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ABSTRACT The advent of the Internet-of-Things (IoT) and proliferation of wireless devices and systems
have put stringent requirements on reliability and latency, in addition to the scarcity of energy and
spectrum resources. More importantly, ultra-reliability and low-latency (URLL) combined with concepts of
energy-harvesting (EH) and cognitive-radio (CR) make the analysis of IoT networks much more complex.
This paper analyzes the performance of uplink EH-CR-IoT networks with URLL requirements. Analytical
expressions for IoT network metrics, namely, average packet latency, reliability, and energy-efficiency are
derived, while incorporating diversity transmissions under the finite blocklength (FBL) regime. The effect
of network parameters, such as number of resource blocks allocated to each IoT user equipment (UE),
blocklength, and number of packet replicas is examined on the network metrics, and their tradeoffs are
discussed. Finally, the derived expressions are utilized to maximize the energy-efficiency of the IoT UEs
subject to energy-causality and URLL constraints.

INDEX TERMS Cognitive-radio, energy-harvesting, finite blocklength, Internet-of-Things, low-latency,
ultra-reliability.

I. INTRODUCTION
The Internet-of-Things (IoT) has emerged as a promis-
ing networking paradigm for connecting massive numbers
of smart systems and devices, which urgently call for
spectrum- and energy-efficient transmission techniques to
meet the diverse requirements of latency, reliability and
energy-efficiency. Specifically, ultra-reliable and low-latency
(URLL) transmissions are considered to be the main fea-
tures for many IoT applications, such as factory automa-
tion, smart cities, tactile Internet, and industrial IoT [1]–[3].
To improve spectrum-efficiency, cognitive-radio (CR) has
been put forth as a key solution to exploit under-utilized
spectrum bands [4]. For energy-efficient transmissions under
the green communications paradigm, energy-harvesting (EH)
technologies have emerged as viable solutions to allevi-
ate the need to replace/recharge batteries or rely on the
electrical grid, and thus help meet the energy demands
of wireless devices and networks [5]. On the other hand,
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URLL communication (URLLC) can be achieved via several
techniques. Specifically, ultra-reliability can be realized by
diversity transmission, in which multiple replicas of a packet
are sent to the destination. To achieve low-latency, short
packet transmissions via finite blocklength (FBL) codes can
be employed [6]. The analysis of EH-CR-IoT networks with
URLL requirements is of paramount importance for 5G and
beyond cellular networks, and hence, is the focus of this
paper.

A. RELATED WORKS
To date, several studies have focused on achieving URLLC in
cellular networks, which is challenging due to the interplay
between various operational parameters and transmission
schemes [7], [8]. For instance, for a factory automa-
tion scenario with non-orthogonal multiple-access (NOMA),
the authors in [9] jointly optimized the blocklength and
power allocation to minimize the decoding error probabil-
ity of the actuator, subject to the reliability requirement of
the relay robot. It has been shown that the relay-assisted
transmission significantly outperforms its OMA counterpart.
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A cross-layer optimization for URLLC in radio access net-
works is given in [10], where the packet dropping, power
allocation, and bandwidth allocation policies have been opti-
mized to minimize the transmit power under the URLL con-
straints. In [11], a novel availability maximization resource
allocation scheme for coordinated multi-point (CoMP)
transmission with URLLC provisioning is proposed, and
demonstrated to achieve the highest availability in com-
parison to existing schemes. A characterization of differ-
ent design parameters to support downlink (DL) URLLC in
OFDMA-based 5G wireless networks is considered in [12].
Specifically, the authors study the impact of system band-
width, link signal-to-interference-plus-noise ratio (SINR),
quality-of-service (QoS) parameters, and hybrid automatic
repeat request (HARQ) on the URLLC capacity, and high-
light the different performance tradeoffs. A graph-theoretical
approach in smart factory scenario with successive inter-
ference calculation to achieve URLLC for IoT appli-
cations is proposed in [13], and shown to improve
spectral-efficiency without degrading the fairness. Central-
ized low-complexity multi-cell scheduling algorithms are
devised in [14], with results showing up to 60% latency
improvement over existing distributed scheduling schemes.
In [15], the energy-latency tradeoff in URLLC systems is
studied, while employing incremental redundance (IR) and
HARQ. In particular, a dynamic programming algorithm
is devised for IR-HARQ optimization in terms of block-
length, power per round, and number of retransmissions,
which is shown to achieve around 25% energy saving in
comparison to the one-shot transmission (i.e. no HARQ).
Other works have considered resource allocation, network
slicing, link adaptation, and scheduling for enhanced mobile
broadband (eMBB) with URLLC requirements [16]–[18].
Our previous works [19], [20] analyzed the performance
of random-access NOMA (RA-NOMA) with clustered
IoT devices in URLL-EH-IoT networks, where analytical

expressions for network metrics–such as average packet
latency, reliability, and GoodPut—are derived. More impor-
tantly, the RA-NOMA scenario has been compared to its
RA-OMA counterpart to illustrate the merits of NOMA over
OMA.

However, only few researchers have studied URLL com-
munications in spectrum sharing and CR networks. For
example, an adaptive channel assignment method—based on
machine-learning along with fountain codes—is proposed
in [21] to reduce transmission latency, and ensure relia-
bility in licensed and unlicensed spectrum bands. Particu-
larly, the authors proposed switching the critical data to the
licensed spectrum with the best channel conditions, and the
non-critical data to the least congested unlicensed spectrum.
Opportunistic spectrum access in underlay CR networks to
achieve URLLC has been analyzed in [22]. By adopting
an ARQ scheme for secondary transmissions, the maximum
achievable rate, the approximate rate at high signal-to-noise
ratios (SNRs), and the optimal secondary user average trans-
mit power under statistical received power outage constraint
have been achieved. Note that none of aforementioned CR
studies employed short packet transmissions in their models.
Table 1 provides a summary of the aforementioned studies.

B. MOTIVATION AND CONTRIBUTIONS
As stated earlier, IoT networks with massive numbers of
IoT nodes and URLL requirements entail spectrum- and
energy-efficient transmission strategies, making the combi-
nation of CR and EH inevitable. Although a few studies
have focused on URLLC in spectrum sharing scenarios,
to the best of our knowledge, no study considered URLLC in
CR-IoT networks with EH nodes. In turn, this paper focuses
on the analysis of uplink EH-CR-IoT networks with URLL
requirements. Specifically, the IoT user equipments (UEs) are
assumed to have non-saturated data traffic, and transmit their
data packets in the FBL regime via RA spectrum sharing.

