady than
those of the control group.

Finally, in the case of in-air and on-paper features, i.e. those
computedwithout distinguishing between in-air and on-paper
traits, from the histogram shown in Fig. 4 we can observe
the phenomenon mentioned above: a feature never previously
selected was selected a significant number of times. This is
the case of the duration mean feature, selected here in sixteen
tasks. It is worth noting that most probably this feature is cor-
related with the peak vertical velocity. Since this last feature
was selected many times for the in-air and on-paper cases,
this excludes the selection of the duration feature. In this last
case we can observe that the peak velocity was selected far
less than the previous cases. Therefore we can conclude that
when there is no distinction between the in-air and on-paper
features, stroke duration can be more discriminating than the
peak velocity feature.

From the histogram, we can also note that, apart from
age, the most selected features (more than twenty times)
were: start vertical position, number of strokes (twenty-five),
number of peak acceleration points, pressure, and number of
strokes. This confirms that the handwriting of CI patients is
unsteady (number of strokes and of peak acceleration points)
they have spatial orientation difficulties (start vertical posi-
tion) and tend to exert more pressure on the surface used to
write on (paper sheet in our case).

B. FEATURE SELECTION EVALUATION
In this second set of experiments we tried to answer the
following questions: does the feature selection procedure
used (RFE) allow us to distinguish CI patients better from
the control group? Among the four categories of features
considered, is there one that outperforms the others? We
therefore compared the performance achieved with and with-
out the RFE algorithm, by using three well-known andwidely
used classifiers, namely xgboost (XGB in the following)
[36], random forest (RF) [37] and decision tree (DT) [38].
It is worth noting that the first two techniques build ensem-
bles of classifiers and typically allow the achievement of
good performance, whereas the third provides models that
allow the explainability of the results. In order to pro-
vide an overview of the classification performance obtained,
Tables 7, 8 and 9 show the accuracies (computed by using the
10-fold cross-validation strategy) achieved by the classifiers
used, with the various feature categories considered, with
(RFE columns) or without feature selection (NO columns).
For each table, the last rows report the average (avg) and
standard deviation (std), computed over the thirty-four tasks
whereas for each task the best result is in bold. From the
tables we can observe that, for a given task, results may
vary a lot across the different feature types and/or classifiers,
confirming that the features used represent the handwriting
data in different ways, which can be more or less effective for
each classifier. However, taking into account the entire set of
tasks, they achieved similar results, as can be seen from the
last two rows.

With the aim of summarizing these results, Table 10 reports
the best results achieved for each task. In particular, the table
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TABLE 7. Classification results achieved by the XGB classifier.

reports the classifier, the feature category, the accuracy and
whether this result was achieved using feature selection. From
this table we can see that the RFE algorithm used for feature
selection achieved better results on twenty-six out of the
thirty-four tasks considered, i.e. more than 75% of the cases,
confirming the effectiveness of feature selection. As far as
the remaining tasks are concerned, namely signature (#1),
copying the word ‘‘foglio’’ above a line (#11), copying in
reverse the word ‘‘casa’’ (#16), clock drawing test (#24),
copying a paragraph (#25), copying an irregular word in the
appropriate box (#30 and #31) and memorizing and rewriting
a word (#32), most of them require more complex cognitive
functions. Most probably, this makes it necessary to use all
features to model the way CIs affect these functions. From
Table 10 we can also see that XGB is the most performing
classifier (twenty times out of thirty-four). For feature types,
A and P are the most performing ones, both achieving the best
results on eleven tasks, whereas AP and AL both outperform
the others on six tasks.

In order to investigate whether a given feature type is
best suited for a given category of task, we calculated how
many times a given feature type achieved the best results
for each task category. These results are shown in Table 11.

TABLE 8. Classification results achieved by the RF classifier.

