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ABSTRACT Anomaly detection has been used for decades to identify and extract anomalous components
from data. Many techniques have been used to detect anomalies. One of the increasingly significant
techniques is Machine Learning (ML), which plays an important role in this area. In this research paper,
we conduct a Systematic Literature Review (SLR) which analyzes ML models that detect anomalies in their
application. Our review analyzes the models from four perspectives; the applications of anomaly detection,
ML techniques, performance metrics for ML models, and the classification of anomaly detection. In our
review, we have identified 290 research articles, written from 2000-2020, that discuss ML techniques for
anomaly detection. After analyzing the selected research articles, we present 43 different applications of
anomaly detection found in the selected research articles. Moreover, we identify 29 distinct ML models used
in the identification of anomalies. Finally, we present 22 different datasets that are applied in experiments
on anomaly detection, as well as many other general datasets. In addition, we observe that unsupervised
anomaly detection has been adopted by researchers more than other classification anomaly detection systems.
Detection of anomalies using ML models is a promising area of research, and there are a lot of ML models
that have been implemented by researchers. Therefore, we provide researchers with recommendations and

guidelines based on this review.

INDEX TERMS Anomaly detection, machine learning, security and privacy protection.

I. INTRODUCTION

Detecting anomalies is a major issue that has been studied
for centuries. Numerous distinct methods have been devel-
oped and used to detect anomalies for different applications.
Anomaly detection refers to ‘“‘the problem of finding patterns
in data that do not conform to expected behavior” [1], [2].
The detection of anomalies is widely used in a broad variety
of applications. Examples of these include fraud detection,
loan application processing, and monitoring of medical con-
ditions, An example of a medical application is heart rate
monitors [3]. Other widely used applications of detecting
anomalies include cyber security intrusion detection [4]-[6],
fault detection for aviation safety study, streaming, and hyper-
spectral imagery, etc. The importance of detecting anomalies
in various application domains concerns the risk that unpro-
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tected data may represent significant, critical, and actionable
information. For instance, detecting an anomalous computer
network traffic pattern may expose an attack from a hacked
computer [7]. Another example would be the detection of
anomalies in the transaction data of a credit card, which may
indicate theft [8]. Besides, detecting an anomaly from an
airplane sensor may result in the detection of a fault in some
of the components of the aircraft.

Anomaly is defined at an abstract level as a pattern, not
in line with the ordinary anticipated behavior. Anomalies are
classified into three main categories [1], [9], [10]:

1. Point Anomalies: If a single data instance can be con-
sidered anomalous for the remainder of the data, the instance
is called a point anomaly and is regarded as the simplest
anomaly form.

2. Contextual Anomalies: If in a particular context a data
instance is anomalous, but not in another context, it is called
a contextual anomaly. There are two attributes of contextual
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anomalies: contextual attributes and behavioral attributes.
The first attribute is applied to determine an instance’s context
(or neighborhood). For example, the longitude and latitude
of a location are contextual attributes in spatial datasets.
Moreover, time is a contextual attribute in time series data
that determines an instance’s position on the entire sequence.
The second attribute is considered as attributes of behavior
where it defines an instance’s noncontextual features. For
example, the amount of rainfall that occurs at any location
in a spatial dataset describing the world’s average rainfall is
a behavioral attribute.

The preference for using the technique of contextual
anomaly detection is determined by the significance of the
contextual abnormalities in the target area. The availability
of qualitative attributes is another significant aspect. In some
instances, it is easy to identify a context, and thus it makes
sense to apply a contextual detection technique. In other
instances, it is not possible to establish a sense such that
certain methods are difficult to use.

3. Collective anomalies: If a set of associated data
instances is anomalous for the entire dataset, it is called a
collective anomaly.

Statistical anomaly detection techniques are some of the
oldest algorithms used to detect anomalies [10]. Statistical
methods build a statistical model for the ordinary behavior
of the data provided. A statistical inference test may then be
carried out to detect whether or not an instance belongs to
this model. Several methods are used to conduct statistical
anomaly detection [11]. This includes proximity based, para-
metric, non-parametric, and semi-parametric methods.

Machine learning (ML) techniques are increasingly being
used as one of the approaches to detect anomalies. ML is
the effort to “automate the process of knowledge acquisition
from examples” [12]. The technique is used to build a model
that distinguishes between ordinary and abnormal classes.
Anomaly detection can therefore be split into three broad
categories based on the training data function used to build
the model. The three broad classes are [1], [13]:

e Supervised anomaly detection: In this class, both the
normal and anomalous training datasets contain labeled
instances. In this model, the approach is to build a predictive
model for both anomaly and normal classes and then com-
pare these two models. However, in this mode, two issues
occur. First, the number of anomalies in the training set is
much lower when compared with normal instances. Second,
precise and representative labels are challenging to identify,
particularly for the anomaly class.

o Semi-supervised anomaly detection: Training here
includes only ordinary class cases. Therefore, anything that
cannot be classified as ordinary is marked as anomalous.
Semi-supervised techniques presume that training data have
labeled instances for the normal class alone. Since they do
not need anomaly class labels, they are more common than
supervised methods.

e Unsupervised anomaly detection: In this case, training
datasets are not required for the methods. Therefore, those
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methods imply that normal instances are much more common
than anomalies in test datasets. However, if the assumption
fails, it leads to a high false alarm rate for this technique.

Many semi-supervised techniques can be adapted to oper-
ate in an unsupervised mode by using unlabeled dataset sam-
ples as training data. Such adaptation assumes that there are
very few anomalies in the test data and these few anomalies
are robust to the model learning during training.

This study’s primary objective is to conduct a systematic
review that represents a comprehensive study of ML tech-
niques for anomaly detection and their applications. More-
over, this review studies the accuracy of the ML models and
the percentage of research papers that apply supervised, semi-
supervised, or unsupervised anomaly detection classification.
We believe that this review will enable researchers to have
a better understanding of the different anomaly detection
methods and guide them in reviewing the recent research
done on this subject.

To the best of our knowledge, there are very few Systematic
Literature Reviews (SLR) on detecting anomalies through
machine learning techniques, which has motivated this work.
Research articles were read thoughtfully and were selected,
based on Kitchenham and Charter’s methodology [14]., with
regards to (i) the main prediction research work done in
anomaly detection, (ii) the ML algorithms used in anomaly
detection, (iii) the estimation and accuracy of ML models
proposed, and (iv) the strength and weaknesses of the ML
technique used.

The remainder of this paper is divided into six
sections: Section 2 provides information on related
work. Section 3 describes the methodology used in this
research. Section 4 lists the results and discussions.
Section 5 addresses the limitations of this review. Finally,
Section 6 contains a discussion and suggestions for future
work.

A. LITERATURE REVIEW

Detection of anomalies is an important issue that has been
investigated in various fields of study and implementation.
Many detection methods for anomalies have been created
specifically for certain applications, while others are more
generic. For example, Chandola et al. [1] provided an exten-
sive survey of anomaly detection techniques and applications.
A board review of different techniques of Machine learn-
ing as well as non-machine learning, such as statistical and
spectral detection methods, was discussed in detail. More-
over, the survey presents several applications of anomaly
detection. Examples include cyber intrusion detection, fraud
detection, medical anomaly detection, industrial damage
detection, image processing detection, textual anomaly detec-
tion, and sensor networks. The same authors introduced
another survey [10] on the topic of anomaly detection for
discrete sequence. The authors provided a comprehensive
and structured overview of the existing research on the prob-
lem of detecting anomalies in discrete/symbolic sequences.
In addition, Hodge and Austin [15] presented an overall
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FIGURE 1. Research methodology.

TABLE 1. Inclusion & exclusion criteria.

Inclusion criteria Exclusion criteria
Include only journals and

conference papers.

Exclude papers with no clear publication
information.

Exclude articles that include machine
learning not related to anomaly detection.

Include anomaly detection
applications.

Use machine learning
techniques to identify
anomalies.

Exclude all digital resources, which do not
discuss anomaly detection techniques.

Include studies that compare
machine learning techniques.

Exclude papers with predator journals

Consider articles published
between 2000 and 2019.

study of machine learning and statistical anomaly detection
methodologies. Also, the authors discussed comparatively
the advantages and disadvantages of each method. On the
other hand, Agrawal and Agrawal [8] proposed a survey on
anomaly detection using data mining techniques.

Several surveys were mainly focused on detecting anoma-
lies in specific domains and applications, such as [16] where
the authors presented an overall survey of wide clustering
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based fraud detection and also compared those techniques
from several perspectives. In addition, Sodemann et al. [17]
presented anomaly detection in automated surveillance,
where they provided different models and classification algo-
rithms. The authors examined research studies according
to the problem domain, approach, and method. Moreover,
Zuo [18], provided a survey of the three most widely used
techniques of anomaly detection in the field of geochemical
data processing; Fractal/multi-fractal models, compositional
data analysis, and machine learning (ML), but the author
focuses mainly on machine learning techniques. On the other
hand, He et al. [19] surveyed the framework of log based
anomaly detection. The authors reviewed six representative
anomaly detection methods and evaluated each one. The
authors also compared and contrasted the precision and effec-
tiveness of two representative datasets of the production log.
Furthermore, Ibidunmoye et al. [20] provided an overview
of anomaly detection and bottleneck identification as they
related to the performance of computing systems. The authors
identified the fundamental elements of the problem and then
classified the existing solutions.

