
Received April 29, 2021, accepted May 18, 2021, date of publication May 24, 2021, date of current version June 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3083087

Federated Reinforcement Learning Acceleration
Method for Precise Control of Multiple Devices
HYUN-KYO LIM 1, JU-BONG KIM 2, IHSAN ULLAH 3, JOO-SEONG HEO1,
AND YOUN-HEE HAN 2, (Member, IEEE)
1Department of Interdisciplinary Program in Creative Engineering, Korea University of Technology and Education, Cheonan 31253, South Korea
2Department of Computer Science Engineering, Korea University of Technology and Education, Cheonan 31253, South Korea
3Advanced Technology Research Center, Korea University of Technology and Education, Cheonan 31253, South Korea

Corresponding author: Youn-Hee Han (yhhan@koreatech.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) by the
Ministry of Education under Grant 2018R1A6A1A03025526 and Grant NRF- 2020R1A6A3A13073735.

ABSTRACT Nowadays, Reinforcement Learning (RL) is applied to various real-world tasks and attracts
much attention in the fields of games, robotics, and autonomous driving. It is very challenging and devices
overwhelming to directly apply RL to real-world environments. Due to the reality gap simulated environment
does not match perfectly to the real-world scenario and additional learning cannot be performed. Therefore,
an efficient approach is required for RL to find an optimal control policy and get better learning efficacy. In
this paper, we propose federated reinforcement learning based on multi agent environment which applying
a new federation policy. The new federation policy allows multi agents to perform learning and share their
learning experiences with each other e.g., gradient and model parameters to increase their learning level.
The Actor-Critic PPO algorithm is used with four types of RL simulation environments, OpenAI Gym’s
CartPole, MoutainCar, Acrobot, and Pendulum. In addition, we did real experiments with multiple Rotary
Inverted Pendulum (RIP) to evaluate and compare the learning efficiency of the proposed scheme with both
environments.

INDEX TERMS Federated reinforcement learning, multi-agent, transfer learning, gradient sharing.

I. INTRODUCTION
Recently, reinforcement learning has been applied to games,
robotics, and autonomous driving which required precise
control and accurate results [1]–[5]. In the real-world and
simulation environment RL has gained much popularity
to solved complex problems of several domains. However,
in robotics and autonomous driving, the result and accuracy of
the RL are still at the research level and much improvement is
needed to be applied in real-world scenario. Nevertheless, it is
challenging to directly apply RL to the real world-world and
infer accurate results. So, we need an efficient approach to
solve the problems and limitations of RL for directly applying
to the real world or devices.

In real-world, there are several environments which con-
tains trainable distributed devices, such as IoT smart fac-
tories, and distributed computing environments. In these
environments, multi-agent reinforcement learning is needed
to control distributed devices simultaneously and precisely

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

without human intervention. However, it is difficult to
directly apply reinforcement learning to the real environment.
Performing reinforcement learning on a real device runs out
of computing resources or consumes parts of devices for
learning. To solve this problem, it is common to first per-
form training in a simulation environment and then apply the
trained model to the real environment and tuning the system.
The main drawback of this approach is that the simulation
environment, and the real environment do not match perfectly
and mostly failed in the tuning process.

Reinforcement learning is being applied in several multi
agent environments to investigate the interaction and share
the learning between the agents [6]. In IoT environments,
multi-agent-based reinforcement learning [7], [8] is being
studied, which is better than the single agent-based rein-
forcement learning [9]. Such as Federated learning tech-
nique where many agents share learning with each other
and collaboratively train a model under the control of the
central server while keeping data decentralized. In particular,
the federation method is suitable for training multiple devices
that working in the environment and have the same dynamic

76296 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8807-1158
https://orcid.org/0000-0001-6406-3092
https://orcid.org/0000-0002-5204-2283
https://orcid.org/0000-0002-5835-7972
https://orcid.org/0000-0003-4704-5364

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

characteristics and objectives. In 2015, Google proposed the
federated learning approach in which multi agents undertake
distributed learning and send the trained model parameters
to the cloud to share their learning experiences [10]. The
federation policy does not share the local training data but
sends the learning parameters to the cloud or center place.
Federation policy approaches reduced the data transmission
on the network and also solved the privacy problem. Also,
reinforcement learning algorithms applying the federation
policy to real devices are being studied [11]–[14]. We are
motivated by previous research trends to apply federated
multi-agent reinforcement learning to multiple real devices
and improve learning performance. In our previous research
[15]–[17], we have applied the DeepQNetwork (DQN) to the
RIP system and IoT devices in the Software-DefinedNetwork
environments for automatic and training control policies.

In this article, we extend our previous research using
federated reinforcement learning to enable precise control
simultaneously on multiple RIP systems environments. We
propose an efficient federation policy by using gradient shar-
ing and transfer learningmethods for multi-agent system. Our
scheme adopts Actor-Critic PPO algorithm with four types
of RL environments, OpenAI Gym’s CartPole, MoutainCar,
Acrobot, and Pendulum for simulation, and multiple rotary
inverted pendulum (RIP) real device system for real exper-
iment. The behavior of RIP is unstable and has nonlinear
characteristics, hence, it has been used widely as a testbed
for nonlinear control systems. Federated reinforcement learn-
ing is based on multi-agents using gradient sharing method
for exchanging the gradients calculated by all agents dur-
ing learning process. In transfer learning, when one agent
completes learning, it transfers the parameters of the learned
model to the other agents. Based on the proposed federa-
tion policy all agents shared their learning experience (e.g.,
gradient and model parameters) to update the learning level.
The proposed transfer learning approach does not trans-
fer the fully trained model to the current model but transfers
the model which guaranteed by the current learning model.
The guarantee is assigned to the model by calculating the
weights according to the learning level of the current agent. In
other words, by considering the learning level of each agent
during and after learning, the stability of learning is assured,
and it is completed more rapidly. For the simulation and
real device experiment we used Actor-Critic Proximal Policy
Optimization (Actor-Critic PPO) [18]–[20],which the best
performance for an agent-based reinforcement learning algo-
rithm among other policy gradient methods. It includes Trust
Region Policy Optimization (TRPO) [21], which exhibits low
computation and high performance. The main contributions
of the paper are summarized as follows:

1) We propose an extended federated reinforcement learn-
ing approach to allow multi-agent for controlling the
simulation and a RIP system.