TABLE 1. Summary of different studies on URLLC with FBL.
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Short-length packets with diversity transmission are adopted
to satisfy the URLL requirements. Furthermore, multiple
resource blocks (RBs) can be selected by the IoT UEs in
each TTI to transmit multiple data packets simultaneously in
a frame, leading to further reduction in packet latency. Also,
the average packet latency, reliability and energy-efficiency
of the IoT UEs are analytically derived. In deriving the relia-
bility, collisions among the IoTUEs as well as channel decod-
ing errors due to exploiting the FBL codes are considered.
Transmission delay and buffer waiting time are accounted
for in deriving the average packet latency. Thus, the main
contributions of this paper are summarized as follows:

• An URLL EH-CR-IoT network is studied, where trans-
mission diversity in the FBL regime is exploited to meet
the stringent target reliability and latency.

• Analytical expressions for the average packet latency,
reliability, and energy-efficiency are derived. To this
aim, the distribution of the IoTUEs transmission process
is derived. Then, the analytical expressions of the net-
work metrics are obtained by employing the z−operator
and queueing theory, while accounting for the colli-
sions between IoT UEs due to the dynamic spectrum
access, and channel decoding errors due to employing
short-length packets.

• The effect of the number of RBs allocated to each
IoT UE, blocklength, and transmission diversity on the
average packet latency, reliability, and energy-efficiency
is investigated. Then, the tradeoff between reliability
and average packet latency resulting from varying the
number of idle RBs, packet replicas, and blocklength is
highlighted and discussed. Moreover, the feasible and
infeasible regions for fulfilling the packet latency and
reliability constraints for different numbers of packet
replicas and blocklengths are determined, providing
more insights for IoT applications and requirements.

• The IoT UEs energy-efficiency maximization problem
subject to energy-causality and URLL constraints on
the average packet latency and reliability is solved by
utilizing the derived analytical expressions. Specifically,
the blocklength as well as the number of packet replicas
and required RBs are optimized for energy-efficiency
maximization.

It is worth-mentioning that this study is different
from our URLLC-based previous works in [19], [20].
Specifically, this work considers a different network model
that brings dynamic spectrum access (i.e. cognitive radio)
with energy-harvesting nodes into the IoT paradigm, while
[19], [20] analyze network metrics in uplink RA-NOMA IoT
networks with URLL requirements. The IoTUEs in this study
are assumed to access the spectrum dynamically through
spectrum sharing with primary users. This makes the network
analysis fundamentally different, since the random behavior
of the primary users and their data traffic pattern greatly influ-
ence the transmission process of the IoT UEs. Furthermore,
to lower the packet queueing delay, this work assumes that

each IoT UE is able to select a number of RBs to simulta-
neously transmit multiple packets in one transmission time
interval (TTI), as opposed to the randomly selected RB by
clustered IoT UEs in [19], [20]. Additionally, the multi-user
nature of the problem in hand, and the IoT UEs’ interaction
are prominent differences that affect the different IoT network
metrics.

The rest of this paper is organized as follows. Section II
introduces the system model. The analytical derivations of
the different IoT network metrics are given in Section III.
The numerical results are presented in Section IV. In Sec-
tion V, the energy-efficiency maximization problem is for-
mulated and solved. Future research directions of this work
are outlined in Section VI. Finally, conclusions are drawn
in Section VII.

II. SYSTEM MODEL
A. IoT NETWORK MODEL
Consider an uplink CR-IoT network with N IoT UEs that
scavenge environmental energy (e.g. solar and/or wind) to
cater for their transmissions to the base-station (BS). The
IoT UEs exploit the spectrum shared with a cellular primary
network,1 as shown in Fig. 1.

FIGURE 1. IoT network model.

All UEs schedule their transmissions in a time-slotted fash-
ion, where each time-slot or TTI is called a frame2 [25]–[27].
Each frame is of duration of Tf , and consists of R orthog-
onal RBs, each of bandwidth B. To avoid collisions with
the primary UEs, the BS provides the information of vacant
RBs on a reference broadcasting channel [28]. At the begin-
ning of each frame, if there exist at least p idle RBs
(for p ∈ {1, . . . ,R}), each IoT UE having at least p data pack-
ets in its buffer starts transmitting its data packets over the p
idle RBs, which are randomly selected among all idle RBs
determined by the BS on the reference channel. If the number
of idle RBs is less than p, then the IoT UEs must wait for the
next frame to find an adequate number of idle RBs. Thus, each
IoT UE buffers p of its data packets for transmission over p
RBs (i.e. one packet per RB). Note that selecting multiple
RBs allows the IoT UEs to send several packets in a single

1There are many existing scenarios (e.g. industrial IoT) in which an IoT
network coexists with a licensed cellular network [23]–[25].

2In this paper, the terms ‘‘TTI’’ and ‘‘frame’’ are used interchangeably.
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frame, which in turn lowers the number of in-queue packets,
and decreases the packet’s waiting time, ultimately reducing
the packet transmission latency.
Remark 1: The traffic behavior of each IoT UE for the

generated data packets follows a Poisson arrival process with
arrival rate of λd .3

To achieve ultra-reliability in such a multi-channel
multi-user scenario, diversity transmission is adopted, where
each data packet is sent multiple times (say K times) in
successive TTIs. Therefore, the packet loss rate is reduced at
the expense of transmission redundancy. Furthermore, short
packet transmission is adopted to realize low-latency trans-
missions [6], [8]. However, in such a case, the Shannon’s
capacity is no longer applicable, as the decoding error due
to employing the FBL regime is non-negligible. In turn, for
transmissions with a blocklength of nb > 100 and nd data bits
per packet, the decoding error probability is approximated
as [31]

Pε ≈ Q
(√

nb
V (γ )

(
C
(
γ
)
−
nd
nb

))
, ϒ(γ, nb, nd ), (1)

where γ is the received SNR at the BS, C(γ ) = log2(1+ γ )
is the Shannon capacity, V (γ ) = (1 − 1

1+γ 2
)(log2 e)

2 is the

channel dispersion, and Q(·) is the Q-function, as given by
Q(x) = 1

√
2π

∫
∞

x e−u
2/2. The channel coefficient between

the ith IoT UE and the BS is denoted hi.4 Therefore, the corre-
sponding channel gain |hi|2 follows an exponential distribu-
tion with mean d−νi , where di is the corresponding distance,
while ν is the path-loss exponent. Furthermore, the back-
ground noise over all links is assumed to be independent
and identically distributed (i.i.d.) zero-mean additive white
Gaussian noise with variance σ 2

= BN0, where N0 is the
noise spectral density. It should be noted that γ is stochastic,
and hence, the average decoding error probability can be
determined as

ϒ(γ, nb, nd ) =
∫
∞

0
ϒ(γ, nb, nd )fγ (θ )dθ, (2)

where fγ (θ ) is the probability density function (PDF) of γ .