Anomaly intrusion detection was the focus of many
researchers. For instance, Yu [21] presented a comprehensive
study on anomaly intrusion detection techniques such as sta-
tistical, machine learning, neural networks, and data mining
detection techniques. Also, Tsai et al. [22] reviewed intrusion
detection, but the authors focused on machine learning tech-
niques. They provided an overview of machine learning tech-
niques designed to solve intrusion detection problems written
between 2000 and 2007. Moreover, the authors compared
related work based on the types of classifier design, dataset,
and other metrics. Similarly, Patcha and Park [23] pre-
sented an extensive study of anomaly detection and intrusion
detection techniques, and Buczak and Guven [24] surveyed
machine learning and data mining methods for cyber intru-
sion detection. They provided a description of each method
and addressed the challenges of using machine learning and
data mining in cyber security. Finally, Satpute ef al. [25] pre-
sented a combination of various machine learning techniques
with particle swarm optimization to improve the efficiency of
detecting anomalies in network intrusion systems.

The detection of network anomalies has been an important
area of research [26], [27] Therefore, many surveys focused
on that topic. For example, Bhuyan et al. [11] presented a
comprehensive study of network anomaly detection. They
identified the kinds of attacks that are usually encountered by
intrusion detection systems and then described and compared
the effectiveness of different anomaly detection methods.
In addition, the authors discussed network defenders’ tools.
Similarly, Gogoi et al. [7] surveyed an extensive study of
well-known distance based, density based techniques as well
as supervised and unsupervised learning in network anomaly
detection. On the other hand, Kwon et al. [28] mainly focused
on deep learning techniques, such as restricted Boltzmann
machine based deep belief networks, deep recurrent neural
networks, as well as machine learning methods appropriate to
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network anomaly detection. In addition, the authors presented
experiments that demonstrated the practicality of using deep
learning techniques in network traffic analysis.

Our systematic review is different from those described
above, as we are presenting an extensive research study on
detecting anomalies through machine learning techniques.
Table 6 in Appendix A summarizes the related work and
displays the differences between it and our work.

Our study differs from the related work in various aspects,
such as:

1. Machine learning techniques are included, and the
model types of techniques include supervised, semi-
supervised, or unsupervised anomaly detection.

2. Precision comparison of each technique

3. A comprehensive approach is presented which includes
the advantages and disadvantages of each technique.

4. Covers the period from 2000 to 2020, which is quite
recent.

Il. METHODOLOGY
In this study, we conducted a Systematic Literature
Review (SLR) based on Kitchenham and Charters method-
ology [14]. The method includes the stages of planning and
conducting research, and reporting. There are several phases
in each stage. The planning phase is divided into six dif-
ferent stages. The first stage is to identify study questions
that are based on the review’s objectives. The second stage,
inrelation to specifying the proper search terms, is developing
the search strategy, for collecting research papers related to
the topic that fulfill the research questions. The third stage
is to identify the study selection procedures, which include
the exclusion and inclusion rules. In the fourth stage, rules
are identified for quality assessment to be used to filter the
collected study papers. The fifth stage involves detailing an
extraction strategy to answer the research questions that were
specified before. Finally, the sixth stage involves synthesizing
the data obtained. We followed the review protocol, and this
is demonstrated in the following subsections.

Error! Reference source not found. below illustrates this
research methodology.

A. RESEARCH QUESTIONS
This SLR intends to summarize, clarify and examine the ML
techniques and implementations that were applied in anomaly
detection from 2000 through 2020

inclusive. The following four research questions (RQs) are
raised for this purpose:

1.RQ1: What is the main prediction about research
work done in anomaly detection?

RQ1 aims to identify the prediction research work that is
done in anomaly detection, whether the prediction is an ML.

2.RQ2: What kinds of ML algorithms are being applied
in anomaly detection?

RQ2 aims at specifying the ML methods that have been
applied in the detection of anomalies.
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3.RQ3: What is the overall estimation and accuracy of
machine learning models?

RQ3 is concerned with ML model estimation. Estimation
accuracy is the main performance metric for models of ML.
This question focuses on the following three elements of
estimation accuracy: dataset building, performance metric,
and accuracy value.

4.RQ4: What is the percentage of papers that address
unsupervised, semi-supervised, or supervised anomaly
detection?

RQ4 aims to present the percentage of collected research
papers that use unsupervised, semi- supervised, or supervised
anomaly detection techniques.

B. SEARCH STRATEGY
We followed the following procedure to construct the search
term:

1) Main search terms are identified from the research
questions.

2) New terms were defined to replace main terms such as
intrusion, outliers, and synonyms.

3) Boolean operators (ANDs and ORs) are used to limit the
search results.

4) The search terms that are used in this review are related
to anomaly detection and machine learning.

Below are the digital libraries that we used in this search
(journals and conference papers):

e Google Scholar

e ACM Digital Library

e Springer

e Elsevier

¢ IEEE Explorer

According to our inclusion/exclusion criteria, 290 papers
were used in this review. They include 95 journal papers and
195 conference papers.

C. STUDY SELECTION
In the beginning, we collected 350 papers based on the search
terms mentioned earlier. Later, we filtered those papers to
verify that only papers related to the topic were included in
our review. The filtration process was discussed among the
co-authors at planned periodic meetings. The filtration and
selection processes are explained below:

Step 1: Remove all the duplicated articles that were col-
lected from the different digital libraries.

Step 2: Apply inclusion and exclusion criteria to avoid any
irrelevant papers.

Step 3: Remove review papers from the collected papers.

Step 4: Apply quality assessment rules to include only the
qualified papers that ensure the best answer for our research
questions.

Step S: Search for additional related papers from refer-
ences in the collected papers from step 4 and repeat step 4 on
the new added articles.
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TABLE 2. Selected papers’ quality assessment results.

Result
3.5
4.75
5
5.25
5.5
5.75
6
6.25
6.5
6.75
7
7.25
7.5
7.75
8
8.25

85

8.75
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9.25

9.5

9.75
10

No. of papers
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383
w

w

32

23

23

20
10

Paper ID

A217 (Discarded)

A24 (Discarded)

Al12, A43, A127, A163, A192 ,A208

A205

Al41, A166, A201

A68, A147, A178, A195

Al118, A173, A175, A183, A259, A278

A32, A134, A168, A187, A197, A28, A248, A282

Al13, A25, A31, A33, A122, A174, A211

All, A21, A22, A35, A36, A56, A57, A144, A186, A238

A3, A4, A30, A44, A62, A74, A77, A130, A140, A176, A200, A242

A26, A29, A58, A66, A6T, A75, A101, A157, A224, A226, A227, A231, A266, A269

A20, A61, A72, A138, A142, A148, A153, A213, A244, A272, A280, A283

Al, A7, A19, A23, A41, A48, AS53, A73, A135, A177, A181, A240, A261, A275, A281, A285
A27,A70, A92, A94, A105, A112, A164, A176, A185, A188, A268

A8, A16, A49, A76, A96, A149, A156, A169, A171, A182, A193, A207, A233, A267, A271, A286
A2, A9, A10, A18, A40, Ad2, A51, A52, A59, AGD, A63, A64, A83, A124, A139, A143, A150,
Al61, A170, A184, A203, A243, A255

A103, A109, A123, A126, A136, A14, A146, A17, A189, A209, A212, A215, A225, A229, A234,
A250, A260, A263, A279, A38, A39,A45, A46, A47, A5, AS4, AT1, A79, A82, A95, A99

A100, A106, A117, A120, A133, A137, A145, A15, 155, A159, A165, A180, A214, A219, A228,
A230, A246, A251, A252, A265, A276, A284, A34 A37, A50, A55, A65, AB6, A89, A91, A93, A98
A104, A107, A108, A113, A114, A115, A125, A128, A129, A160, A191, A198, A223, A239, A247,
A249, A258, A6, A78, A80, A81, A84, A85

A110, Al16, A131, A154, A158, A162, A190, A194, A204, A206, A216, A218, A220, A221, A222,
A254, A262, A273, A69, A87, A90, A97, A287

A102, A111, A119, A121, A132, A167, A172, A196, A199, A202, A232, A235, A237, A241, A257, A264,
A270, A274, A88, A289

Al151, A152, A210, A236, A245, A253, A256, A277, A288, A290

TABLE 3. Anomaly detection applications among articles.