2) The proposed approach can accelerate the overall learn-
ing process for control policy through simulation as
well as in real devices.

3) Using evolvedGradient Sharing and Transfer Learning,
the proposed scheme reduce the learning time than our
previous works [15]–[17].

4) In addition, the proposed scheme based on Federated
Reinforcement Learning achieves the desired goal with
a little learning in the presence of much noise.

The remainder of this paper is organized as follows. In
Section II, the related work and state the motivation for
the proposed scheme are described. The system architecture,
and details of the Actor-Critic PPO algorithm used for the
proposed scheme are explained in Section III. In Section IV,
the federation policy of the weight-based gradient sharing
and transfer learning are described. Section V discusses the
experimental result and effectiveness of the proposed scheme
by applying it to OpenAI Gym and three real RIP systems,
and the conclusion is made in Section VI.

II. RELATED WORK
Federated reinforcement learning is a type of multi-agent
reinforcement learning [22] which is used for distributed
agents system, such as games, robotics systems, and
autonomous driving [2]–[5]. In [6] deep reinforcement learn-
ing is used for multi-agent cooperation and competition.
Also, multi-agent reinforcement learning applied to the fed-
eration policy [23] which recently got much attraction. Sub-
sequently, several research has been conducted that applied
the federation policy to deep learning and reinforcement
learning.

Bonawitz et al. [24] described the federation process and
designed a federation system protocol for the federation pol-
icy in 2019. The federation policy performs training using
local data in each distributed device and sends the calcu-
lated gradient or training model (i.e., weights and bias) to
the central server. The central server processes the param-
eters received from each agent and returns them to the
agents. Using the parameters received from the central server,
the agent updates its own training model. Zhuo et al. [25]
proposed a new reinforcement learning algorithm that builds
a Q-Network for each agent using a federation policy. Each
agent calculates a Q-value using its own Q-Network using
local data. Each local data state is used as a global observation
value; it is then combined with all the Q-values of each agent
and is used as the input of the new central Q-Network. In the
global Q-Network, the machine is controlled by selecting the
action that maximizes the Q-value.

In addition, recent studies have also focused on transfer
learning and reinforcement [26]–[29]. Transfer learning is
widely used in deep learning and is a machine learning
technique that reuses a trained model in a data-rich field
to build a model in a field where training data is insuf-
ficient [30]. Therefore, if transfer learning is used, learn-
ing is accelerated, and the performance of the model is
improved. Glatt et al. [28] proposed a method of applying
transfer learning to reinforcement learning. They created a
deep learning model with DQN to play several Atari games.
To train other Atari games, the pre-trained DQN models are

VOLUME 9, 2021 76297

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

FIGURE 1. System architecture and the worker’s actor-critic PPO algorithm.

transferred to new DQN models. After receiving the new
DQN deep learning model, even with little training, it is faster
and more accurate than training from the start. By apply-
ing transfer learning to reinforcement learning, the learning
process is considerably accelerated. Vrancx et al. [29] pro-
posed coordinating Q-learning (CQ-learning) to improve the
learning speed and to generalize models among distributed
multi-agents by utilizing transfer learning. In CQ-learning,
each agent first trains in a simple and similar environment
and sends the trainedmodel to all other agents before learning
in a real target environment. By this method, each agent is
somewhat generalized and becomes a trained model, thus
requiring little training for adapting the new environment.
Therefore, the learning speed is high, the model becomes
general, and it is possible to cope with dangerous situations
between agents.

Based on the literature discussed above, and our previous
research [15]–[17], we are motivated to extend our research.
In the previous work [16], Gradient Sharing and Transfer
Learning methods were proposed with a new federation pol-
icy for reinforcement learning. In the previous work, gradient
sharing method simply collects the gradient of each worker
from the chief, calculates the average, and sends it back to the
workers. Also, transfer learning method simply transfers the
model parameters to other workers through the chief, when
the learning of a worker is completed. However, if the real
device environment independently owned by workers is the
same, the dynamic characteristics may be slightly different.
For example, if we command the RIP device to move left
by 10, it can move differently for each device, because the
federation policy proposed in the previous work performs
Gradient Sharing and Transfer Learning without considering
the independent environment state of each worker. Hence,
we extend our previous work for independent environment
state of each worker, and proposed a new federation policy
based on previous work.

In this paper, we present a weight-based Gradient Sharing
and weight-based Transfer Learning method according to

the current learning state of each worker independently. The
reinforcement learning model of each worker depends on
their own environment, if they train well, their weight value
becomes high. Thus, gradient sharing is performed with a
weight-based average, and transfer Learning performs soft
transfer Learning according to the weight in the chief. The
experimental result shows that the convergence rate of the
proposed scheme is faster with less number of learning than
the previous work. Hence, the weight-based federation policy
gives better improvement and performance compared to our
previous scheme [16].

III. SYSTEM ARCHITECTURE AND ACTOR-CRITIC PPO
In this section, we describe the reinforcement-learning algo-
rithm and the proposed overall system architecture in which
each worker performs learning by interacting with the envi-
ronment. The proposed system is a distributed reinforcement
learning system. As shown in Figure 1, the proposed fed-
erated reinforcement learning system architecture consists
of the N workers and one chief. The workers have the
Actor-Critic PPO algorithm, an independent environment,
and perform repetitive learning. The independent environ-
ment can be a software-configured simulation or a real device.
The chief mediates the federation of N workers and synchro-
nizes their learning processes.