B. PRIMARY NETWORK MODEL
The primary network is assumed to be cellular, which is
the case in many IoT applications. Moreover, the traffic
behavior of the primary UE (PUE) is modeled as a two-state
continuous-time Markov chain (CTMC) with idle and busy
rates of λ0 and λ1, respectively.5 The stationary probability
of idle and busy states are obtained as 50 =

λ1
λ1+λ0

and
51 =

λ0
λ1+λ0

, respectively [35].

3This model has been widely used in communication networks [29], [30].
4All the channels in the network experience independent but not neces-

sarily identically distributed (i.n.n.i.d.) Rayleigh block fading. Moreover,
the channel gains remain constant within each transmission block but vary
independently between different blocks.

5This is the most common traffic model used for primary net-
works [32]–[34], where the state idle (busy) implies the absence (presence)
of the PUE.

C. ENERGY MODEL
The energy is assumed to arrive randomly in each frame as
quantized energy packets. To model its randomness, the har-
vested energy arrival process Eh at each frame m (for m =
0, 1, . . .) is modeled as an i.i.d. stationary random process
with rate λe [36]–[39]. In turn, the expected value of the
harvested energy during a frame is E

[
Eh
]
= λeTf , where

E [·] is the expectation operator. The harvested energy is
then stored in a rechargeable battery with infinite capacity.
Moreover, let Pt be the IoT UE’s transmit power, and Pc be
circuitry power consumption when the IoT UE waits for the
next frame to find an adequate number of idle RBs.

To analyze the EH-CR-IoT network, some of the main
parameters should be described. Table 2 summarizes themain
symbols used in this study and their descriptions.

TABLE 2. Notations.

III. DERIVATIONS OF NETWORK METRICS
In this section, the analytical derivations of different network
metrics are presented. However, a few definitions must first
be given.
Definition 1 (Packet Transmission Delay): A packet

transmission delay TD is the time duration during which a
typical packet is transmitted by an IoT UE. Specifically, TD is
a random variable referring to the time needed to transmit a
typical packet when it is ready.
Definition 2 (Transmission Cycle): A transmission cycle

TC is the time duration in which a typical data packet and
all its replicas are transmitted by an IoT UE of interest.6

Accordingly, TC is a random variable taking the minimum

6Note that TD and TC incorporate all the frames in which the underlying
IoT UE waits due to not finding at least p idle RBs.
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value of K × Tf seconds if the IoT UE finds at least p idle
RBs for all K successive frames.
Definition 3 (Packet Latency): The packet latency TL is

the total delay that a typical data packet and all its replicas
incur to be received at BS, which includes the transmission
cycle and waiting time in the buffer.
Definition 4 (Energy-Efficiency): Energy-Efficiency ηe is

defined as the average effective redundancy-free (i.e. non-
repeated) received bits at the BS per unit time per unit energy
(i.e. in bits/s/Joule).
Definition 5 (Reliability): Reliability R is defined as the

probability that a transmitted data packet is received suc-
cessfully at the BS (i.e. without any collision and/or channel
decoding error).
Definition 6 (TTI Type): The following TTI types are

defined in the network:
TTI type i (Ti):
A TTI at the beginning of which there exist i data packets
(for i = 1, 2, . . . , p− 1) in the IoT UE’s buffer. From a
steady-state perspective, a typical TTI is of type Ti with
probability of πi.7

TTI type p+
(
Tp+

)
:

A TTI at the beginning of which there exist at least
p data packets in the buffer of the IoT UE. From the
steady-state perspective, a typical frame is of type Tp+
with probability of πp+ .

A. PACKET TRANSMISSION DELAY DISTRIBUTION
The PDF of the transmission delay TD for an IoT UE’s
packet, fTD (t), is obtained in Lemma 1. In deriving such a
distribution, all the TTIs that an IoT UE has to wait to find
sufficient number of idle RBs are considered.
Lemma 1: The PDF of the IoT UE’s packet transmission

delay is obtained as

fTD (t) =
∞∑
j=1

(
Pp−

)j−1 (1− Pp−
)
δ(t − jTf ), (3)

where δ(.) is the Dirac delta function, and Pp− is given by

Pp− =
p−1∑
i=0

(
R
i

)
5i

0 (1−50)
R−i . (4)

Proof: See Appendix A.

B. TRANSMISSION CYCLE DISTRIBUTION
According to the definition of the transmission cycle TC ,
it consists of successive attempts for transmitting K replicas
of a typical packet. Lemma 2 gives the expression for the
transmission cycle and its expected value.
Lemma 2: The PDF of the IoT UE’s packet transmission

cycle TC is obtained as

fTC (t) =
∞∑
l=K

(
l − 1
K − 1

) (
1−Pp−

)K (Pp−)l−K δ (t−lTf) . (5)

7This probability is derived in subsection III-C.

Furthermore, the expected value of TC (i.e. E [TC ] , µTC )
is obtained as

µTC =
KTf

1− Pp−
. (6)

Proof: See Appendix B.