Note that we considered tasks #26 to #31 as belonging to
the copy and reverse copy category because they were split
from task #17, and tasks #32 to #34 as belonging to the
memory and dictation category because they were split from
task #14. To check if for a feature category (A,P, AP or
AL) a type of features (dynamic or static, see Table 4) is
predominant, Table 11 also shows the percentage of dynamic
features selected with respect to the total number of features
selected (the percentage of static features is obviously the
complement). The comments for each category are reported
in the following.

1) GRAPHIC TASKS
From Table 11 we can observe that the in-air features
(A) were the best-performing for graphic tasks (tasks: #2, #5,
#21), whereas on-paper (P) features never outperformed the
others. Although this result seems counterintuitive, because
the execution of this kind of task requires the pen tip to be on
the paper most of the time, it indicates that in-air traits, even
if they are short, contain most of the anomalies of the hand-
writing of CI patients. On the other hand, the AP (in-air and
on-paper) features outperformed the others in tasks #3 and #4
(circle drawings), indicating that in these cases, anomalies are

78234 VOLUME 9, 2021



N. D. Cilia et al.: Feature Selection as Tool to Support Diagnosis of CI

TABLE 9. Classification results achieved by the DT classifier.

present in both traits. Finally, in the AL category, i.e. where
both in-air and on-paper features were used to represent each
sample, the best result was achieved in the clock drawing
test, confirming that in this case, the interactions between
in-air and on-paper features allow an effective modeling of
the anomalies of CI patients.

From Table 11, we can also observe that for A and AL
features the percentage of dynamic features (values in paren-
theses) is about 50%, whereas for AP features there is a
significant higher percentage for the dynamic features (66%).
This result suggests that in this last case anomalies are
more present in the dynamics of the handwriting than in its
shape.

2) COPY AND REVERSE COPY TASKS
In the copy and reverse copy tasks, from Table 11 we can
see that on-paper (P) and in-air (A) features achieved the
best result in nine and six (out of twenty) tasks, respectively.
In particular, on-paper features achieved the best result in
the tasks requiring the copying of: single letters (#6 and #7),
joined bigrams (#8 and #9), words above a line (#11 and
#13), a paragraph (#25), and regular (#26) and irregular (#28)
words in boxes. This confirms that on-paper movements are

TABLE 10. Summary of the classifcation results. The accuracies achieved
using the RFE algorithm are in bold.

TABLE 11. Best performing feature categories. Values in parentheses
represent the of dynamic features selected.

altered in CI patients when they perform simple movements,
not involving a high cognitive load, or movements requiring
spatial organization, as is the case of handwriting following
a cue (horizontal lines or boxes). In-air movements achieved
the best results in tasks requiring the copying of simple words
without any cue (#10 and #12), or in reverse order (#15 and
#16), a telephone number (#22), and a regular word in a box
(#27). This seems to suggest that the execution of simple
movements without a cue, as well as that of movements
not previously learned (as is the case of the copy in reverse
order), alters the in-air movements of CI patients. It is also
worth noting that in these cases the percentage of dynamic
features is about 50%. This result suggests that anomalies are
present both in the dynamics and shape of the handwriting of
cognitively impaired people.

AP features (those computed without distinguishing
between in-air and on-paper traits) achieved the best per-
formance in task #17, where the features were extracted
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from the six words (regular, non-regular, non-words) without
splitting them, and tasks #29 to #31. Note that these last tasks,
as mentioned above, were obtained splitting task #17, and in
particular relate to the copying of a non-regular word and the
two non-words. This seems to confirm that when a medium
or a high cognitive load is required, CI alters both in-air and
on-paper movements. In this case the percentage of dynamic
features is 58%. This result suggests that in this case CIs
affect more the movements performed to write non-regular
or non-words than their shape.

Finally, AL features achieved the best result in task #19,
copying the fields of a postal order. This task required precise
movements and good spatial organization skills. Therefore,
this result seems to confirm that these movements and skills
are altered in CI patients and that interaction between in-air
and on-paper features allows better modelling of these alter-
ations. Note that in this case no dynamic feature is selected.
This result confirms that in the handwriting requiring precise
movements and a good spatial organisation, CIs affect the
shape of both on-paper and in-air traits.