Actor-Critic PPO algorithm in workers has been known
as a reinforcement learning algorithm for good learning per-
formance [18], [31]. The workers undertake reinforcement
learning by interacting with their independent environments.
The Actor-Critic PPO is a type of policy gradient algorithm
for directly learning action probabilities. Using actor-critic
PPO applied with the value function is the key to increasing
stability because the direct method of learning behavior prob-
abilities is unstable. The Actor-Critic algorithm uses two net-
works: the Actor network and the Critic network. The Actor
network determines the action when the state is determined
by the environment, and the Critic network determines the
value of the state.

76298 VOLUME 9, 2021

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

FIGURE 2. The proposed federated reinforcement learning procedure for acceleration.

The Actor has its own network parameter θ . The workers
use the Actor network to perform the task of learning and
actions to be taken under the environment’s specific obser-
vation state. The workers send the action determined by the
Actor network and observe the next state of the environment.
Consequent to action, the worker receives a positive or nega-
tive reward. The reward obtained for action is considered as
a network parameter by the Critic. The Critic associated with
a worker learns to assess whether the actions determined by
the actor have led the environment to a more positive state,
and feedback from the Critic is used to optimize the Actor.

In Figure 1, the RL agents demonstrate a brief overview
of the Actor-Critic-based PPO algorithm. First, Actor-Critic
PPO algorithm stores the experience tuples gained from inter-
acting with the environment in the trajectory memory and
imports them as sequential finite mini-batch samples.

In traditional policy gradient algorithms, the objective
function LP is as follows:

LP(θ) = Ê
[
logπθ (at |st) Ât

]
(1)

where Ê[. . .] is the empirical average over a finite samples
(i.e., mini-batch), and Ât is the advantage function at time step
t . And we use the generalized advantage estimator (GAE)
[32] to calculate Ât . The GAE is

Ât = δt + (γ λ) δVt+1 + (γ λ)
2 δVt+2 · · · (γ λ)

U−t+1 δVU−1 (2)

where λ is the GAE parameter (λ ∈ [0, 1]), U is the sampled
mini-batch size, γ ∈ [0, 1] is the discount factor, and δt =
rt + γVµ(st+1) − Vµ(st). The objective function LV is as
follows:

LV (µ) = Ê
[
LVt (µ)

]
= Ê

[
|V̂ target
µ (st)− Vµ(st)|

]
(3)

where the target value of time-difference error (TD-Error)
V̂ target
µ (st) = rt+1 + γVµ(st+1). The parameters of Vµ are

updated by an Adam optimizer algorithm with the gradients
∇LV :

µ = µ− ηµ∇LV (µ) (4)

where ηµ is the learning rate for the critic optimization.
In the Actor of TRPO [21] and PPO, RL agent used the

objective function presented in Equation (1). The RL agent

in the worker uses the importance sampling to obtain the
expectation of samples gathered from an old policy πθold
under the new policy πθ that is to be refined. They maximize
the following surrogate objective function LCPI :

LCPI (θ) = Ê
[
πθ (at |st)
πθold (at |st)

Ât

]
. (5)

With a small value δ, the TRPO optimizes LCPI subject to
the constraint

Ê
[
KL

[
πθold (·|st) , πθ (·|st)

]]
≤ δ

on the extent of the policy update. KL indicates the
Kullback–Leibler divergence (KL divergence) [33]. PPO,
which is derived from TRPO, is simple to implement and
requires fewer computations because it does not use KL
divergence. With the probability ratio rt (θ) =

πθ (at |st)
πθold (at |st)

,

the PPO objective function LCLIP is given by

LCLIP(θ) = Ê
[
LCLIPt (µ)

]
= Ê

[
min

(
rt (θ) , clip (rt (θ) , 1− ε, 1+ ε)

)̂
At
]
(6)

where ε is the clipping parameter. The clipped objective
function LCLIP reduces exploratory activity to take preferred
actions to gain the positive benefits of PPO. The parameters
of πθ are updated by an optimizer algorithm with the gradient
∇LCLIP for the negative of the clipped objective function
(i.e., −LCLIP):

θ = θ − ηθ∇LCLIP(θ) (7)

where ηθ is the learning rate for the Actor optimization.
Actor-Critic PPO improves efficiency by optimizing multiple
model through repetitive learning.

IV. FEDERATED REINFORCEMENT LEARNING FOR
ACCELERATION
In this section, we explain ways to accelerate the performance
(accuracy, robust) and learning speed of federated reinforce-
ment learning proposed in our previous research [15]–[17].
In the previous study, to perform federated reinforcement
learning, we divided it into two federation policies: Gradient

VOLUME 9, 2021 76299

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

Algorithm 1 Federated RL (Chief)

for i = 1, 2, 3, . . . ,M do
P = []
for n ∈ N do

Receive a message mn from the worker n
Append mn into P

end for
if there is a message mn ∈ P s.t. mn has the actor
model parameter θn of a worker n then

Best parameters is θ̄ = θn
Send to the workers in N − {n} the message mc
including the model parameter θ̄
N = W − {n}

else
Collect the gradients and Performance Index
(g|N |θ ,PI |N |θ) from all mn ∈ P
Calculate wn for gradient sharing by using
Equation (8)
Compute weighted average ḡ =

∑N
n=1 w

ngnθ
Send to all the workers in N the message mc
including the average gradient ḡ

end if
if N is empty then

Break
end if

end for

Sharing and Transfer Learning. Gradient Sharing acceler-
ates learning by sharing the gradients of the agent as the
learning progresses. Transfer Learning in federated reinforce-
ment learning exchanges matures network models (satisfying
terminal conditions and ending learning) to prompt other
workers to complete their learning quickly. There are two
differences between the federation policy of federated rein-
forcement learning proposed in this paper and the previous
study.