C. AVERAGE PACKET LATENCY
To derive the expected value of packet latency, one must first
obtain the average packet waiting time in an IoT UE buffer.
To this aim, the steady-state probabilitiesπi (for i = 0, 1, · · · )
of the TTI types must be derived. Such probabilities are
derived according to Lemmas 3 and 4. In Lemma 3, a recur-
sive equation is presented to derive πi for i = p, p + 1, · · · .
Then, the p initial probabilities πi (for i = 0, 1, . . . , p−1) are
derived inLemma 4 based on the recursive equation obtained
in Lemma 3.
Lemma 3: The steady-state probabilities πj+p (for j =

0, 1, · · · ) are obtained recursively via

πj+p =
1
a0

πj − ajπ̄p − j+p−1∑
i=p

πiaj+p−i

 , (7)

where π̄p ,
∑p−1

i=0 πi. Furthermore, ai (for i = 0, 1, . . .) is
determined as

ai =

(
Tf λd

)i
i!

(
1− Pp−
Pp−

)K ∞∑
l=K

(
l − 1
K − 1

)
l i
(
Pp−e−Tf λd

)l
.

(8)

Proof: See Appendix C.
Lemma 4: The first p steady-state probabilities πi

(for i = 0, 1, . . . , p − 1) are determined by solving the
following set of equations

p(1− π̄p) = 9 −
p−1∑
i=0

iπi, (9a)

π̄p − z
−p
l

p−1∑
i=0

πizil = 0, for l = 1, . . . , p, (9b)

where9 ,
KλdTf
1−Pp−

. Furthermore, zl (for l = 1, . . . , p) are the

zeros of zp =
( (

1−Pp−
)
eλd (z−1)Tf

1−Pp−e
λd (z−1)Tf

)K
.

Proof: See Appendix D.
Now, the average packet latency of the underlying

EH-CR-IoT network is obtained via Lemma 5.
Lemma 5: The average packet latency (i.e. E[TL] , µTL )

in an IoT UE’s buffer is derived as per (10) as shown at the
bottom of the next page.

Proof: See Appendix E.

D. RELIABILITY
The reliability R of a typical IoT UE is defined as the
probability of successfully transferring a data packet to the
BS, which is determined as given in Lemma 6.
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Lemma 6: The IoT UE’s reliability is derived as

R = 1− (Pe)K , (11)

where Pe is obtained as

Pe = 1− P (ENDE )P (ENC ) . (12)

Particularly, P(ENDE ) = 1−ϒ(γ, nb, nd ) is the probability
of no decoding error (NDE) due to channel distortion, and
P(ENC ) is the probability of no collision (NC) among the UEs
over the selected RBs, as given by (13) as shown at the bottom
of the page.

Proof: See Appendix F.

E. ENERGY-EFFICIENCY
The energy-efficiency ηe of the IoT UE is defined as ratio of
the average effective rate of an IoT UE to the average amount
of consumed energy in a typical transmission cycle, and is
obtained as per Lemma 7.
Lemma 7: The energy-efficiency for a typical IoTUE ηe is

determined as

ηe =

(
1− Pp−

)2 pRnd
K2Tf

[
PtTf (1− Pp− )+ PcTfPp−

] . (14)

Proof: See Appendix G.

F. ENERGY-CAUSALITY
Energy-causality is an important constraint in EH networks,
which ensures that the average consumed energy Ec can-
not exceed that of the harvested. Mathematically, such a
constraint can be written for a typical frame, say mth

frame, as E[Ecm] ≤ E[Ehm]. From a steady-state perspective,
the energy-causality constraint is obtained in Lemma 8.
Lemma 8: The energy-causality constraint for each IoT

UE is given as(
1− π̄p

) (
(Pc − Pt )Pp− + Pt

)
Tf ≤ λeTf . (15)

Proof: See Appendix H.

IV. NUMERICAL RESULTS
In this section, the effect of the number of packet repli-
cas K, blocklength nb, and the number of RBs allo-
cated to each IoT UE on the average packet latency,
reliability, and energy-efficiency is evaluated. The simulated

network parameters are set according to Table 3 unless stated
otherwise [40].

TABLE 3. Simulation parameters.

Fig. 2 illustrates the effect of K and nb on the average
packet latency µTL . As can be seen, µTL increases with the
increase in K and nb. This is because increasing the number
of packet replicas increases the transmission cycle of each
individual packet, leading to an increase in µTL . On the
other hand, the frame duration is increased by increasing nb,
resulting in further increase in µTL .

FIGURE 2. Average packet latency vs. K and nb – p = 10.

In Fig. 3, the IoT UE’s reliability as a function ofK and nb
is demonstrated. Clearly, R improves when the number of
packet replicas increases, since higher orders of diversity
transmission result in increased successfully received pack-
ets. Furthermore, the higher the number of blocklength bits is,
the less the decoding error probability, and hence, the higher
the reliability. It is worth-mentioning that there is a tradeoff
between the reliability and average packet latency, as increas-
ing both K and nb exacerbates the average packet latency
but improves the reliability. To meet the stringent URLL
requirements in the IoT applications of the emerging Industry

µTL =
KTf

1− Pp−

+

92(K + Pp− )+ 2K9
[
p(π̄p − 1)−

∑p−1
i=0 iπi

]
+Kp (1+ p) (1− π̄p)−K

∑p−1
i=0 i (i− 1) πi + 2Kp

∑p−1
i=0 iπi

2Kλp(p−9)
(10)

P(ENC ) =
N−1∑
j=1

R∑
l=2p

((l−p
p

)
(1− π̄p)(l
p

) )j(R
l

)
5l

0(1−50)R−l +
R∑
l=p

(
R
l

)
5l

0(1−50)R−l (13)
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FIGURE 3. Reliability vs. K and nb – p = 10.

4.0 paradigm,8 K and nb must be set appropriately. To this
aim, Fig. 4 is plotted, where the green area satisfies both the
reliability and packet latency requirements for p = 10.

FIGURE 4. Feasible and infeasible regions of satisfying the average
packet latency and reliability constraints - p = 10.

Fig. 5 depicts the energy-efficiency ηe versus K and nb.
Evidently, transmitting higher number of packet replicas
yields significant reduction in ηe. This is because the higher
the number of packet replicas is, the longer the transmission
cycle. Thus, the number of effective data bits transmitted
per time unit decreases. Moreover, increasing K leads to
an increase in energy consumption. This explains the severe
decrease in ηe observed in Fig. 5. Another observation is that
for extremely low values of nb, ηe is also low, which is due
to the excessively high decoding error at the BS. Moreover,
slightly increasing nb leads to higher number of successfully
decoded data bits (or equivalently lower decoding error),
which improves ηe. However, excessively increasing nb low-
ers ηe. This is because the excessive increase in nb does not
yield further improvement in the decoding error. On the con-
trary, it increases the frame duration and transmission cycle,

8Example applications include motion control and factory automation
with latency and reliability of 1 ms and 99.999%, respectively [41], [42].