Application

Intrusion Detection
network anomaly detection
anomaly detection

data

video anomaly detection
Mobile ad-hoc networks
Cloud computing
Hyperspectral Imagery
medical application
sensor network

Time Series

smart environment

System Log
Space Craft

Artificial immune system
SCADA System

wireless network security
Cyber Physical System

Advanced Monitoring Systems

Aviation

energy consumption
Fault Diagnosis

Freq. Application

Finance Domain

Road Anomaly

temperature anomaly

water treatment system
Automotive CAN bus
Power Quality Measurements
anti forensic

Botnets

corpus anomaly detection
digits

Electrical Substation Circuits
electroencephalography
evolving connectionist systems
Gas Turbine Combustor
Web Service

Internet of Things (IoT)
manufacturing process
Maritime domain

netflow records

Online Anomaly Prediction
vessel tracks
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The applied inclusion and exclusion criteria in this review D. QUALITY ASSESSMENT RULES (QARs)
are discussed in Table 1. In the end, after conducting  The QARs were the final step in the identification of the
the filtration steps, 290 papers were observed for this final list of papers to be included in this review. The QARs

review.
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FIGURE 3. Machine learning techniques observed.

[

Feature Selection/Extraction Techniques

)

Selection Filters

’—{ Selection Wrappers
I

Sequential Selectio f?] [ Time ]

Correlation-

Extraction

Principle Component
Analysis (PCA)

Classifier

I
1
Heuristic Search '_‘

Based (CFS)

Sequential Minimal
QOptimization (SMQ)

Dynamic Time
Wrap (DTW)

Genetic Algorithm ‘

Concretions Data
Quality

Independent

-4 Component Analysis
(ICA

Cluster

Sequential Backward
Selection (SBS)

Edit Distance unreal
Sequence (EDR)

Consistency
based filter

Symbolic Aggregate
(SA)

Linear Kernel

(CONS)

Self-Organizing

Euclidean Distance

Radial Basis Function
{REF}

Feature Map

(SOFM)

Bad-of-Words (BoW)

| |Practical Least Square
(PLS)

Singular Value
Decomposition (SVD)

Non-Gaussianity
Score (NGS)

FIGURE 4. Feature selection/extraction techniques observed in the literature.

research papers. Therefore 10 QARs are identified and each
is given a value of 1 mark out of 10. The score of each QAR is
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selected as follows: “fully answered” = 1, “above average”
= 0.75, “average” = 0.5, “below average” = 0.25, “not
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FIGURE 5. Utilized datasets in collected research articles.

Training Time

Processing Time (PT)
Equal Error Rate (EER)
Mean Squared Error(MSE)
Mean Absolute Error(MAE)
Precision-Recall

CPU Execution Time
Error Rate (ER)

True Negative Rate (TNR)
ROC Area

Testing Time

False Negative Rate (FNR)
AUC

F-5core

Precision

- e .-
PR - -

IEEE=
SRS
g2
co
®

others

Accuracy (ACC)

False Positive Rate (FPR)
True Positive Rate (TPR)

-

2 e

mN
-
o
g

=

100

o]
o
=

FIGURE 6. Percentage of anomaly detection type.

answered” = 0. The summation of the marks obtained for
the 10 QARs is the score of the article. Moreover, if the result
is 5 or higher, we consider the article; otherwise, we exclude
it. Moreover, we choose the score 5 as it represents the middle
point of the good quality articles and it answers our intended
research questions.

QARI: Are the study objectives clearly recognized?

78664
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FIGURE 7. Frequency of performance metrics among.

QAR2: Are the anomaly detection techniques well defined
and deliberated?

QAR3: Is the specific application of anomaly detection
clearly defined?

QAR4: Does the paper cover practical experiments using
the proposed technique?

QARS: Are the experiments well designed and justifiable?

QARG6: Are the experiments applied on sufficient datasets?

QAR?7: Are estimation accuracy criteria reported?
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TABLE 4. Machine learning techniques among research articles.

Technique

SVM

Cluster

NN

0OCSVM

AE

Naive Bayes

DT

Ensemble

ELM

KNN

PCA

RT

DBN

GAN

HMM

LSTM

n-gram

RF

RNN

SVM + RBF

BN

ENN

FRaC

fuzzy

GA

Gaussian model
HTM

IF

kernel

KNN + OCSVM
Naive Bayes + KNN
RLS

SOM

SOM +J48/C4.5
SVM + Entropy
SVM + SOM

TR

wrappers

AE + ANN

AE + ensemble + SVM + RF
AE + K-Means
ANN

Bayesian network
boosting

CESVM

CFs

CNN

RF + KNN + DT
OCSVM + LOF

Freq.
23

[any
[N

PR R R R RPRNMNNNNNNMNNMRNNNNNNNNNMNNRNNNNNWWWWWWWWSDSEPSEPPOOU o oo oo oo

N I

Technique2

CNN + DBN + SAE + LSTM
CNN + LSTM + DNN
CPM

CSI + KNN

CVM

DBN + RBM

DBN + SVM

DBSCAN + Clustering
DCM

DCNN + LSTM
D-Markov + KNN

DNN

DNN + RF + VAE

DRBM

DRBM + SVM

DT + K-Means Clustering
DT + NN

DT + RF + ANN
ensemble + clustering
Ensemble + SVM

FENN + LSTM

Fuzzy + C-means

fuzzy + GA

fuzzy + SVM

fuzzy K-Means Clustering + ANN
GA + SOM + SVM

GA + SVM

GAN + LSTM + RNN
Gaussian mixture + PCA
HMM + Naive Bayes
HMM + SVM

148 / ca.5

)48 + Naive bayes

J48 + Naive Bayes + SMO
k-means and Skip-gram
Kernel + PCA

kernel + regression
K-mean + SMO network
k-Means + C4.6
K-means + cluster
K-means + DT

K-means + SVM
K-means cluster
k-means

+ clustering

KNN + SVM

LE

LOF

FCM + KNN

DT + RF + KNN + Boosting DT

QARS: Is the proposed estimation method compared with

other methods?

QARO: Are the techniques of analyzing the outcomes suit-

able?

QARI10: Overall, does the study enrich the academic com-

munity or industry?
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Freq.2 = Technique3

LR + DT + SVM + PCA

LR + RF

LSTM + NN

LSTM + RNN

LSTM + RT

multiple kernel

naive Bayes + adaboost
Naive Bayes + DT

naive Bayes + DT + )48
Naive Bayes + K-Means Clustering
negative selection
negative selection + C4.5 + naive Bayes
negative selection + MP
negative selection + NN
negative selection + SVM
NN + SOM

NN + SVM

NOF

OCSVM + LSTM

PCA + NN

RBM + AE

Regression

RF + DT + SVM + Naive bayes + NN
RF + Entropy

RF + LR

RF + RT

RLS + ELM + NN

RNN + LSTM

RVM + Bayesian Network
SAE

sequence algorithm
single window

SOM + K-Means

SVM + C4.5

SVM + Cluster

SVM + DNN

SVM + DT

SVM + ensemble

SVM + entropy + Adaboost
SVM + GA

SVM + GA + KNN

SVM + Kernel

SVM + K-Medoids clusting
SVM + Random Forest

Freq.3

PR RPRRPRRPRRRRRRRNRPRRRRRRPRRRPRRRPRPRRERRPRRERRPRRRRRPRRRERRRERRRRRRERRERR
PR RPRRPRRRPRRRPRRPRRPRRRPRREPRREPRRPRPRRLPRREPNRPRRREPRRRRRERRREPRRERRRRRRERRERR

SVM + RF 1
SVM + SVR network 1
TCM-KNN 1
TD 1
Sub-Space Clustering (SSC) and One Class = 1
Support Vector Machine (OCSVM)

R R R R e

E. DATA EXTRACTION STRATEGY

In this step, our aim was to analyze the final list of papers
to extract the required information for answering the four
research questions. Consequently, we extracted the following
information from each paper: paper number, title of the paper,
publication year of the paper, publication type, anomaly
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FIGURE 8. Anomaly detection classification type per year.

application type, RQ1, RQ2, RQ3, and RQ4. Due to the
unstructured nature of information, extraction was challeng-
ing. For instance, for associated methods such as “J48” or
“C4.5,” researchers would use distinct terminologies. It is
essential to note that the four research questions were not
answered by all papers.

F. SYNTHESIS OF EXTRACTED DATA

In order to synthesize the information obtained from the cho-
sen papers, we used various processes to aggregate evidence
to answer the RQs. The following describes in detail the
method of synthesis we followed: We used the technique of
narrative synthesis to tabulate the information obtained in
accordance with RQ1 and RQ2. We use binary outcomes to
analyses the results for the information obtained (quantita-
tive) in RQ3 and RQ4, which came from different papers with
distinct accuracy calculation methods that are presented in a
comparable way.

Ill. RESULTS AND DISCUSSIONS

In this section, we address the outcomes of this review. This
subsection gives an overview of the selected papers of this
review. The results of each research question are addressed
in detail in the following five sections. A total of 290 stud-
ies were chosen which implemented machine learning for
anomaly detection. These research articles were published
between 2000 and 2020. The list of these papers is included
in Table 7 in Appendix A. As explained earlier, a quality
assessment criterion is used to stream the articles on the basis
of the marks obtained. Research articles of grade 5 or higher
(out of 10) have been taken into consideration. Moreover,
the frequency of the QAR score of the selected paper is listed
in Table 2.
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M supervised + unsupervised

M semi-supervised + supervised

supervised

M semi-supervised

A. ANOMALY DETECTION APPLICATIONS

In this section, we address RQ1 which aims to identify the
prediction research work that has been done in anomaly
detection.