Figure 2 shows the two different federation policy pro-
cedures for the proposed federated reinforcement learning
scheme. Each worker initiates a sequential interaction (i.e.,
an episode) with the environment at time step t = 0 and ter-
minates at the time step T when the conditions for terminating
an episode are met. At every time step t , the worker receives
a current state st from the environment and selects an action
at to apply it to the environment. The selected action at is
applied to the environment and the worker receives a reward
rt+1 and the next state st+1. For every time step t , the worker
stores the experience tuple < st , at , rt+1, st+1 > into its
trajectory memory. The size of trajectory memory is limited,
and if it exceeded the size, the initially stored experience tuple
is sequentially deleted.

In each episode, each worker’s Actor-Critic PPO calculates
the gradients for the optimization of the Actor and Critic
models and each worker calculates the Performance Index
(PI)that represents the performance of the current reinforce-
ment learning level. PI is the average of the accumulated

rewards (score) of the last 10 episodes. Each worker sends the
calculated gradients and PI to the chief. The chief calculates
the weighted arithmetic mean to take into account the PI of
each worker, unlike the previous study, which simply aver-
aged the gradients. The averaged gradients of each worker
are not simply exchanged, but are weighted according to each
worker’s degree of learning. The weights are calculated as
follows (Figure 2a’s 1©):

wn =
PIaθ∑N
n=1 PI

n
θ

(8)

where PIaθ is an agent’s Performance Index, wn is an individ-
ual worker’s weight,N is the number of workers and PInθ is an
individual worker’s PI . The chief calculates the weights for
all workers, and the weighted arithmetic mean is calculated
using them. The weighted arithmetic mean is obtained as
follows (Figure 2a’s 2©):

ḡ =
N∑
n=1

wngnθ (9)

where ḡ is the average gradient obtained by the weighted
arithmetic mean and gnθ is each worker’s gradient; w

n is [0, 1]
in an agent, and all agents’ weighted sum is

∑N
n=1 w

n
= 1

Finally, the chief sends the ḡ to all workers. Each worker
updates the πθ with ḡ.

After performing several episodes, the worker satisfies the
termination condition and completes learning. At that same
time, the next episode is performed for the model transfer
learning. The parameters of themature Actor model that com-
pleted the learning process are sent to the chief (Figure 2b’s
1©). The chief sends the mature actor model parameters to
the rest of the workers (Figure 2b’s 2©). The other workers
receive mature parameters and replace their own Actor model
parameters. However, instead of entirely replacing them with
the mature parameters received from the chief, the transfer
weight is calculated and appropriately replaced according to
the PI indicating the learning performance for each worker.
The transfer weight indicates to which extent the PI meets
the termination conditions for each environment. The transfer
weights wT are calculated as follows:

wT =
PIt
TC

(10)

where PIt is the Performance Index at time step t and TC
represents the condition to end learning in each environment.
The worker considers its own Actor model parameters θ and
replaces themwith mature parameters received from the chief
θ̄ according to the calculated wT . The replacement formula is
as follows:

θ = wT × θ + (1− wT)× θ̄ (11)

With Actor–Critic PPO, the proposed federated reinforce-
ment learning algorithm for acceleration is provided in
Algorithms 1 and 2. The parameter M that represents the
maximumnumber of episodes is shared by all workers and the

76300 VOLUME 9, 2021

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

Algorithm 2 Federated RL (Worker n)

for i = 1, 2, 3, . . . ,M do
for each step t of an episode do

Start the actor model πθ for st and do action at
Get rt+1, st+1 from the environment
Store <st , at , rt+1, st+1> into the trajectory
memory

end for
if learning process is finished then

Send to the chief a message mn including the
actor model parameter θn
Break

else
Update πθold ← πθ
for j = 1, 2, 3, . . . ,K do

Get a mini-batch B from the trajectory
memory (the size of B is U)
for t = 1, 2, . . . ,U do

Compute Ât , LVt (µ) and L
CLIP
t (θ) by

using Equation (2),(3),(6)
end for
Compute the gradient gµ = ∇LV (µ) for the
critic model parameter µ
Update Vµ with gµ through SGD
Compute the gradient gθ = ∇LCLIP(θ) for
the actor model parameter π
Update πθ with gθ through SGD
Append the cumulative reward to PI

end for
Compute average the latest 10 episode’s PI
Send to the chief a message mn including the last
gradient gnθ and PI

end if
if Wait for a message mc from the chief if it is not
available
if mc has the Actor model parameter θ̄ then

Compute the wT by using Equation (10)
θ = wT × θ + (1− wT)× θ̄

else if mc has the average gradient ḡ then
Update πθ with the received ḡ through SGD

end for

chief. The chief retains the set of all workersN . Whenever the
chief receives the Actor model parameters θn from aworker n,
the chief removes it from N when the episode is com-
pleted. In a worker, K is the number of optimizations in one
episode.

V. EXPERIMENTS
In this section, we verify the efficacy of the proposed fed-
erated reinforcement learning by applying it to a simulation
environment and a real device. To verify the efficacy of
the proposed federated reinforcement learning, we compare
weighted-based gradient sharing and transfer learning with
unweighted ones. The simulation environment uses OpenAI
Gym, and the real device uses QuanserTM’s QUBE-Servo 2.

A. EXPERIMENTS CONFIGURATION
The experimental system’s configuration for controlling the
simulation environments and the real device contains four
workers and one chief. The workers and chief are installed
on Ubuntu 18.04 LTS version and for our Actor-Critic based
on PPO algorithm we used the Python 3.6 and PyTorch
1.2 version. The Actor and Critic models consist of three
multi-layer perceptronwhere each layer includes 128 neurons
and two separate output layers respectively. The output layer
of Actor models takes output size (i.e., action space according
to environments), the output layer of Critic model takes single
value to evaluate the chosen action by Actor model. Also,
we use the hyper-parameters of the Actor-Critic PPO which
the clipping parameter of which is 0.9, and GAE parameter is
0.99. The model optimization is Adam optimizer, Actor and
Critic model’s learning rates are 0.001, trajectory memory
size is 400, and batch size is 128. If the trajectory memory
is small, the reinforcement learning model is updated using
the model’s experience (state, behavior, reward, next state)
collected at the latest steps. However, if the trajectory mem-
ory is large, the previous experiences are also considered
and updated. In general, the PPO model tends to be reliably
updatedwhich is performed based on the experience collected
through the recently updated model. The maximum number
of episodesM is 2000, and the number of workersN is 4 in the
simulation environment, and 3 in the real device environment.