FIGURE 5. Energy-efficiency vs. K and nb – p = 10.

which increases the consumed energy, leading to a significant
decrease in the number of effective data bits transmitted per
time and energy units.

The average packet latencyµTL as a function of the number
of packet replicas K and idle RBs p is depicted in Fig. 6.
In alignment with the observation made for K in Fig. 2,
one can see that when more packet replicas are transmitted,
the transmission cycle increases, leading to an increase in
µTL . Furthermore, higher µTL is observed when the number
of idle RBs is very low. This is because the lower the number
of idle RBs to be selected by the IoT UE in a frame, the higher
the number of data packets in the IoT UEs buffer, and thus,
the longer the in-buffer waiting time and the higher the aver-
age packet latency. Additionally, µTL also increases when the
number of employed RBs in a frame p is high. This is due
to the fact that the IoT UE must wait longer to find a higher
number of idle RBs in a frame. Hence, a typical data packet
experiences further delay in waiting for a framewith adequate
number of idle RBs.

FIGURE 6. Average packet latency vs. K and p – nb = 30.

Fig. 7 depicts the IoT UE reliability versusK and p. As can
be seen, the reliability increases with the increase inK, as the
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FIGURE 7. Reliability vs. K and p – nb = 30.

higher the number of packet replicas is, the higher the number
of successfully delivered packets. However, it is observed that
the reliability decreases by increasing p. This is because the
higher the number of RBs to be selected by the IoT UEs in
a frame, the higher the probability of collision among them,
and hence, the lower the reliability.

FIGURE 8. Energy-Efficiency vs. K and p – nb = 30.

The effect of K and p on the energy-efficiency ηe is inves-
tigated in Fig. 8. Evidently, the higher the number of packet
replicas is, the longer the transmission cycle and the higher
the consumed energy. This reduces the effective transmitted
data bits per time and energy units, and therefore, reduces
the energy-efficiency. On the other hand, ηe experiences low
values when p is low. This is because the effective transmitted
data bits in a frame is low when the number of selected idle
RBs p is low. This explains why increasing p results in higher
values of ηe, as can be seen in Fig. 8. However, when the IoT
UEs are allowed to select higher numbers of idle RBs in a
frame, the collision between the IoT UEs increases. This in
turn reduces the effective transferred data bits per time unit,
ultimately lowering the energy-efficiency.

V. ENERGY-EFFICIENCY MAXIMIZATION
The analytical derivations of the different network met-
rics can be utilized to optimize the energy-efficiency of
the IoT UEs, subject to constraints on energy-causality,
average packet latency, and reliability. Specifically, the
energy-efficiency maximization (EE-MAX) problem can be
formulated as

EE-MAX:

max
nb,K,p

ηe (16a)

s.t (1−π̄p)
(
(Pc−Pt )Pp−+Pt

)
Tf≤λeTf (16b)

µTL≤ δ
L
th (16c)

R≥ δRth (16d)

nb,K, p∈ {1, 2, . . .}. (16e)

In problem EE-MAX, Constraint (16b) enforces energy-
causality, while Constraint (16c) ensures that the maxi-
mum average packet latency does not exceed δLth. Moreover,
Constraint (16d) is the reliability requirement, which is at
least δRth. The last constraint defines the range of values
the decision variables take. Notably, the optimal values nb,
K and p can achieve the stringent URLL requirements for IoT
applications, as per 3GPP and ITU specifications [43], [44].
Remark 2: Problem EE-MAX is a nonlinear inte-

ger programming problem, which is non-convex and
computationally-intensive [45]. This is evident from the
nonlinear analytical expressions of ηe, µTL , and R, and the
integer-valued decision variables. Despite the non-convexity
of problem EE-MAX, the incurred computational delay is
irrelevant, which is due to the steady-state analysis.9

FIGURE 9. Convergence to optimal solution for energy-efficiency.

Fig. 9 illustrates the number of iterations required to
achieve the EE optimal solution. The optimal objective func-
tion value is 9 × 105 bits/s/Joule, while the optimal values
of the decision variables are (nb,K, p) = (32, 3, 14) when

9Problem EE-MAX is solved via the global optimization package
MIDACO [46], [47], with tolerance set to 10−6.
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δRth = 0.99999, and δLth = 1ms. Also, the optimal EE value
is determined in less than 21 iterations, and thus, the optimal
solution can be determined efficiently.

VI. FUTURE RESEARCH DIRECTIONS
To guarantee QoS in URLLC, reliability and packet latency
requirements must be fulfilled throughout the communica-
tion network. Due to the non-stationary environment, model
mismatch, and the existence of uncertainty in practical com-
munication systems, theoretical analyses and QoS perfor-
mance indicators derived based on system models have to
be integrated into learning approaches to achieve accurate
configurations and network settings. In turn, several stud-
ies have incorporated artificial intelligence approaches to
fine-tune network settings and transmission policies [48].
Hence, the theoretical results can be used to initially train
deep neural networks (DNNs), and quantify the network’s
performance limits [49]. Furthermore, the theoretical analy-
ses and derived analytical expressions can be used as a labeled
training data set for off-line training to further fine-tune
DNNs in non-stationary scenarios, and subsequently be used
to initialize DNNs for online implementations. Additionally,
deep transfer learning (DTL) can be used to overcome the
model mismatch problem with the aid of appropriate training
samples in new environments. As another potential research
direction, one can derive theoretical results for different data
arrival rates, and then use it along with traffic predictions to
devise transmission policies [50].