Anomaly detection techniques are mainly divided into two
classifications: machine learning based, and non-machine
learning based. The non-machine learning based techniques
can be classified into statistical and knowledge based.
Regarding this review, there are 274 articles that discuss
the detection of anomalies through machine learning tech-
niques. On the other hand, there are 16 articles that focus on
non-machine learning based techniques.

Detection of anomalies can be used in a wide variety of
applications. In this review, we identified 43 different appli-
cations in the selected papers. The list of these applications
appears in Table 3.

As shown in Table 3, the review indicates that intru-
sion detection, network anomaly detection, general anomaly
detection, and data applications are the studies applied most
often in the anomaly detection area. In addition, the table
contains comprehensive information on the frequency with
which anomaly detection application is used by the selected
articles.

Moreover, the review shows that researchers began to adopt
more applications of anomaly detection between 2011 and
2020. For further information on results, Figure 2 illustrates
the distribution of anomaly detection application per year
during the period considered.

B. TYPES OF MACHINE LEARNING TECHNIQUES
In this section, we address RQ2, which aims at specifying

the machine learning techniques that have been used to detect
anomalies between 2000 and 2020.
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TABLE 5. Machine learning techniques strength and weakness.

Strength and Weakness

1 Weakness:
M can't be used for
cause it needs pre-
earning info
is difficult to use in
ause of high false
ve rate
8 “lustering + kness:
“ision tree -Means clustering
4.5 decision tree
s two problems in k-
ng: 1) the Forced
lem and 2) the Class
e problem.
9 cision trees ngth:
imulated ind the best selected
ing (SA) ate the accuracy of
n detection, and by
rmatioon from using
T, and SA can obtain
acks and can really
acy of classification
87 Strength:
1andle noise
38 ayes with ngth:
hoost utation time
90 ce Vector ngth:
(RVM) and od for limit checking
- Bayesian
work
93 155 SVM ngth:
SVM) nple data with free
nalies
94 Weakness:
“ting gradual changes
ods and detecting
tuator behavior
ngth:
ximatly 30 mins only
rain
97 ve Least Kness:
es (RLS) ositive Rate
98 5VM + Local kness:
actor LOF + res large aamount of
1 forest + ood coverage
Envelope ngth:
ce and very effective
ly detecion
05 Strength:
mputing complexity
07 Weakness:
the training data are
attacks
aim to generate a
and doesnt explain
s well
08 R kness:
F tion accuracy
ngth:
izing accuracy

As a fundamental point of this review, the most frequently
used ML methods in anomaly detection are identified along
with an evaluation of these methods. The evaluation of the
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TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

Al11

Al116

Al117

A119

Al121

A122

A123

A125

A128

A130

A131

Al41

A148

centered
hyperellipsoidal
support vector
machine CESVM
one class SVM
(ocsvm)

PCA

Fuzzy Rough C-means

Extreme learning
machine (ELM)

random forest (RF)

convolutional neural
network (CNN) + long
short-term memory
(LSTM) + deep neural
network (DNN)
LibSVM

Extreme Learning
Machine (ELM)

SVM and SVR

Decision Tree (DT)

rule based decision
tree (RBDT)

SVM and SOM

Strength:
CESVM is flexible in terms of
parameter selection

Strength:

One-Class SVM achieves better
accuracy rates than the conventional
anomaly detectors.

Strength:

PCA substantially reduces the
effectiveness of poisoning for a variety
of scenarios and maintains a
significantly better balance between
false positives and false negatives than
the original method when under attack
Strength:

FRCM integrates the advantage of
Fuzzy set theory and rough set theory
that the improved algorithm to
network intrusion detection

Strength:

ELM hidden layer parameters are
assigned randomly

Strength:

In random forests algorithm, there is
no need for crossvalidation or a test
set to get an unbiased estimate of the
test error. Since each tree is
constructed using the bootstrap
sample

Strength:

The combination of CNN and+C14
LSTM can effectively extract features

Strength:

LibSVM is simple to use and high
precision

Strength:

ELM for the single hidden layer feed
forward neural networks.

Strength:

Their model can be used to avoid
difficulties of using linear functions in
the high dimensional feature space
and optimization problem is
transformed into dual convex
quadratic programming

Strength:

By tracking the nodes from the root of
the tree based on the feature values of
an example, we can get the predicted
class of it.

Weakness:

Low complexity classification learning
technique on present hardware speed
and easy analysis is required to
estimate the decision on classified
patterns.

Strength:

- SOM discover the hidden structure or
pattern in the training data

- One-class SVM identifies outliers
among positive examples and uses
them as negative examples

methods considers all the phases of the method’s experiment,
such as the feature selection phase, extraction phase, etc.
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TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

A155

A160

A168

A170

Al171

Al74

A176

A180

A185

A187

A188

A189

A190

A192

78668

naive Bayesian
classifier

one class extreme
learning machine
Kernel (ELMk)
D-Markov machine
with symbolic false
nearest neighbors

correlational
paraconsistent
machine (CPM)

Negative selection +
multilayer neural
network
(backprogagation) +
evolutionary
algorithm

LERAD

Adaboost + SVM +
Entropy

SVM + GA with Neural
Kernel

Stacked Autoencoder
(SAE)

k-means clustering

SOM + .48 decision
tree

LSTM, NN

two-class SVM with a
Radial Basis Function
(RBF) kernel
Bayesian estimation

Weakness:

- false positive rate needs to be
improved

Strength:

- One of the simplest and effective
classifiers

Strength:

Fast learning and better generalization

Strength:

The efficiency of numerical
computation is significantly enhanced
relative to what can be achieved by
direct analysis of the original time
series data

Weakness:

Applications often face uncertainties
and inconsistencies when required to
characterize and analyze network
traffic. Most of the time, the processed
data may be incomplete or permeated
with noise

Strength:

Their model does not depend on any
specific type of classification algorithm

Weakness:

LERAD issues false alarms, because
unusual events are not always hostile
Strength:

Can sometimes detect previously
unknown attacks

Adaboost Weakness:

Poor behavior on noisy data, the low
level of noise in our data makes the
learning conditions ideal

Entropy strength:

Much more robust to noise

Overall Strength:

Scalable algorithms that are
guaranteed to converge with
predictable performance

Strength:

Efficient optimization of both features
and parameters for detection models
Strength:

Their model self learns the features
necessary to detect network anomalies
and is able to perform attack
classification accurately

Strength:

K-means only requires pairwise
distance of data, and the algorithm
does not require the distance to be
metric

Strength:

Model is very robust, fast and simple.
Strength:

Their model adapts to new log paterns
over time

perform in a continuous monitoring
situation

Weakness:
Model has high false alarm rate

TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

A193

A194

A198

A199

A202

A204

A209

A213

A218

A219

A225

A229

A231

A232

evolutionary neural
networks

3D convolutiona
AutoEncoder

Auto encoder based
on Artificial Neural
networks

Random Forest
algorithm and
regression tree

swarm intelligence-
based clustering

Ensemble learning +
AE+ SVR + RF

Stochastic gradient
boosting

Recurrent Neural
Networks (RNN)

K-mean + SMO

most relevant
principal components
+ neural networks

Fuzzy Adaptive
Resonance Theory +
Evolving Fuzzy Neural
Networks + SVM
Conditional anomaly
detection

Bayesian Networks

Naive Bayes with
adaboost

Strength:

-Evolutionary approach can reduce the
learning time as well as it has
advantage that the near optimal
network structure can be obtained.

- ENN does not require trial and error
cycles for designing the network
structure and the near optimal
structure can be obtained
automatically

Strength:

Highly effective in various computer
vision tasks, as well as anomaly
detection

Strength:

Efficiently reconstruct inputs that
closely resemble normal network
traffic but poorly reconstructs
anomalous or attack inputs

Strength:

Enhance the generalisation of the
learning algorithm and can thereby
produce better results than when
using single classifiers

Strength:

Model has increased detection
accuracy and efficiency. As well as
intersting properties such as flexibility,
robustness, decentralization and self-
organization

Strength:

Reduced false alarm rate, and
improved sensitivity

Strength:

Stochastic gradient boosting highly
improve the quality of the top ranked
items

Strength:

RNN is capable of learning complex
temporal sequence

Weakness:

Takes more time than simple
classification or clustering

Strength:

adapt to the dynamics in a time
window and at the same time consider
the values of cloud performance
metrics in previous windows
Strength:

can significantly reduce the false alarm
rate while the attack detection rate
remains high

Strength:

takes into account the difference
between the userspecified
environmental and indicator attributes
during the anomaly detection process
“anomaly.”

Strength:

can learn cyclical baselines for gas
concentrations, thus reducing false
alarms usually caused by flatline
thresholds

Strength:

AdaBoost's computational complexity
is generally lower than SOM, ANN and
SVM.
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TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

A233  Negative and positive
selection + C4.5 and

Naive Bayes

Strength:

the increased ability of classifiers in
identifying both previously known and
innovative anomalies, and the maximal
degradation of overfitting
phenomenon

Weakness:

have an inherent problem linked to
model visibility and interpretation
Weakness:

-Too slow for patch-based methods;
thus, CNN is considered as being a
time-consuming procedure.