B. EXPERIMENTS ENVIRONMENTS
1) SIMULATION ENVIRONMENTS
In order to verify the proposed federated reinforcement learn-
ing, the simulation environments are selected from OpenAI
Gym. OpenAI Gym is a toolkit for developing and compar-
ing reinforcement learning algorithms. It provides a variety
of simulation environments and supports easy modification
and uses for testing reinforcement learning. For experiment,
we adopted CartPole, MountainCarContinuous, Pendulum,
and Acrobot. It corresponds to the classic control problem
which is commonly used in the field of control. Figure 3
shows four simulation environments to evaluate the perfor-
mance of proposed federated reinforcement learning.

The target of CartPole’s is to keep the pole upright on the
cart and the cart stops the pole from toppling by moving
from side to side with controlling speed on the frictionless
track. CartPole has four observations: cart position (Min -
2.4 to Max 2.4), cart velocity, pole angle (Min −41.8◦ to
Max41.8◦), and pole velocity at the tip. It has two discrete
actions: push the cart left or right and the reward is +1 for
every step taken, including the termination step. The pole
angle is more than ±12◦, which is the episode’s termination
condition. The cart is at or beyond ±2.4, or the total sum
of rewards in one episode is 200. If the average reward for
episodes of 10 consecutive learning attempts is 195.0 or
higher, the conditions to conclude the learning episode are
considered to have been met.

MountainCarContinuous’s subject is an underpowered car
that must summit the one-dimensional hill on the right to

VOLUME 9, 2021 76301

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

FIGURE 3. OpenAI Gym simulation environments for experiments.

reach a target. There is another hill on the left and as the
car ascends it, potential energy is developed and on release,
the car accelerates towards the flag. MountainCarContinuous
has two observations: car position (Min−1.2 toMax 0.6), car
velocity (Min −0.07 to Max 0.07). MountainCarContinuous
has continuous actions: push the car to the left (negative
value) or the right (positive value). The reward is 100 when
the flag on the hill is reached, minus the sum of the squared
actions from the beginning of the episode, until the goal
is attained. The episode’s termination condition is that the
car’s position equals 0.5. The end condition of the learning
phase is reached when a reward of more than 200 is obtained
in 10 consecutive learning attempts.

Acrobot has two joints and two links and the joints between
the links are actuated. Initially, the links hang down and the
Acrobot’s objective is to swing the end of the lower link up
to a given height. Acrobot has six observations: the rotational
joint angles and velocities of joints and links. Acrobot has dis-
crete actions: torque on the joint between the two pendulum
links, effort to the left or right, and stop. The reward is−1 for
each step in each episode and 0 when the second link reaches
the target height. The episode’s termination condition is that
the second link reaches the target height. The end condition
is to obtain an average of more than −100 in 10 consecutive
learning attempts.

Pendulum’s objective is to keep a frictionless pendulum
vertical. Pendulum upwardly rotates the pendulum that is
tilted downward with force from the right or left. Pendulum
has three observations: pendulum angle (cos and sin values)
and pendulum angular velocity. Pendulum has continuous
action: the joint effort (between −2.0 and 2.0) to the left
(negative value) or the right (positive value). The reward is
the following:

rt = −(θ2 + 0.1× θ̄2 + 0.001× action2) (12)

where θ is the normalized pendulum angle between -π and
π , and θ̄ is the pendulum’s angular velocity. Therefore,

the lowest cost is −(π2
+ 0.1 × 82 + 0.001 × 22) =

−16.2736044, and the highest cost is 0. The episode’s ter-
mination condition is when 200 steps are attained for each
episode. The end condition is that the rewards in 10 consec-
utive learning attempts average more than −400.

Additionally, we added noise to the four simulation envi-
ronments for the experiment to mimic a real device environ-
ment. Because, even if real devices are produced in the same
factory, their physical and dynamic characteristics may be
different. In other words, even if the same torque is given, and
the motor is activated to run, the actual torque of the motor
may be different for each machine. Therefore, we measured
the noise for each of the QUBE-Servo 2 devices that were
used. We set the motor’s torque to ±15 and measured the
change in the motor angle 100 times. Although the same
torque is given to the real device, there is an average dif-
ference of ±0.002◦, and a standard deviation of ±0.0005◦

per machine. Therefore, we experimented by adding noise to
each action in the simulation environment according to the
Gaussian distribution with an average of 0.002 and a standard
deviation of 0.0005.

2) REAL-DEVICE ENVIRONMENTS
We use QUBE-Servo 2s as the RIP devices for the real device
environment. The RIP system is used in mechanical control
to present classic control system problems. Our QUBE-Servo
2 is an unstable nonlinear RIP device that has commonly
been used in the field of engineering nonlinear mechanical
controls. The objective of the QUBE-Servo 2 is to balance a
rigid pendulum vertically The QUBE-Servo 2 has four types
of observation: pendulum angle, pendulum angular velocity,
motor angle, and motor angular velocity. The action is chosen
from the actor model of each worker’s actor-critic PPO. Also,
in order to keep the pendulum vertical, the action must be
selected and applied within 7ms. The chosen action is −60,
0, or 60, which signifies turn left, stop, and turn right. The
reward is +1 for every step in one episode. This is because
the RL agent maintained balance during the step. However,
if the pendulum’s angle is outside the range of ±7.5◦,
the reward is 0. The termination condition for the episode
is when the pendulum angle fell out of the ±7.5◦ range
and balance failed When the rewards in one episode reached
2450 or more, the episode ended. The QUBE-Servo 2 must
perform an action within 7ms to keep the pendulum vertical.
So, getting 2450 rewards for one episode is keeping the
balance of pendulum for about 15 seconds. The termination
condition for learning is that the average of the rewards in the
last 10 episodes is 2450 or more.
For our proposed federated reinforcement learning,

the experimental configuration in the real environment con-
sisted of three workers and one chief as shown in Figure 4.
QUBE-Servo 2 SPI-port cannot connect directly to the
switch, hence we need a Raspberry Pi for only physi-
cal connection between the switch and QUBE-Servo 2.
QUBE-Servo 2 interacted with the worker’s actor-critic PPO
agent via Raspberry Pi using Serial Peripheral Interface (SPI)