VII. CONCLUSION
In this paper, an uplink EH-CR-IoT network with URLL
requirements has been analyzed. Particularly, the EH IoT
UEs—characterized with non-saturated data traffic—aim
at accessing the shared spectrum randomly. The IoT net-
work metrics, namely, average packet latency, reliability, and
energy-efficiency have been analyzed, while incorporating
short packet and diversity transmissions. To reduce the aver-
age packet latency, multiple resource blocks can selected
by the IoT UEs in a frame to send multiple data packets
simultaneously. In turn, the effect of number of packet repli-
cas, idle resource blocks, and blocklength, and their trade-
offs are investigated on the network metrics. Particularly,
to improve the reliability, both the number of replicas and
the blocklength should be increased; however, at the expense
of the average packet latency. Furthermore, higher values
of the average packet latency are observed when either the
number of idle RBs is very low or very high. It is also
observed that the reliability decreases with the increase in the
number of selected idle RBs. Additionally, energy-efficiency
is degraded when the number of packet replicas increases.
It also experiences low values when the number of selected
idle RBs is very low or very high. Such an effect is seen
when varying the blocklength. In turn, the network param-
eters must be carefully chosen to meet the URLL require-
ments. Lastly, the derived expressions have been utilized to

maximize the energy-efficiency, subject to energy-causality
and URLL constraints.

APPENDIX A
PROOF OF LEMMA 1

Proof: To derive the PDF of the packet transmission
delay, note that the transmission delay of a typical packet is
determined by the number of TTIs that the IoT UE spends on
finding the required number of idle RBs (i.e. pRBs). Notably,
if the IoT UE finds at least p idle RBs in the first TTI, then the
transmission delay equals Tf . In general, if the IoT UE finds
less than p idle RBs in j− 1 consecutive TTIs, and then finds
at least p idle RBs in the jth TTI, then the transmission delay
is equivalent to j× Tf . Hence, fTD (t) is written as

fTD (t) =
∞∑
j=1

(
Pp−

)j−1 (1− Pp−
)
δ(t − jTf ), (A.1)

in which δ(.) is the Dirac delta function. Moreover,
Pp− denotes the probability that the IoT UE finds less than
p idle RBs in a typical TTI, and thus can be found as

Pp− =
p−1∑
i=0

(
R
i

)
5i

0 (1−50)
R−i . (A.2)

APPENDIX B
PROOF OF LEMMA 2

Proof: To derive the PDF of the packet transmission
cycle, note that a transmission cycle can be expressed as the
sum of K independent packet transmission delays (i.e. TC =∑K

i=1 TDi ). To derive the distribution of TC , its characteristic
function 8TC (ω) is determined as

8TC (ω) = E
[
ejTCω

]
= E

[
ejω

∑K
i=1 TDi

]
. (B.1)

Since all TDi ’s are independent of each other, then

8TC (ω) = E

 K∏
i=1

ejωTDi

 = K∏
i=1

E
[
ejωTDi

]

=

K∏
i=1

∫
∞

0
ejωti fTD (ti)dti

=

K∏
i=1

( ∞∑
l=1

(
Pp−

)l−1(1−Pp−)∫ ∞
0
ejωtiδ(ti − lTf )dti

)

=

K∏
i=1

( ∞∑
l=1

(
Pp−

)l−1 (1− Pp−
)
ejωlTf

)
. (B.2)

By applying the geometric series formulae, 8TC (ω) is
obtained as

8TC (ω)=
K∏
i=1

(
1−Pp−

)
ejωTf

1−Pp−ejωTf
=

((
1−Pp−

)
ejωTf

1− Pp−ejωTf

)K

. (B.3)
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It can be verified that the obtained characteristic function
is that of the negative binomial random variable [51]. Hence,
considering that TC is the sum of several TTIs (i.e. TC ∈
{KTf , (K + 1)Tf , . . .}), its PDF can be presented as

fTC (t)=
∞∑
l=K

(
l−1
K−1

)(
1−Pp−

)K (Pp−)l−Kδ(t − lTf ). (B.4)

The expected value of the transmission cycle can be easily
derived by the property of characteristic function as

E [TC ] =
d
jdw

8TC (ω) |ω=0=
KTf

1− Pp−
, (B.5)

and this completes the proof.

APPENDIX C
PROOF OF LEMMA 3

Proof: To derive πi, the departure time of each data
packet and all its replicas are considered. Particularly, at the
mth departure time, all K replicas related to the mth transmis-
sion cycle are sent. Now, letQm ∈ {0, 1, 2, . . .} be the number
of data packets in a typical IoT UE’s buffer just after the
mth data packet departure.10 Let Am+1 denote the number of
packets arriving at the buffer during the (m+1)th transmission
cycle. Then

Qm+1 =

{
Qm + Am+1, if Qm < p,
Qm + Am+1 − p, if Qm ≥ p.

(C.1)

Note that the arrival process is time-homogeneous
and does not depend on transmission process. Moreover,
Qm+1 depends only on Am+1 and Qm, indicating that the
stochastic process Q is a DTMC embedded at the end of
transmission cycles. Hence, the stationary equations of πi
can be devised and solved, since the chain is irreducible and
aperiodic. Specifically, by defining ai as the probability of i
data packets arriving during a transmission cycle, then

π0 = a0π0 + a0π1 + · · · + a0πp−1 + a0πp, (C.2.1)

π1 = a1π0 + a1π1 + · · · + a1πp + a0πp+1,
... (C.2.2)

where the above equations can compactly be written as

πj = ajπ0 + ajπ1 + · · · + ajπp + aj−1πp+1 + a0πj+p

= ajπ̄p +
j+p∑
i=p

πiaj+p−i, (C.3)

in which π̄p =
∑p−1

i=0 πi. Note that the stationary probabilities
can recursively be obtained as

πj+p =
1
a0

πj − ajπ̄p − j+p−1∑
i=p

πiaj+p−i

 . (C.4)

10Note that each data departure consists of p data packets.

Also, ai can be derived according to its definition, as

ai = P (Am = i) =
∫
∞

0
P(Am = i | TC = t)fTC (t)dt

=

∫
∞

0

(tλd )i e−λpt

i!
fTC (t)dt, (C.5)

which is obtained from the fact that the packet arrival pro-
cess is Poisson with rate λd , as per Remark 1. Considering
Lemma 2, then ai (for i = 0, 1, . . .) can be determined as

ai =
∫
∞

0

[
(tλd )i e−λpt

i!

×

∞∑
l=K

(
l−1
K−1

) (
1−Pp−

)K (Pp−)l−K δ(t−lTf )]dt
=

1
i!

∞∑
l=K

(
l − 1
K − 1

) (
1− Pp−

)K (Pp−)l−K
×

∫
∞

0
(tλd )i e−λptδ(t − lTf )dt

=
1
i!