-Training a CNN is totally supervised
learning; thus, the detection of
anomalies in real-world videos suffers
from a basic impossibility of training
large sets of samples from non-existing
classes of anomalies

Strength:

Neural networks are based on the
concepts of statistical pattern
recognition and have

emerged as a practical technology
Strength:

conceptually simple and, therefore,
easy to understand and configure by a
network operator

Strength:

ability to learn the behavior of a
training set, and in this stage it acts like
a time series anomaly detection model
Strength:

known to produce more robust
results. For example, bootstrap
aggregating (or bagging) tends to
reduce problems related to overfitting
to the training data

A240 Deep Neural Network

A253 fully convolutional

neural network

A255  Neural networks

A259 Frequent itemset

mining (FIM) + C5.0 +
decision tree

A275 LSTM-RNN

A277 Ensemble learning

As shown in Figure 3, we identified 28 ML techniques that
had been applied by researchers in the development of models
to detect anomalies on their application. These techniques
can be divided into six categories: classification, ensemble,
optimization, rule system, clustering, and regression. Those
ML techniques are used in two forms: standalone or hybrid
models. Hybrid models are obtained by combining two or
more ML techniques. Table 4 represents the frequency of ML
techniques among the collected research articles. Accord-
ing to Table 4 in Appendix A, it can be seen that a lot of
researchers used to combine more than one ML technique.
This includes A2 (DBN with one class SVM), A23 (SVM
with GA), and A14 (SVM with K-Medoids clustering). More-
over, SVM is the most used technique as either standalone or
in hybrid models.

Feature selection/extraction has been discovered exten-
sively in the literature and it is a significant move towards dis-
carding irrelevant data, which helps to enhance and improve
the precision and computational efficiency of the suggested
models. Figure 4 demonstrates 21 different feature selec-
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TABLE 6. Related work summary.

Differences between their

Ref. Year Summary R
review and ours
This survey provides an It covers outlier detection
overview of the techniques techniques, but it was
of outlier detection:  published in 2004.
[15] 2004 classification-based, Moreover, our work shows
clustering based, nearest the estimation accuracy of
neighbour based, and ML models as well the
statistical. type of anomaly detection.
In this survey, the authors
provide a comprehensive
review of techniques and
solutions in  anomaly It covers anomal
detection. They indicate detection techni ue}s,
[23] 2007 methods for statistical 4
. . . . before 2007. Ours covers
identification of anomalies, K up 0 2019
anomaly detection based on workup to ’
machine learning, sequence
analysis based on system
call, etc.
This survey is similar to This  survey  covered
[15]. The authors include machine learning
several  techniques  of techniques before 2009.
[1 2009  machine learning and non-  Our work includes
machine learning. They additionally, an estimation
also  include  anomaly of the accuracy of each
detection applications. ML model as well as the
type of anomaly detection.
In this survey, 55 associated
studies on single, hybrid
and ensemble classifiers are It covers anomaly
[22] 2009 reviewed by the authors. intrusion techniques
Furthermore, a comparison  between 2000 and 2007.
is provided between the
studies.
In this survey, the authors
prOYldC 2 gomprehen51ve It covers distance-based,
outlier detection method for . .
density-based and machine
network anomaly learning based techni
[7] 2011  identification. They g 0as chmques
classified the methods into: before 2011, Whlle ours
. . covers the period up to
Distance-based,  density- 2019
based, and machine ’
learning.
In this survey, the authors
present a detailed overview 1
of detecting anomalies in at covers anomaty
. . etection for  discrete
[10] 2012 discrete/symbolic sequence. sequence in particular. In
They reveal the strength .
contrast, our work is more
and weaknesses of 1
techniques discussed prior general.
to 2012.
The authors present
anomaly intrusion detection
methods in this survey and It covers anomaly
21] 2012 clarify its ) evolution.  intrusion techniques until
Machine learning methods, 2012. Our study covers
neural network, computer research up to 2019.
immunology, and data
mining were included.
In this survey, the authors
provide anomaly detection
techniques in automated
surveillance. They provide In specific, it includes
different  models and anomaly detection
7] 2012 classification algorithms  methods in automated
such as dynamic Bayesian surveillance. Our work, on
network, Bayesian topic the other hand, is more
models, artificial neural general.
network, clustering,
decision tree, and fuzzy
reasoning.
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TABLE 6. (Continued.) Related work summary.

In this survey, the authors
addressed the causes and

It covers network anomaly
detection in particular. Our

TABLE 6. (Continued.) Related work summary.

The authors present an

aspects‘ of network work differs in that it is overview of methgds of It includes deep learning
anomalies. They  add detection of anomalies and .
. more general, and . . . methods  for  detecting
[11] 2013  performance metrics and . N deep learning techniques in ) .
: . . includes an estimation of [28] 2017 . anomalies in  network
intrusion detection systems this survey. They also . . .
. . the accuracy of each ML o intrusion systems, while
evaluation and provide a address the feasibility of
. model as well the type of . . our research...
list of tools and research . using deep learning to
. anomaly detection used. :
issues. detect network anomalies.
In this survey, the authors In this survey, the authors
present machine learning examine the most
methods in network significant  elements  of
. . . L It covers network anomaly
intrusion detection system . . anomaly detection in five Lo .
. . It covers machine learning . R detection in particular. Our
with particle swarm . areas: anomalies in network .
oL and particle swarm work is more general and
[25] 2013  optimization for anomaly L . 2018  traffic, types of network . A
. . optimization techniques up [29] . includes an estimation of
detection. They provide data, and categories of
. . ’ to 2013 . . . the accuracy of each ML
intrusion detection system intrusion detection
. . model as well the type of
types and present each technologies, techniques .

. anomaly detection
technique's advantages and and systems detection, and :
disadvantages. open issues of unresolved
In this survey, the authors It covers anomaly problems.
provide a comprehensive detection and performance In this survey, the authors It includes the detection of

[20] 2015 analysis of performance of bottlenecks in [30] 2018 present a comprehensive anomalies  for  cyber
anomaly detection and particular. On the other understanding of anomaly security and safety of
identification of bottleneck. hand, our work is more detection  techniques to connected vehicles. On the
In computing systems, they  general, and includes the ensure both the cyber other hand, our work is
identified various types of estimation accuracy of security and safety of more general, including
common anomalies and the each ML model as well the connected vehicles. In the accuracy of evaluation
techniques and strategies type of anomaly detection addition, they researched 65  of each ML model, as well
for detecting them. used. research  articles  and as the type of

It covers the techniques of established a novel identification of
In this survey, the authors fraud detection in taxonomy, then classified anomalies.
review various clustering- particular. Our work is the articles.

[16] 2015 based anomaly detection more general, and it In this survey, the authors
techniques and they provide includes an estimation of present an explanation of It includes the detection of
comparison between the the accuracy of each ML important contexts of real- anomalies in the real-time
techniques. model as well the type of time big data processing, processing of big data. In

anomaly detection used. detection of anomalies, and  contrast, our work is more
Data mining methods are [9] 2019  machine learning  general, and it includes an
presented in this survey It includes various algorithms. They estimation of the accuracy

[8] 2015 under four task classes: anomaly detection acknowledge the real-time of each ML, model as well
learning association rule, methods that focus on data big data processing research  the type of anomaly
clustering,  classification, mining methods. challenges in detecting  detection.
and regression. anomalies.

The authors provide six

techniques for identification It covers anomaly

of anomalies in this survey. detection in system log

They compare their  analysis in particular. In

accuracy and effectiveness.  contrast, our work is more tion/extraction techniques that are being applied. Moreover,

[19] 2016 They also published an general, and it includes an . hat PCA and CFS he fi lecti h
open-source toolkit of the estimation of the accuracy we notice that an are the feature selection tech-
techniques used for of each ML model as well niques being used most often in anomaly detection. Even
identification of anomalies as the type of anomaly though this step is very important, most of the research arti-
that were discussed in the detection. . . i N R R
survey. cles did not include it. While some research articles did apply
This article includes an this step, the techniques were not discussed.
extensive overview of the . :
techniques of  machine It includes both machine Table 5 in App .eIIdIX A represents some of the researc.h

(4] 2016 lcaming and data mining learning and intrusion articles that mentioned the strength or weakness of their
for intrusion  detection  detection methods, proposed machine learning model. Therefore, Table 5 shows
cyber analytics,  but...our research... . . . .
discussions. difficultics and the research article number, the machine learning technique,
some recommendations. and the strength or weakness if mentioned.

The authors present the

methods of  machine

learning ~ that  define It covers  geochemical C. OVERALL ESTIMATION AND ACCURACY OF ML
geochemical anomalies in  Anomalies in particular.

[18] 2017 this survey. In addition, the However, our work is MODELS
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survey discusses techniques
of analysis such as principle
component analysis (PCA)
and the analysis of the
factor.

more general, and focuses
on ML techniques and
their performance.

In this section, we address RQ3 which is concerned with the
estimation of ML models. Estimation accuracy is the pri-
mary performance metric for machine learning models. This
question focuses on the following four aspects of estimation
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TABLE 7. Selected research article.
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D TITLE TYPE  YEAR REFS.