76302 VOLUME 9, 2021

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

FIGURE 4. The system architecture of federated reinforcement learning experiment.

FIGURE 5. Effectiveness of the proposed federated reinforcement learning methods in simulation environments. The blue,
green, red and yellow line are the lastest 10 average accumulated rewards of each worker, and the black dotted line is the
reward of termination condition for each simuation environment.

communication. The Raspberry Pi receives state information
(i.e., pendulum angle, pendulum angular velocity, motor
angle, and motor angular velocity) from the QUBE-Servo 2,
and forwards them to the actor-critic PPO agent in a worker.
Also, it receives the chosen action (i.e., motor power) from the
actor-critic PPO agent in a worker, converts it into a voltage
value, and eventually forwards it to the QUBE-Servo 2.
And we use the MQTT protocol for communication between

the RIP system, workers, and chief. The MQTT protocol
requires a broker in the middle and interacts between the RIP
system and workers through the MQTT broker. The worker
and the RIP system exchange state information and actions
with each other, so that the worker performs training. In
addition, we use MQTT to exchange gradients, accumulated
rewards (PI), and model parameters between the chief and
workers.

VOLUME 9, 2021 76303

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

C. EFFECT PROPOSED FEDERATED REINFORCEMENT
LEARNING IN SIMULATION ENVIRONMENTS
Figure 5 shows the effectiveness of the proposed federated
reinforcement learning methods in simulation environments.
In particular, the federation policies proposed in this paper
represent the effect of weight-based gradient sharing and
weight-based transfer learning. In the experiment, we used
the system architecture in Figure 1 and performed feder-
ated reinforcement learning using four workers and one
chief. Figure 5a is the result of simply performing gradient
sharing and transfer learning in four simulations without
being weight-based. In contrast, Figure 5b is the result of
weight-based gradient sharing and transfer learning using
the proposed federation policy. The experiment is performed
10 times for each simulation environment, and the graphs
in Figures 5a and 5b represent the average accumulated
rewards of the last 10 episodes divided by each worker.

As shown in Figure 5, the learning speed of federated
reinforcement learning using weight-based gradient sharing
and transfer learning, which is the proposed federation policy,
is generally high. In the case of CartPole, using the proposed
federation policy, 160 is the workers’ last episode.When used
without the proposed federation policy, the final worker’s last
episode is 310. For the federated reinforcement learning that
applied the federation policy proposed for MountainCarCon-
tinuous, Acrobot, and Pendulum, the learning respectively
ended at episodes 455, 1222, and 3196. Conversely, when
used without the proposed federation policy, the learning
ended at episodes 517, 1654, and 3592.

The reason for the high performance of federated rein-
forcement learning by applying the proposed federation
policy is that different noises were added to the simulation
environment as happens in the real world. In other words,
in the case of exchanging the gradients or parameters of a
completed model that is an entire learning experience, less
learning time is required due to a subtle difference in the envi-
ronment. Therefore, in the case of the proposed federation
policy, the weight is assigned using PI , which represented
the level of the current learning experience, therefore, if the
learning is well executed, the current learning experience
could be maintained. Also, in the case of a worker that did
not learn effectively, the weight is low, therefore, it reflects
many new experiences and learns well. This trend is evident
in Acrobot. In addition, the number of episodes required to
terminate the remaining workers at the time of transfer from
the completed learningmodel is generally low in the proposed
federated reinforcement learning system.

D. EFFECT OF PROPOSED FEDERATED REINFORCEMENT
LEARNING IN REAL ENVIRONMENTS
Figure 6 shows that the effect is verified by applying
the proposed federated reinforcement learning to several
QUBE-Servo 2s, which represent real environments. Unlike
the simulation environment, this experiment uses 3 workers,
that is, three QUBE-Servo 2s. The rest of the experiment
configuration is the same as the simulation environment.

FIGURE 6. Effectiveness of the proposed federated reinforcement
learning methods in real envrionments as RIP system. The blue, green,
and red line are the lastest 10 average accumulated rewards each worker,
and the black dotted line is the reward for the termination condition
(2450) for each RIP system.

FIGURE 7. Average of episodes where learning is performed 10 times for
the simulation and real environment respectively.

The termination condition in the real environment is 2450 and
is indicated by a black dotted line. Figure 6a is the result
of federated reinforcement learning without the proposed
federation policy, and Figure 6b is the opposite. When the
proposed Federation policy is applied, all workers are com-
pleted learning in 1071 episodes. In the other case, learning is
completed after 1273 episodes. Similarly, to the experimental
results from the simulation environment, it can be seen that

76304 VOLUME 9, 2021

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

a low number of episodes is required for a worker’s learning
to be completed and the rest of the workers’ learning to be
completed.

Figure 7 shows the average number of episodes in which
learning ended after respectively applying and not applying
the proposed federation policy 10 times in the simulation
and real environment. For all experimental environments,
learning speed is high when federated reinforcement learning
with the proposed federation policy is applied.