3) MEMORY AND DICTATION TASKS
For the memory and dictation tasks, from Table 11 we can
observe that AL features achieved the best result in four tasks,
whereas A and P features were the best in two tasks. More
precisely, AL achieved the best result in task #14 (features
extracted from the three dictated words without splitting
them), task #18 (writing the name of an object shown in
a picture), and tasks #32 and #34 (these tasks were also
obtained splitting task #14). This result suggests that for this
kind of tasks, the interaction between in-air and on-paper fea-
tures allows an effective distinction between the handwriting
movements of CI patients and those of the control group.
In this case the percentage of dynamic features is 52%. This
result suggests that in these tasks CIs affect both the dynam-
ics and shape of the handwriting of cognitively impaired
people.

The A features outperformed the others in the task #1
(signature) and task #33, (split from task #14), whereas the P
features achieved the best performance in the tasks requiring
writing a simple sentence (#20) and a telephone number
(#23) from dictation. The first result suggests that in air fea-
tures are more discriminating in tasks involving well-known
movements, like those of the signature or writing a simple
word previously memorized. On the other hand, the results
of the on-paper features suggest that CIs alter on-paper traits
when cognitive functions using different senses (sight and
hearing in this case) are involved. Note that for the A and P
features the percentage of dynamic features is 45% and 57%,
respectively. This result suggests that CI patients still had the
ability to correctly write the on-paper traits of well-known
words, whereas they tend to make in-air trajectories different
from those of the control group. On the other hand, the value
of 57% for the P features suggests that when different senses
are used CIs affect more the dynamics of handwriting move-
ments than their shape.

TABLE 12. Average cross-correlation computed on the features selected
for the tasks analyzed in Subsection V-C. The values in parentheses
(second column) represent the number of features selected.

C. FEATURES AND COGNITIVE FUNCTIONS
In the third set of experiments, we investigated the relation-
ships between the feature subset selected for each task and
the cognitive functions and skills involved in that task. To this
end, and for the sake of brevity, we have chosen a case study
for each task category. Note that for each case we analyzed
the group of features that achieved the best result, according
to data shown in Table 10.

To test the effectiveness of RFE in selecting few correlated
features, we computed the cross-correlation between the fea-
tures selected. Table 12 shows the average cross-correlation
between the features selected for each of the tasks ana-
lyzed in the following. From Table 12 we can observe that
cross-correlation is always below 0.5, except for task #22.
This result confirms that RFE typically provides subsets con-
taining few correlated features.

1) GRAPHIC TASKS
As case studies for the graphic tasks we chose tasks #2
(joining two points) and #4 (circle retracing). These tasks
require the use of previously learned motor skills. From the
literature, we know that these skills may be affected by brain
damages due to ND dementia (e.g., brain atrophy, neuronal
loss, cellular or synaptic dysfunction). The analysis of the
changes in learned movements caused byMCI and AD facili-
tates the understanding of brain-body functional relationships
and allows the identification of patterns of sensory-motor
dysfunctions associated with MCI and AD [39], [40].

For task #2 we analyzed the A features. In particular,
the RFE algorithm selected the following features: peak ver-
tical velocity, horizontal size, normalized y jerk, #strokes.
These features confirm that the learned handwriting move-
ments of cognitively impaired people are more unsteady
than the control group. Most probably, as just mentioned,
this is due to the brain damage causing cognitive impair-
ments. This result confirms that reported in [2]. In that
study, the authors investigated the handwriting movements of
twenty eight participants (nine with a diagnosis of probable
AD, nine amnestic MCI subjects and ten cognitively normal)
in performing tasks very similar to our task #2. They found
that several movement characteristics, e.g. smoothness, tim-
ing, trajectories, velocity, or acceleration, are correlated to
cognitive aging. They also found that the control group and
MCI patients were significantly faster and smoother than AD
patients.