∞∑
l=K

(
l−1
K−1

)(
1−Pp−

)K(Pp−)l−K (lTf λd)ie−lTf λd
=

(
Tf λd

)i
i!

(
1−Pp−
Pp−

)K ∞∑
l=K

(
l−1
K−1

)
l i
(
Pp−e−Tf λd

)l
.

(C.6)

APPENDIX D
PROOF OF LEMMA 4

Proof: To obtain the first p steady-state probabilities πi
(i = 0, 1, · · · , p − 1), the z-operator is employed. Specifi-
cally, multiplying (C.4) by zj and then summing over j yields

∞∑
j=0

πjzj =
∞∑
j=0

p−1∑
i=0

πiajzj +
∞∑
j=0

j+p∑
i=p

πiaj+p−izj. (D.1)

Defining 3(z) ,
∑
∞

j=0 πjz
j and A(z) ,

∑
∞

j=0 ajz
j,

then (D.1) can be re-written as

3(z) =
p−1∑
i=0

πiA(z)+
∞∑
j=0

j+p∑
i=p

πiaj+p−izj

=

p−1∑
i=0

πiA(z)+
∞∑
i=p

j+p∑
j=i−p

πiaj+p−izj

=

p−1∑
i=0

πiA(z)+
∞∑
i=p

πi

z−(p−i) j+p∑
j=i−p

aj+p−izj+p−i


=

p−1∑
i=0

πiA(z)+A(z)z−p
∞∑
i=p

πizi

=

p−1∑
i=0

πiA(z)+A(z)z−p

3(z)− p−1∑
i=0

πizi

 . (D.2)
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Finally, 3(z) is obtained as

3(z) =
A(z)

(
π̄p − z−p

∑p−1
i=0 πiz

i
)

1− z−pA(z)
. (D.3)

Note that 3(z) must not have any poles if it is to be sta-
ble. Hence, under the stability assumption and using Rouché
theorem [52], and the fact that the arrival process is mem-
oryless, the denominator of (D.3) (i.e. 1 − z−pA(z)) has
p distinct zeros, and these zeros must be canceled by the
zeros of the numerator. Furthermore, z = 1 is one of the
p denominator zeros, according to the property of moment
generating function (i.e. A(1) = 1). In turn, let the zeros of
the denominator be denoted zl (for l = 1, . . . , p). Then, all
πi (for i = 0, . . . , p− 1) are determined by solving the zero-
pole-cancellation set of equations, given by

lim
z→1

3(z) = 1, (D.4a)

A(zl)

π̄p − z−pl p−1∑
i=0

πizil

 = 0 for l = 1, . . . , p.

(D.4b)

Furthermore, A(z) can be derived as

A(z) =
∞∑
i=0

aizi =
∞∑
i=0

[∫
∞

0

(tλd )i

i!
e−λpt fTC (t)dt

]
zi

=

∫
∞

0
e−λpt

(
∞∑
i=0

(
tλpz

)i
i!

)
fTC (t)dt

=

∫
∞

0
e−λpteλPzt fTC (t)dt

=

∫
∞

0
e−(λd−λd z)t fTC (t)dt

= LTC (λd (1− z)) , (D.5)

in which LTC (.) is the Laplace transform of fTC (t). Therefore,
A(z) can be obtained using (B.3) as

A(z) = LTC (λd (1− z)) = 8TC (ω) |−jω=λd (1−z)

=

((
1− Pp−

)
eλd (z−1)Tf

1− Pp−eλd (z−1)Tf

)K

. (D.6)

Since the numerator of A(z) in (D.6) is an exponential
function, it includes no zeros, and henceA(z) can be removed

from (D.4b). Finally, (D.4a) and (D.4b) can be simplified as

p(1− π̄p) = 9 −
p−1∑
i=0

iπi, (D.7a)

π̄p − z
−p
l

p−1∑
i=0

πizil = 0 for l = 1, . . . , p, (D.7b)

where 9 , d
dzA(z) |z=1 can be calculated from (D.6) as

9 =
KλdTf
1− Pp−

, (D.8)

and the proof is now complete.

APPENDIX E
PROOF OF LEMMA 5

Proof: The average number of packets in a typical IoT
UE’s buffer can be derived using 3(z) in (D.3) as E[Q] =
d
dz3(z) |z=1. Thus, the average packet waiting timeE[W] can
be obtained by using Little’s formulae, as given in (E.1) as
shown at the bottom of the page [52]. Finally, the expression
of µTL in (10) is obtained by summing the expected value of
transmission cycle in (6) and E[W].

APPENDIX F
PROOF OF LEMMA 6

Proof: To derive R, recall that for a data packet to
be delivered successfully, at least one packet among its K
replicas must be delivered without any collision or channel
distortion.11 Suppose the IoT UE of interest has at least p
packets in its buffer and there are at least p idle RBs. Then,
let Pe be the probability that a single packet experiences a
collision and/or channel distortion. In turn,R is written as

R = 1− (Pe)K . (F.1)

Let ENC be the event that no collision (NC) occurs between
the IoT UE of interest and the other IoT UEs. Also, let
ENDE be the event that the IoT UE experiences no decoding
error (NDE) in its transmission. Since the aforementioned
events are independent of each other, then Pe is expressed as

Pe = 1− P(ENDE )P(ENC ), (F.2)

where P(ENDE ) is obtained from (2) as

P(ENDE ) = 1− ϒ(γ, nb, nd ). (F.3)

11A typical data packet may encounter two types of errors; collision
among IoT UEs selecting the same RBs, and channel decoding error due
to channel distortion.

E[W] =
E[Q]
λd

=

92(K+Pp− )+2K9
[
p(π̄p − 1)−

∑p−1
i=0 iπi

]
+Kp (1+ p) (1− π̄p)−K

∑p−1
i=0 i (i− 1) πi + 2Kp

∑p−1
i=0 iπi

2Kλp(p−9)
(E.1)
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To derive P(ENC ), two factors should be considered; the
number of ready-to-transmit IoT UEs (i.e. the UEs that have
at least p packets in their buffers), and the number of idle RBs.
By denoting the former by Np and the latter by Nrb, P(ENC )
can be written as

P(ENC ) =
N−1∑
j=0

P(ENC |Np = j)P(Np = j)

=

N−1∑
j=0

P(ENC |Np = j)
(
N − 1
j

)
(1− π̄p)jπ̄N−1−jp .