VI. CONCLUSION
In this paper, we have shown that the proposed federated
reinforcement learning can successfully control multiple sim-
ulation environments and real devices with slightly differ-
ent dynamics. We used Actor-Critic PPO that demonstrates
good performance as a reinforcement learning algorithm
and applied a new federation policy. The proposed feder-
ation policy is weight-based, gradient sharing, and trans-
fer learning that more rapidly solved the classical control
problem environments of OpenAI Gym. Although, physi-
cal noise may exist in real devices, the proposed federa-
tion policy can reliably learn multiple devices at the same
time, and achieve the optimal goal with fewer training times.
Our approach improves learning performance by approxi-
mately 1.2 times compared to a previous real-environment
study. In future work, we will apply this approach to a
more complex real device such as a double RIP system.
Moreover, we plan to research new reinforcement learning
techniques to achieve optimal performance with less train-
ing. The proposed federation policy will be applied to var-
ious algorithms such as DQN and DDPG, and compara-
tive verification will be performed with multi-agent based
reinforcement learning such as QMIX and QTRAN. We
also have planed to study new reinforcement learning tech-
niques to achieve optimal performance with less training.
We will extend our research to reduce the communication
delay between the agents and the environment. However,
there are several limitations if this research applied to a real
network, such as Software-Defined Networking (SDN) and
Virtual Network Embedding (VNE). Hence, more research
and efficient distributed-based multi-agent RL are needed for
smooth communication and better performance.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. Cambridge, MA, USA: MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[4] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Benchmark-
ing deep reinforcement learning for continuous control,’’ in Proc. ICML,
2016.

[5] D. Li, D. Zhao, Q. Zhang, and Y. Chen, ‘‘Reinforcement learning
and deep learning based lateral control for autonomous driving,’’ 2018,
arXiv:1810.12778. [Online]. Available: http://arxiv.org/abs/1810.12778

[6] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, ‘‘Multiagent cooperation and competitionwith deep
reinforcement learning,’’ PLoS ONE, vol. 12, no. 4, pp. 1–15, Apr. 2017.

[7] Y. Xu, Z. Deng, M. Wang, W. Xu, A. M.-C. So, and S. Cui, ‘‘Voting-
basedmultiagent reinforcement learning for intelligent IoT,’’ IEEE Internet
Things J., vol. 8, no. 4, pp. 2681–2693, Feb. 2021.

[8] K. Kersandt, G. Munoz, and C. Barrado, ‘‘Self-training by reinforcement
learning for full-autonomous drones of the future∗,’’ in Proc. IEEE/AIAA
37th Digit. Avionics Syst. Conf. (DASC), Sep. 2018, pp. 1–10.

[9] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, ‘‘Deep reinforce-
ment learning for autonomous Internet of Things: Model, applications and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1722–1760,
3rd Quart., 2020.

[10] J. Konecný, H. B. McMahan, and D. Ramage, ‘‘Federated optimization:
Distributed optimization beyond the datacenter,’’ 2015, arXiv1511.03575.
[Online]. Available: https://arxiv.org/abs/1511.03575

[11] X. Liang, Y. Liu, T. Chen, M. Liu, and Q. Yang, ‘‘Federated transfer
reinforcement learning for autonomous driving,’’ 2019, arXiv:1910.06001.
[Online]. Available: http://arxiv.org/abs/1910.06001

[12] B. Liu, L. Wang, and M. Liu, ‘‘Lifelong federated reinforcement learning:
A learning architecture for navigation in cloud robotic systems,’’ IEEE
Robot. Autom. Lett., vol. 4, no. 4, pp. 4555–4562, Oct. 2019.

[13] X. Wang, C. Wang, X. Li, V. C. M. Leung, and T. Taleb, ‘‘Federated deep
reinforcement learning for Internet of Things with decentralized coopera-
tive edge caching,’’ IEEE Internet Things J., vol. 7, no. 10, pp. 9441–9455,
Oct. 2020.

[14] S. Kumar, P. Shah, D. Hakkani-Tur, and L. Heck, ‘‘Federated con-
trol with hierarchical multi-agent deep reinforcement learning,’’ 2017,
arXiv:1712.08266. [Online]. Available: http://arxiv.org/abs/1712.08266

[15] J.-B. Kim, H.-K. Lim, C.-M. Kim, M.-S. Kim, Y.-G. Hong, and Y.-H. Han,
‘‘Imitation reinforcement learning-based remote rotary inverted pendulum
control in OpenFlow network,’’ IEEE Access, vol. 7, pp. 36682–36690,
2019.

[16] H.-K. Lim, J.-B. Kim, J.-S. Heo, and Y.-H. Han, ‘‘Federated reinforcement
learning for training control policies on multiple IoT devices,’’ Sensors,
vol. 20, no. 5, p. 1359, Mar. 2020.

[17] H.-K. Lim, J.-B. Kim, S. Y. Kim, and Y.-H. Han, ‘‘Federated reinforcement
learning for automatic control in sdn-based iot environments,’’ in Proc. Int.
Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 1868–1873.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[19] V. Konda, ‘‘Actor-critic algorithms,’’ Ph.D. dissertation, Cambridge, MA,
USA, 2002.

[20] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. 31st Int. Conf. Neural Inf. Process. Syst.RedHook, NY, USA: Curran
Associates, 2017, pp. 6382–6393.

[21] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ‘‘Trust region
policy optimization,’’ in Proc. 32nd Int. Conf. Mach. Learn. in Proceedings
of Machine Learning Research, vol. 37. Lille, France: PMLR, Jul. 2015,
pp. 1889–1897.

[22] K. Zhang, Z. Yang, and T. Başar, ‘‘Multi-agent reinforcement learning: A
selective overview of theories and algorithms,’’ 2019, arXiv:1911.10635.
[Online]. Available: http://arxiv.org/abs/1911.10635

[23] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. AISTATS, vol. 54, 2017, pp. 1273–1282.