In task #4 we analyzed the AP features. In this case,
the RFE algorithm selected the following features: peak
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vertical velocity, peak vertical acceleration, slant, relative
time to peak vertical velocity, absolute jerk. This result con-
firmed that of task #2: the unsteady handwriting movements
of cognitively impaired people can be effectively identi-
fied using the kinematic features. Our results confirm that
reported in [7] in which the authors investigated the hand-
writing movements required to perform tasks very similar to
our task #4. They found that the handwriting movements of
AD patients were significantly less regular than those of the
control group.

2) COPY AND REVERSE COPY TASKS
As a case study for the copy and reverse copy category we
chose task #22, i.e. the copying of a telephone number. For
this task we analyzed the A features. In this case the RFE
algorithm selected two features, namely, normalized jerk and
stroke duration. These in-air features allowed us to achieve
an accuracy of 89.6% and outperformed the other feature
groups both in terms of selected features and accuracy. Indeed
the AL features achieved an accuracy of 86.3% (selecting
twenty-six features), whereas the P features achieved an
accuracy 87.8% (thirteen features); the AP group attained an
accuracy of 86.3, but selecting far more features (twenty).
Therefore, these results suggest that the handwriting move-
ments of CI patients are more unsteady than those of the con-
trol group in the case of copy and reverse copy tasks as well.
Similar results were reported in [11]. The authors analyzed
the kinematic characteristics of the handwriting process of
ninety-four elderly people, while they were performing five
copy tasks, using temporal as well as spatial features. They
found that in-air time consistently differentiated between the
groups (mild AD, MCI and healthy) in four out of the five
tasks. In particular, they found thatMCI andmild AD patients
spent significantly longer with the pen in the air than the
control group. Note that this is the only case in which RFE
selected correlated features (0.77, see Table 12). This means
that in this case, although correlated, both features are needed
to achieve the best performance. Indeed, as explained in
Section IV, RFE is a wrapper feature selection algorithm.
As a consequence it tries to maximizes the classification
performance, even if the features selected are correlated.

3) MEMORY AND DICTATION TASKS
We took task #18 as a case study for the memory and dictation
tasks (writing the name of the object shown in a picture). This
task allowed us to check anomia, i.e. word-finding difficul-
ties. From the literature, we know that anomia may be an
early symptom of AD. It may be due to several causes: dimin-
ished integrity of semantic representations in memory [41],
[42], difficulty in accessing those representations due to the
weakening of neural network connectivity and/or cognitive
processing limitations, or to both ‘‘storage’’ and ‘‘access’’
deficits [43], [44].

In this case, we achieved the best accuracy (88.9%) using
the AL features (the feature vector contains both in-air
and on-paper features). This task required the participant to

recognize the object shown and write its name, after having
recalled the word s/he associated with it. The RFE algorithm
selected the following features:

in-air: peak vertical acceleration, relative time to peak
vertical velocity, normalized jerk, number of
peak acceleration points, #strokes;

on-paper: start vertical position, vertical size, start hori-
zontal position, slant, loop surface, road length,
absolute y jerk, normalized y jerk, pen pressure,
age;

It is worth noting that the in-air features selected are related
to the kinematics of the movements, whereas most of the
on-paper features selected are linked to the shape of the
handwriting. This result confirms that CIs alter in-air and
on-paper movements differently, with the former being more
free than the latter. This freedom is due to two reasons. Firstly,
on-paper movements provide the visual feedback given by the
ink traits written. Secondly, on-air traits are not constrained
by the shapes of the characters to be written. This result
also confirms that on-paper and in-air features investigate
different cognitive aspects. In summary, we can state that
in this memory task: (i) in-air movements of cognitively
impaired people are more unsteady because they are less con-
strained and do not provide any visual feedback; (ii) on-paper
movements produce altered shapes even though these are
not significantly unsteady in comparison with the control
group. Note that these alterations are detectable even using
the simple features we used.