Al "A hybrid machine learning approach to network anomaly detection" Jour. 2007 [31]

A2 "High-dimensional and large-scale anomaly detection using a linear one-class SVM with ~ Jour. 2016 [32]
deep learning"

A3 "Network anomaly detection with the restricted Boltzmann machine" Conf. 2013 [13]

A4 "Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation — Conf. 2010 [33]
safety case study"

AS "Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Conf. 2017 [3]
Marker Discovery"

A6 "Enhancing one-class support vector machines for unsupervised anomaly detection" Jour. 2013 [34]

A7 "The practice on using machine learning for network anomaly intrusion detection" Conf. 2011 [35]

A8 "Network Anomaly Detection by Cascading K-Means Clustering and C4.5 Decision Tree ~ Conf. 2012 [36]
algorithm"

A9 "An intelligent algorithm with feature selection and decision rules applied to anomaly  Jour. 2012 [37]
intrusion detection"

A10 "An analysis of supervised tree based classifiers for intrusion detection system" Conf. 2013 [38]

All "A novel hybrid intrusion detection method integrating anomaly detection with misuse  Jour. 2013 [39]
detection"

Al12 "Performance Metric Selection for Autonomic Anomaly Detection on Cloud Computing  Conf. 2011 [40]
Systems"

Al13 "A novel unsupervised classification approach for network anomaly detection by k-  Jour. 2009 [41]
Means clustering and ID3 decision tree learning methods"

Al4 "Anomaly detection using Support Vector Machine classification with k-Medoids Conf. 2012 [42]
clustering"

Al5 "A comparative analysis of SVM and its stacking with other classification algorithm for ~ Conf. 2016 [43]
intrusion detection"

Al6 "FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly Jour. 2011 [44]
detection"

Al17 "AnyOut: Anytime Outlier Detection on Streaming Data" Conf. 2012 [45]

A18 "Real-Time Anomaly Detection Framework for Many-Core Router through Machine-  Jour. 2016 [46]
Learning Techniques"

A19 "Ensemble-learning Approaches for Network Security and Anomaly Detection" Conf. 2017 [47]

A20 "Anomaly Detection Using an Ensemble of Feature Models" Conf. 2011 [48]

A21 "Network intrusion detection with Fuzzy Genetic Algorithm for unknown attacks" Conf. 2013 [49]

A22 "Intrusion detection in SCADA systems using machine learning techniques" Conf. 2014 [50]

A23 "A machine learning framework for network anomaly detection using SVM and GA" Conf. 2005 [51]

A24 "Anomaly-based network intrusion detection: Techniques, systems and challenges" Jour. 2008 [52]

A25 "Evolutionary neural networks for anomaly detection based on the behavior of a  Conf. 2005 [53]
program"

A26 "Anomaly detection in aircraft data using Recurrent Neural Networks (RNN)" Conf. 2016 [54]

A27 "Centered Hyperspherical and Hyperellipsoidal One-Class Support Vector Machines for ~ Conf. 2010 [55]
Anomaly Detection in Sensor Networks"

A28 "Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction" Conf. 2014 [56]

A29 "Hybrid Approach for Detection of Anomaly Network Traffic using Data Mining Conf. 2012 [57]
Techniques"

A30 "Intrusion Detection System (IDS): Anomaly Detection Using Outlier Detection  Conf. 2015 [58]
Approach"

A31 "Flow-based anomaly detection in high-speed links using modified GSA-optimized Jour. 2012 [59]
neural network"

A32 "Anomaly detection in vessel tracks using Bayesian networks" Jour. 2013 [60]

A33 "Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Conf. 2015 [61]
Learning"

A34 "Unsupervised Clustering Approach for Network Anomaly Detection" Conf. 2012 [62]

A35 "Fuzzy logic-based anomaly detection for embedded network security cyber sensor" Conf. 2011 [63]

A36 "Sequential anomaly detection based on temporal-difference learning: Principles, models  Jour. 2009 [64]
and case studies"

A37 "Analysis of network traffic features for anomaly detection" Jour. 2014 [65]

A38 "Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN"  Jour. 2015 [66]

A39 "A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Conf. 2014 [67]
Spiking Neural Network Classification"

A40 "Toward an Online Anomaly Intrusion Detection System Based on Deep Learning" Conf. 2016 [68]
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TABLE 7. (Continued.) Selected research article.

A4l "Unsupervised real-time anomaly detection for streaming data" Jour. 2017 [69]

A42 "Anomaly-based intrusion detection system through feature selection analysis and  Jour. 2017 [70]
building hybrid efficient model"

A43 "MADAM: A Multi-level Anomaly Detector for Android Malware" Conf. 2012 [71]

A44 "Anomaly Detection Through a Bayesian Support Vector Machine" Jour. 2010 [72]

A45 "Sleep stage classification using unsupervised feature learning" Jour. 2012 [73]

A46 "Toward a more practical unsupervised anomaly detection system" Jour. 2011 [74]

A47 "A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks" Jour. 2017 [75]

A48 "An autonomous labeling approach to support vector machines algorithms for network  Jour. 2011 [76]
traffic anomaly detection”

A49 "Anomaly Detection in GPS Data Based on Visual Analytics" Conf. 2010 [77]

AS0 "A data mining approach for fault diagnosis: An application of anomaly detection Jour. 2014 [78]
algorithm"

AS1 "Systematic construction of anomaly detection benchmarks from real data" Jour. 2013 [79]

AS2 "Anomaly detection in streaming environmental sensor data: A data-driven modeling Jour. 2009 [80]
approach"

AS3 "Anomaly Detection in Medical Wireless Sensor Networks using Machine Learning  Conf. 2015 [81]
Algorithms"

A54 "Anomaly intrusion detection based on PLS feature extraction and core vector machine" Jour. 2012 [82]

AS5 "Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery" Jour. 2017 [83]

AS6 "A close look on n-grams in intrusion detection: anomaly detection vs. classification” Conf. 2013 [84]

AS7 "Robust tensor subspace learning for anomaly detection" Jour. 2011 [85]

AS8 "Anomaly Detection with Robust Deep Autoencoders" Conf. 2017 [86]

AS9 "UBL: unsupervised behavior learning for predicting performance anomalies in  Conf. 2012 [87]
virtualized cloud systems"

A60 "Direct Robust Matrix Factorizatoin for Anomaly Detection" Conf. 2011 [88]

A61 "Anomaly Detection via Online Oversampling Principal Component Analysis" Jour. 2012 [89]

A62 "Generic and Scalable Framework for Automated Time-series Anomaly Detection" Conf. 2015 [90]

A63 "Sensor fault and patient anomaly detection and classification in medical wireless sensor ~ Conf. 2013 [91]
networks"

A64 "Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Jour. 2010 [92]
Embedding"

A65 "A Robust Nonlinear Hyperspectral Anomaly Detection Approach" Jour. 2014 [93]

A66 "Anomaly detection based on eccentricity analysis" Conf. 2014 [94]

A67 "Data stream anomaly detection through principal subspace tracking" Jour. 2010 [95]

A68 "A Neural Network Based Anomaly Intrusion Detection System" Conf. 2011 [96]

A69 "Network anomaly detection through nonlinear analysis" Jour. 2010 [97]

A70 "Frequency-based anomaly detection for the automotive CAN bus" Conf. 2015 [98]

ATl "Context-Aware Activity Recognition and Anomaly Detection in Video" Conf. 2012 [99]

AT2 "An Anomaly Detection Framework for Autonomic Management of Compute Cloud Conf. 2010 [100]
Systems"

A73 "Anomaly detection on time series" Conf. 2010 [101]

A74 "Self-adaptive and dynamic clustering for online anomaly detection" Jour. 2011 [102]

A75 "An anomaly-based botnet detection approach for identifying stealthy botnets" Conf. 2011 [103]

A76 "Anomaly detection in ECG time signals via deep long short-term memory networks" Conf. 2015 [104]

AT7 "Detecting anomalies in people’s trajectories using spectral graph analysis" Jour. 2011 [105]

A78 "Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow  Jour. 2019 [106]
Detection in SDN: A Social Multimedia Perspective"

AT79 "An intelligent intrusion detection system (IDS) for anomaly and misuse detection in  Jour. 2005 [107]
computer networks"

A80 "Learning classifiers for misuse and anomaly detection using a bag of system calls Conf. 2005 [108]
representation”

A81 "Anomaly detection based on unsupervised niche clustering with application to network  Conf. 2004 [109]
intrusion detection"

A82 "A Discriminative Framework for Anomaly Detection in Large Videos" Conf. 2016 [110]