[24] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. M. Kiddon, J. Konecný, S. Mazzocchi, B. McMahan, T. V. Overveldt,
D. Petrou, D. Ramage, and J. Roselander, ‘‘Towards federated learning
at scale: System design,’’ 2019, arXiv:1902.01046. [Online]. Available:
https://arxiv.org/abs/1902.01046

[25] H. Zhuo, W. Feng, Q. Xu, Q. Yang, and Y. Lin, ‘‘Federated rein-
forcement learning,’’ 2019, arXiv:1901.08277. [Online]. Available:
https://arxiv.org/abs/1901.08277

VOLUME 9, 2021 76305

H.-K. Lim et al.: Federated RL Acceleration Method for Precise Control of Multiple Devices

[26] M. E. Taylor and P. Stone, ‘‘Transfer learning for reinforcement learning
domains: A survey,’’ J. Mach. Learn. Res., vol. 10, no. 7, pp. 1633–1685,
2009.

[27] F. L. Da Silva and A. H. R. Costa, ‘‘Transfer learning for multiagent
reinforcement learning systems,’’ in Proc. 25th Int. Joint Conf. Artif. Intell.
Menlo Park, CA, USA: AAAI Press, 2016, pp. 3982–3983.

[28] R. Glatt, F. L. Da Silva, and A. H. R. Costa, ‘‘Towards knowledge transfer
in deep reinforcement learning,’’ in Proc. 5th Brazilian Conf. Intell. Syst.
(BRACIS), Oct. 2016, pp. 91–96, doi: 10.1109/BRACIS.2016.027.

[29] P. Vrancx, Y.-M. De Hauwere, and A. Nowé, ‘‘Transfer learning for multi-
agent coordination,’’ in Proc. 3th Int. Conf. Agents Artif. Intell., Rome,
Italy, 2011, pp. 263–272.

[30] F. L. D. Silva and A. H. R. Costa, ‘‘A survey on transfer learning for
multiagent reinforcement learning systems,’’ J. Artif. Intell. Res., vol. 64,
pp. 645–703, Mar. 2019.

[31] D. Q. Tran and S.-H. Bae, ‘‘Proximal policy optimization through a
deep reinforcement learning framework for multiple autonomous vehicles
at a non-signalized intersection,’’ Appl. Sci., vol. 10, no. 16, p. 5722,
Aug. 2020.

[32] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel,
‘‘High-dimensional continuous control using generalized advantage
estimation,’’ 2015, arXiv:1506.02438. [Online]. Available:
https://arxiv.org/abs/1506.02438

[33] D. V. Lindley, ‘‘Information theory and statistics. Solomon Kullback,’’
J. Amer. Stat. Assoc., vol. 54, no. 288, pp. 825–827, 1959.

HYUN-KYO LIM received the B.S. degree in
computer science and engineering and the M.S.
degree in computer science engineering from
the Korea University of Technology and Educa-
tion, in 2015 and 2017, respectively, where he
is currently pursuing the Ph.D. degree with the
Department of Interdisciplinary Program in Cre-
ative Engineering. He studied mobility manage-
ment during his master course and he especially
researched distributed mobility management in

software-defined networking. He is studying deep learning and reinforce-
ment learning during his doctoral studies. He is also exploring ways to
apply deep learning and reinforcement learning to the network and is work-
ing on applying deep learning and reinforcement learning to a variety of
applications.

JU-BONG KIM received the B.S. and M.S.
degrees in computer science and engineering from
the Korea University of Technology and Educa-
tion, Cheonan, South Korea, in 2017 and 2019,
respectively, where he is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering. His research interests
include deep learning and reinforcement learning
across various domains, especially device control
and blockchain assets.

IHSAN ULLAH received the B.S. and M.S.
degrees in computer science from the University
of Peshawar, Pakistan, in 2001 and 2004, respec-
tively, and the Ph.D. degree in computer engi-
neering from Sungkyunkwan University, Suwon,
South Korea, in 2019. From September 2019 to
August 2020, he was a Postdoctoral Research Fel-
low with the Ubiquitous Computing Technology
Research Institute (UTRI), Sungkyunkwan Uni-
versity. Since 2020, he has been a Research Profes-

sor with the School of Computer Science and Engineering, Korea University
of Technology and Education, Cheonan, South Korea. His research interests
include data aggregation, data fusion, virtual network embedding, network
slicing (5G), the Internet of Things (IoT), artificial intelligence, machine
learning, cloud computing, and wireless sensor networks.

JOO-SEONG HEO received the B.S. and M.S.
degrees in computer science and engineering
from the Korea University of Technology and
Education, Cheonan, South Korea, in 2017 and
2019, respectively, where he is currently pursu-
ing the Ph.D. degree with the Interdisciplinary
Program in Creative Engineering. His research
interests include deep learning and reinforcement
learning, device control, and blockchain assets.

YOUN-HEE HAN (Member, IEEE) received the
B.S. degree inmathematics and theM.S. and Ph.D.
degrees in computer science and engineering from
Korea University, Seoul, South Korea, in 1996,
1998, and 2002, respectively.

From 2002 to 2006, he was a Senior Researcher
with the Next Generation Network Group, Sam-
sung Advanced Institute of Technology. Since
2006, he has been a Professor with the School of
Computer Science and Engineering, Korea Uni-

versity of Technology and Education, Cheonan, South Korea. Since 2002, his
activities have been focusing on mobility management, media independent
handover, and cross-layer optimization for efficient mobility support. He has
published approximately 250 research articles on the theory and application
of mobile computing and has filed 40 patents on information and commu-
nication technology domain. His current research interests include theory
and application of computer networks, including protocol design and math-
ematical analysis, mobile sensor/actuator networks, social network analysis,
machine learning, deep learning, and reinforcement learning. He has made
several contributions in IETF and IEEE standardization. He has served as the
Co-Chair for working group in the Korea TTA IPv6 Project Group. He has
been serving as an Editor for the Journal of Information Processing Systems
since 2011.

76306 VOLUME 9, 2021

http://dx.doi.org/10.1109/BRACIS.2016.027