VI. CONCLUSION
MCI is a condition in which a person experiences a slight,
but still noticeable, decline in mental abilities (memory and
thinking skills) compared with others of the same age, and it
is considered a prodromal syndrome of AD. Diagnostic signs
of MCI and AD also include alterations of spatial organiza-
tion and poor control of movements, which may affect the
handwriting of the people affected. Currently, in the Artificial
Intelligence field there is an ever-increasing interest in the
development of systems that, through the analysis of hand-
writing, are able to provide doctors with further evidence of
the onset of these diseases. In order to investigate whether and
how the diagnostic signs related to handwriting can be used
to implement such a system, in a previous study we presented
an experimental protocol, made of twenty-five handwriting
tasks.

The choice to consider different scenarios is because the
assessment of onset and progression of neurocognitive dis-
orders requires the joint analysis of the different cognitive
abilities that could be compromised. This is the reason why
we defined a protocol in which the different tasks were orga-
nized into groups, specifically oriented to the evaluation of a
particular ability, namely fine motor control, memory ability
and cognitive ability.

Following this line of research, in this paper we presented
the results of a study in which we used a well-known and
widely-used feature selection approach to determine, among
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the extracted features, which, if any, allow an effective predic-
tion of the symptoms related to CI andAD.We performed this
analysis task by task, with the purpose of investigating which
cognitive skills are affected by these diseases, especially
during the early stages. We tested different types of features
and performed three sets of experiments. In the first set we
tested the importance of each feature across the tasks of the
protocol, and in the second one we assessed the effectiveness
of the feature selection algorithms used. Finally, in the third
set, we investigated the relationship between the selected
features and the cognitive functions and skills involved in
the handwriting process. The results proved that except for
a few features, common to most tasks, (such as, for example,
execution time and speed), each task of the protocol was char-
acterized by a different set of relevant features. This diversity
confirms our hypothesis that each of the cognitive abilities
tested by the tasks of the protocol is affected by the damage
to the different areas of the brain caused by neurodegener-
ative diseases. The results also confirmed that handwriting
analysis can be used to develop inexpensive and non-invasive
systems for the assessment of the mental status of the people
involved.

Furthermore, we have considered only one feature selec-
tion algorithm for two reasons: firstly because the RFE algo-
rithm is among the most effective and widely used. RFE
belongs to the category of wrapper approaches, which mea-
sure the effectiveness of features based on classification per-
formance: in our case, we used as evaluation function the
accuracy achieved by using the xgboost classifier with the
K-fold cross-validation strategy. Secondly, because the goal
of our study is not to identify the best performing feature set,
but to demonstrate that performance significantly improves
by carrying out a specific feature selection phase for each
task. The results obtained confirmed that the different aspects
of cognitive impairment can be better highlighted by selecting
a specific set of features for each task.

Finally, as previously mentioned, we preferred to present
the results of all tasks together because it is precisely the joint
evaluation of the different tasks that allowed us to charac-
terize the different aspects of cognitive impairment due to
the onset and the progression of neurocognitive disorders.
Splitting our paper into different studies could simplify the
presentation of the results, but it would not allow for the
overall view of the results that we consider very useful for
this kind of application.

The limitations of our study are essentially related to the
number of subjects involved in the experiments and to the
type of cognitive disorder considered. As regards the first
point, the number of people who participated in the exper-
iments is quite high for this type of study even if it is lim-
ited from the point of view of machine learning techniques.
However, it is necessary to consider that it is not easy to
involve a very large group of participants, because they must
be carefully selected in collaboration with the hospitals. As
for the second point, it would be very useful to have patients
with different levels of cognitive impairment, ranging from an

initial state where there are no signs of alteration in cognitive
abilities, up to a more advanced level of disease, where the
patients however are still able to carry out an autonomous
life and are able to perform the writing tasks of our proto-
col. These aspects will be the subject of our future research
activity.

Future work will also include: (i) a further analysis of
these results, which will involve doctors specialized in brain
disease and dementia; (ii) more feature selection techniques
[45], [46]; (iii) the development of classification systems
based on the combination of the predictions provided by the
classifiers trained on the data from the single tasks [47]–[50].
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