A83 "Anomaly Detection by Using CFS Subset and Neural Network with WEKA Tools" Conf. 2018 [111]
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A84 "Online Learning and Sequential Anomaly Detection in Trajectories" Jour. 2013 [112]
A85 "Expected similarity estimation for large-scale batch and streaming anomaly detection" Jour. 2016 [113]
A86 "Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Jour. 2019 [114]
Learning in Optical Networks"
A87 "Anomaly detection based on unsupervised niche clustering with application to network  Conf. 2004 [109]
intrusion detection”
A88 "Two-tier network anomaly detection model: a machine learning approach” Jour. 2015 [115]
A89 "Real-time network anomaly detection system using machine learning" Conf. 2015 [116]
A90 "Telemetry-mining: a machine learning approach to anomaly detection and fault Conf. 2006 [117]
diagnosis for space systems"
A91 "Machine learning-based anomaly detection for post-silicon bug diagnosis" Conf. 2013 [118]
A92 "Improving one-class SVM for anomaly detection" Conf. 2003 [119]
A93 "Machine Learning Approach for IP-Flow Record Anomaly Detection" Conf. 2011 [120]
A%4 "Anomaly Detection for a Water Treatment System Using Unsupervised Machine  Conf. 2017 [121]
Learning"
A95 "Network anomaly detection based on TCM-KNN algorithm" Conf. 2007 [122]
A96 "Seeing the invisible: forensic uses of anomaly detection and machine learning" Jour. 2008 [123]
A97 "Anomaly Detection in Sensor Systems Using Lightweight Machine Learning" Conf. 2013 [124]
A98 "Anomaly Detection on Shuttle data using Unsupervised Learning Techniques" Conf. 2019 [125]
A99 "Weighting technique on multi-timeline for machine learning-based anomaly detection — Conf. 2015 [126]
system"
A100 | "Anomaly Detection for Key Performance Indicators Through Machine Learning" Conf. 2018 [127]
Al01 "Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders" Conf. 2019 [128]
A102 | "Research and application of One-class small hypersphere support vector machine for  Conf. 2011 [129]
network anomaly detection”
A103 "Anomaly detection in network traffic using extreme learning machine" Conf. 2016 [130]
A104 | "Deep Learning for Network Anomalies Detection" Conf. 2018 [131]
A105 | "Using Immune Algorithm to Optimize Anomaly Detection Based on SVM" Conf. 2006 [132]
A106 | "Detecting Anomalies in Application Performance Management System with Machine  Conf. 2019 [133]
Learning Algorihms"
A107 | "Learning Rules and Clusters for Anomaly Detection in Network Traffic" Jour. 2015 [134]
A108 "Machine Learning for Anomaly Detection and Categorization in Multi-Cloud Conf. 2017 [135]
Environments"
A109 "An Anomaly Detection Scheme Based on Machine Learning for WSN" Conf. 2009 [136]
A110 | "Enhanced Network Anomaly Detection Based on Deep Neural Networks" Jour. 2018 [137]
All1l | "CESVM: Centered Hyperellipsoidal Support Vector Machine Based Anomaly Conf. 2008 [138]
Detection"
Al12 "Anomaly Detection in Electrical Substation Circuits via Unsupervised Machine Conf. 2016 [139]
Learning"
Al13 | "An anomaly intrusion detection method using the CSI-KNN algorithm" Conf. 2008 [140]
Al14 "K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-  Jour. 2007 [141]
Means Clustering and ID3 Decision Tree Learning Methods"
All15 "Toward a reliable anomaly-based intrusion detection in real-world environments" Jour. 2016 [142]
Al116 | "Anomaly intrusion detection using one class SVM" Conf. 2004 [143]
A117 | "ANTIDOTE: understanding and defending against poisoning of anomaly detectors" Conf. 2009 [144]
A118 | "Network traffic anomaly detection using clustering techniques and performance Conf. 2013 [145]
comparison”
Al19 | "Anomaly-Based Intrusion Detection using Fuzzy Rough Clustering" Conf. 2006 [146]
Al120 | "The Anomaly Detection by Using DBSCAN Clustering with Multiple Parameters" Conf. 2011 [147]
Al21 "Anomaly detection in traffic using L1-norm minimization extreme learning machine" Jour. 2015 [148]
A122 "Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection" Conf. 2006 [149]
A123 | "Web traffic anomaly detection using C-LSTM neural networks" Jour. 2018 [150]
A124 | "Android anomaly detection system using machine learning classification" Conf. 2015 [148]
A125 | "Anomaly Detection Using LibSVM Training Tools" Conf. 2008 [151]
A126 | "Unsupervised SVM Based on p-kernels for Anomaly Detection" Conf. 2006 [152]
A127 | "A Method for Anomaly Detection of User Behaviors Based on Machine Learning" Jour. 2006 [153]
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A128 "Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Jour. 2018 [154]
Network Traffic Statistics in Probability Space"

A129 "Ramp loss one-class support vector machine; A robust and effective approach to anomaly  Jour. 2018 [155]
detection problems"

A130 "Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface  Jour. 2015 [156]
warming hiatus from satellite measurements: A support vector machine approach"

Al31 "Anomaly Detection Model Based on Hadoop Platform and Weka Interface" Conf. 2016 [157]

A132 "Attack and anomaly detection in IoT sensors in [oT sites using machine learning approaches" Jour. 2019 [158]

A133 "Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced ~ Jour. 2018 [159]
Network Traffic"

A134 "Anomaly Detection in Computer Security and an Application to File System Accesses" Conf. 2005 [160]

A135 "Network traffic anomaly detection using machine learning approaches" Conf. 2012 [161]

A136 "ManetSVM: Dynamic anomaly detection using one-class support vector machine in MANETs" Conf. 2013 [162]

A137 "Semi-Supervised Anomaly Detection for EEG Waveforms Using Deep Belief Nets" Conf. 2010 [163]

A138 "Using Machine Learning for Behavior-Based Access Control: Scalable Anomaly Detection on  Conf. 2013 [164]
TCP Connections and HTTP Requests"

A139 "Applying machine learning classifiers to dynamic android malware detection at scale" Conf. 2013 [165]

Al140 "Big Data Analytics for User-Activity Analysis and User-Anomaly Detection in Mobile Wireless ~ Jour. 2017 [166]
Network"

Al41 "Anomaly detection using machine learning with a case study" Conf. 2014 [167]

Al42 "Octopus-IIDS: An anomaly based intelligent intrusion detection system" Conf. 2010 [168]

A143 "A hybrid method based on genetic algorithm, self-organised feature map, and support vector Conf. 2013 [169]
machine for better network anomaly detection"

Al44 "Anomaly Detection Support Vector Machine and Its Application to Fault Diagnosis" Conf. 2008 [170]

Al45 "Evaluation of Machine Learning-based Anomaly Detection Algorithms on an Industrial Conf. 2018 [171]
Modbus/TCP Data Set"

Al46 "Network Anomaly Traffic Detection Method Based on Support Vector Machine" Conf. 2016 [172]

A147 "Anomaly detection of spacecraft based on least squares support vector machine" Conf. 2011 [173]

Al48 "A Model Based on Hybrid Support Vector Machine and Self-Organizing Map for Anomaly Conf. 2010 [174]
Detection"

A149 "Anomaly detection in wide area network meshes using two machine learning algorithms" Jour. 2018 [175]

A150 "Image Anomaly Detection with Generative Adversarial Networks" Conf. 2019 [176]

Al51 "Performance evaluation of BGP anomaly classifiers" Conf. 2015 [177]

Al52 "An uncertainty-managing batch relevance-based approach to network anomaly detection" Jour. 2015 [178]

Al53 "Energy Consumption Data Based Machine Anomaly Detection" Conf. 2014 [167]

Al154 "A Novel Algorithm for Network Anomaly Detection Using Adaptive Machine Learning" Conf. 2017 [179]

A155 "Thermal anomaly prediction in data centers" Conf. 2010 [180]

A156 "On the symbiosis of specification-based and anomaly-based detection" Jour. 2010 [181]

A157 "A holistic smart home demonstrator for anomaly detection and response" Conf. 2015 [182]

A158 "Online Anomaly Detection in Crowd Scenes via Structure Analysis" Jour. 2014 [183]

A159 "Hierarchical Temporal Memory Based Machine Learning for Real-Time, Unsupervised Anomaly ~ Conf. 2020 [184]
Detection in Smart Grid: WiP Abstract"

A160 "One-class extreme learning machines for gas turbine combustor anomaly detection" Conf. 2016 [185]

Al61 "Recurrent Neural Network Attention Mechanisms for Interpretable System Log Anomaly Conf. 2018 [186]
Detection"

A162 "Anomaly detection based on profile signature in network using machine learning technique" Conf. 2016 [187]

A163 "Nonlinear structure of escape-times to falls for a passive dynamic walker on an irregular slope: ~ Conf. 2011 [188]
Anomaly detection using multi-class support vector machine and latent state extraction by
canonical correlation analysis"

Al64 "A Self-Adaptive Deep Learning-Based System for Anomaly Detection in 5G Networks" Jour. 2018 [189]

A165 "RoADS: A Road Pavement Monitoring System for Anomaly Detection Using Smart Phones" Conf. 2016 [190]

A166 "Unitary Anomaly Detection for Ubiquitous Safety in Machine Health Monitoring" Conf. 2012 [191]

A167 "An HMM-Based Anomaly Detection Approach for SCADA Systems" Conf. 2016 [192]