(F.4)

By further conditioning on Nrb, then

P(ENC ) =
N−1∑
j=0

R∑
l=p

[
P(ENC | Np = j,Nrb = l)

× P(Nrb = l | Np = j)
(
N−1
j

)
(1−π̄p)jπ̄N−1−jp

]
,

(F.5)

where it should be noted that Np and Nrb are independent.
Moreover, all RBs are also independent of each other. Hence,

P(Nrb = l | Np = j) = P(Nrb = l)

=

(
R
l

)
5l

0(1−50)R−l . (F.6)

Also, P(ENC | Np = j,Nrb = l) in (F.5) can be written as

P(ENC | Np = j,Nrb = l) =
((l−p

p

)(l
p

) )j. (F.7)

Note that when Np 6= 0, there must be at least 2p idle
RBs to avoid any collision according to Pigeonhole principle
(i.e. Nrb ≥ 2p) [53]. For Np = 0, no collision happens in
the underlying transmission. Thus, from (F.5)-(F.7), P(ENC )
is obtained as

P(ENC ) =
N−1∑
j=1

R∑
l=2p

((l−p
p

)
(1−π̄p)(l
p

) )j(R
l

)
5l

0(1−50)R−l

+

R∑
l=p

(
R
l

)
5l

0(1−50)R−l . (F.8)

Finally, substituting (F.3) and (F.8) into (F.2) yields Pe,
which is used to obtain the expression of R in (11) via (F.1).

APPENDIX G
PROOF OF LEMMA 7

Proof: The energy-efficiency is defined as

ηe ,
E
[
Reff

]
E [Ec]

, (G.1)

where Reff is the effective rate and Ec is the consumed energy
in a transmission cycle. Thus, E

[
Reff

]
is written as

E
[
Reff

]
=

E[Beff ]
E[TC ]

, (G.2)

where E[Beff ] is the average transferred bits in a transmis-
sion cycle, and E[TC ] is the average transmission cycle.
Conditioning over all frame types, E[Beff ] is obtained as

E[Beff ] =
∞∑
i=0

E[Beff | Ti]πi =
∞∑
i=p

E[Beff | Ti]πi

=

∞∑
i=p

pndRπi = pndR(1− π̄p). (G.3)

Note that the summation over i = 0 to i = p − 1 is zero,
since at least p packets should exist in the IoT UE’s buffer
to start transmission. Moreover, Lemma 2 provides E[TC ]
in (6). To derive the average amount of consumed energy
in a typical transmission cycle, recall that each transmission
cycle consists of K attempts for sending a typical packet
group (i.e. p packets) in a TTI. Also, note that each packet
group has a transmission delay distribution fTD (t), as derived
in Lemma 1. Thus, by denoting KE

[
EcT
]
as the average

amount of consumed energy for transmission of a typical
packet group at one attempt, E [Ec] is obtained as

E
[
Ec
]

= KE
[
EcT
]

= K
∞∑
i=p

E
[
EcT | Ti

]
πi

= KE
[
EcT | Ti

]
(1− π̄p)

= K(1− π̄p)
∫
∞

0
E
[
Ec | Ti,D = t

]
fTD|Ti (t)dt

= K(1− π̄p)
∞∑
j=1

E
[
Ec | TD = jTf

] (
Pp−

)j−1 (1− Pp−
)
.

(G.4)

Note that fTD|Ti (t) = fTD (t), since the transmission delay
does not depend on the TTI type. Further, note that a if the
IoT UE has j attempts to transmit in a typical TTI, on the last
attempt, the packets in the TTI are sent and the IoT node has
not found at least p idle RBs in its first j− 1 attempts. Hence,
E
[
Ec | TD = jTf

]
= PtTf + (j− 1)PcTf . Finally,

E
[
Ec
]
= K(1− π̄p)

(
1− Pp−

)
×

∞∑
j=1

[(
PtTf + (j− 1)PcTf

) (
Pp−

)j−1]
= K(1− π̄p)

(
PtTf +

PcTfPp−
1− Pp−

)
. (G.5)

Substituting (G.3) and (6) into (G.2), and then (G.2)
and (G.5) into (G.1) yields ηe in (14).
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APPENDIX H
PROOF OF LEMMA 8

Proof: By using conditional expectation, E[Ecm] is
expressed as

E[Ecm] =
∞∑
i=0

E[Ecm | Ti]πi =
∞∑
i=p

E[Ecm | Ti]πi. (H.1)

Note that the IoT UE does not transmit data if there are
less than p packets in its buffer, and hence, it experiences no
energy consumption in that case. Furthermore, the average
energy consumption in a frame depends on whether trans-
mission occurs in that frame or the IoT UE waits for the next
frame, which means it could not find the required p idle RBs.
Recall that Nrb is a random variable resembling the number
of idle RBs found by the IoT UE at the beginning of the
underlying frame, then E[Ecm] is derived as

E[Ecm] =
∞∑
i=p

r∑
l=0

E[Ecm | Ti,Nrb = l]πiP(Nrb = l)

=

∞∑
i=p

p−1∑
l=0

E[Ecm | Ti,Nrb = l]πiP(Nrb = l)

+

∞∑
i=p

R∑
l=p

E[Ecm | Ti,Nrb = l]πiP(Nrb= l). (H.2)

If the IoT UE waits for the next frame (or TTI) to transmit
its data, its energy consumption will be PcTf . If it is able to
transmit data, it will consume PtTf amount of energy. Thus,
the expected amount of consumed energy is determined as

E[Ecm]

=

∞∑
i=p

p−1∑
l=0

PcTf πiP(Nrb= l)+
∞∑
i=p

R∑
l=p

PtTf πiP(Nrb= l)

= PcTf
∞∑
i=p

πi

p−1∑
l=0

P(Nrb= l)+ PtTf
∞∑
i=p

πi

R∑
l=p

P(Nrb= l)

= PcTf (1− π̄p)Pp− + PtTf (1− π̄p)(1− Pp− )

= (1− π̄p)
(
(Pc − Pt )Pp− + Pt

)
Tf . (H.3)

Finally, the average harvested energy in a frame is λhTf
and then the energy-causality constraint is derived as in (15).
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