A168 "Symbolic time series analysis for anomaly detection: A comparative evaluation" Jour. 2005 [193]
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A169 "Anomaly Detection Using Real-Valued Negative Selection" Jour. 2003 [194]
A170 "Anomaly detection using the correlational paraconsistent machine with digital signatures of  Jour. 2017 [195]
network segment"
Al71 "Combining negative selection and classification techniques for anomaly detection" Conf. 2002 [196]
A172 "A Geometric Framework for Unsupervised Anomaly Detection" Jour. 2002 [197]
Al73 "Monitoring Smartphones for Anomaly Detection" Jour. 2008 [198]
Al174 "Learning rules for anomaly detection of hostile network traffic" Conf. 2003 [199]
Al75 "System Anomaly Detection: Mining Firewall Logs" Conf. 2006 [200]
Al76 "Rule-Based Anomaly Detection on IP Flows" Conf. 2009 [201]
Al77 "Is negative selection appropriate for anomaly detection?" Conf. 2005 [202]
A178 "Anomaly detection and classification in a laser powder bed additive manufacturing process using  Jour. 2018 [203]
a trained computer vision algorithm"
Al79 "Stealthy poisoning attacks on PCA-based anomaly detectors" Jour. 2009 [204]
A180 "Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System" Conf. 2005 [205]
A181 "Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-  Conf. 2016 [206]
Money Laundering"
A182 "An Anomaly Detection Method for Spacecraft Using Relevance Vector Learning" Conf. 2005 [207]
A183 "ALDO: An Anomaly Detection Framework for Dynamic Spectrum Access Networks" Conf. 2009 [208]
A184 "ADMIT: anomaly-based data mining for intrusions" Conf. 2002 [209]
A185 "[EEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Conf. 2017 [210]
Approach"
A186 "Detfying the gravity of learning curve: a characteristic of nearest neighbour anomaly detectors" Jour. 2016 [211]
A187 "Detecting Anomaly in Videos from Trajectory Similarity Analysis" Conf. 2007 [212]
A188 "An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer  Jour. 2005 [107]
networks"
A189 "DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning" Conf. 2017 [213]
A190 "Anomaly detection in earth dam and levee passive seismic data using support vector machines  Jour. 2017 [214]
and automatic feature selection"
A191 "MS-LSTM: A multi-scale LSTM model for BGP anomaly detection" Conf. 2016 [215]
A192 "SAD: web session anomaly detection based on parameter estimation" Jour. 2004 [216]
A193 "Evolutionary Learning Program’s Behavior in Neural Networks for Anomaly Detection" Conf. 2004 [217]
A19%4 "Spatio-Temporal AutoEncoder for Video Anomaly Detection" Conf. 2017 [218]
A195 "Robust feature selection and robust PCA for internet traffic anomaly detection" Conf. 2012 [219]
A196 "Deep Anomaly Detection with Deviation Networks" Conf. 2019 [220]
A197 "Machine learning and transport simulations for groundwater anomaly detection" Jour. 2020 [221]
A198 "Unsupervised machine learning for network-centric anomaly detection in IoT" Conf. 2019 [222]
A199 "Hybrid Machine Learning for Network Anomaly Intrusion Detection" Conf. 2020 [223]
A200 "An anomaly prediction framework for financial IT systems using hybrid machine learning Jour. 2019 [224]
methods"
A201 "Kernel Eigenspace Separation Transform for Subspace Anomaly Detection in Hyperspectral — Jour. 2007 [225]
Imagery"
A202 "An unsupervised anomaly intrusion detection algorithm based on swarm intelligence" Conf. 2005 [226]
A203 "Maritime situation analysis framework: Vessel interaction classification and anomaly detection" Conf. 2015 [227]
A204 "An ensemble learning framework for anomaly detection in building energy consumption" Jour. 2017 [228]
A205 "Ensemble methods for anomaly detection and distributed intrusion detection in Mobile Ad-Hoc  Jour. 2008 [229]
Networks"
A206 "Unsupervised Anomaly Intrusion Detection via Localized Bayesian Feature Selection" Conf. 2011 [230]
A207 "McPAD: A multiple classifier system for accurate payload-based anomaly detection" Jour. 2009 [231]
A208 "Detecting errors within a corpus using anomaly detection" Conf. 2000 [232]
A209 "Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection" Conf. 2017 [233]
A210 "Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks" Jour. 2018 [234]
A211 "Wireless Anomaly Detection Based on IEEE 802.11 Behavior Analysis" Jour. 2015 [235]
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A212 "Spatial anomaly detection in sensor networks using neighborhood information" Jour. 2017 [236]
A213 "Anomaly Detection in Cyber Physical Systems Using Recurrent Neural Networks" Conf. 2017 [237]
A214 "Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA  Jour. 2015 [238]
A215 f}/]\Stlf}rlllzljiid approach for efficient anomaly detection using metaheuristic methods" Jour. 2015 [239]
A216 "Experience Report: System Log Analysis for Anomaly Detection" Conf. 2016 [19]
A217 "Towards Learning Normality for Anomaly Detection in Industrial Control Networks" Conf. 2013 [240]
A218 "Anomaly detection approach using hybrid algorithm of data mining technique" Conf. 2017 [241]
A219 "Adaptive Anomaly Identification by Exploring Metric Subspace in Cloud Computing Conf. 2013 [242]
Infrastructures"
A220 "Towards reliable data feature retrieval and decision engine in host-based anomaly detection Conf. 2015 [243]
A221 §}IIJSstier:Iglsan Ensemble of One-Class SVM Classifiers to Harden Payload-based Anomaly Detection ~ Conf. 2006 [244]
A222 §X?1tilrrrll§maly detection method to detect web attacks using Stacked Auto-Encoder" Conf. 2018 [245]
A223 "Anomaly Detection Enhanced Classification in Computer Intrusion Detection" Conf. 2002 [246]
A224 "Simple, state-based approaches to program-based anomaly detection" Jour. 2002 [247]
A225 "Adaptive anomaly detection with evolving connectionist systems" Jour. 2007 [248]
A226 "Enhancing Anomaly Detection Using Temporal Pattern Discovery" Jour. 2009 [249]
A227 "Anomaly Detection in IPv4 and IPv6 networks using machine learning" Conf. 2015 [250]
A228 "A training-resistant anomaly detection system" Jour. 2018 [251]
A229 "Conditional Anomaly Detection" Jour. 2007 [252]
A230 "An anomaly detection in smart cities modeled as wireless sensor network" Conf. 2016 [253]
A231 "Spatiotemporal Anomaly Detection in Gas Monitoring Sensor Networks" Conf. 2008 [254]
A232 "Using Naive Bayes with AdaBoost to Enhance Network Anomaly Intrusion Detection" Conf. 2010 [255]
A233 "Applying both positive and negative selection to supervised learning for anomaly detection” Conf. 2005 [256]
A234 "Real-time camera anomaly detection for real-world video surveillance" Conf. 2011 [257]
A235 "Network Anomaly Detection with Stochastically Improved Autoencoder Based Models" Conf. 2017 [258]
A236 "Learning deep event models for crowd anomaly detection" Jour. 2017 [259]
A237 "GANomaly: Semi-supervised Anomaly Detection via Adversarial Training" Conf. 2018 [260]
A238 "Mote-Based Online Anomaly Detection Using Echo State Networks" Conf. 2009 [261]
A239 "Genetic algorithm with different feature selection techniques for anomaly detectors generation" Conf. 2013 [262]
A240 "RawPower: Deep Learning based Anomaly Detection from Raw Network Traffic Measurements"  Conf. 2018 [263]
A241 "Network security and anomaly detection with Big-DAMA, a big data analytics framework" Conf. 2017 [264]
A242 "An efficient hidden Markov model training scheme for anomaly intrusion detection of server Conf. 2004 [265]
applications based on system calls"
A243 "An anomaly detection framework for BGP" Conf. 2011 [266]
A244 "Semantic anomaly detection in online data sources" Conf. 2002 [267]
A245 "A framework for efficient network anomaly intrusion detection with features selection" Conf. 2018 [268]
A246 "Cross-Layer Based Anomaly Detection in Wireless Mesh Networks" Conf. 2009 [269]
A247 "Reducing calculation requirements in FPGA implementation of deep learning algorithms for Conf. 2017 [270]
online anomaly intrusion detection"
A248 "Anomaly detection in network traffic using K-mean clustering" Conf. 2016 [271]
A249 "Stream-based Machine Learning for Network Security and Anomaly Detection" Conf. 2018 [272]
A250 "Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares" Conf. 2007 [273]
A251 "A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection" Conf. 2016 [274]
A252 "Optimizing false positive in anomaly based intrusion detection using Genetic algorithm" Conf. 2016 [275]
A253 "Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded Jour. 2018 [276]
A254 izierr(ljlsp Anomaly Detection Using Deep Generative Models" Conf. 2019 [277]
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"Anomaly Detection in IaaS Clouds"

"An ensemble framework of anomaly detection using hybridized feature selection approach
(HFSA)"
"Anomaly detection combining one-class SVMs and particle swarm optimization algorithms"

"Anomaly detection through on-line isolation Forest: An application to plasma etching"
"Practical anomaly detection based on classifying frequent traffic patterns"

"A hybrid model for anomaly-based intrusion detection in SCADA networks"
"CH-SVM Based Network Anomaly Detection"

"MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial
Networks"
"Anomaly Detection from Network Logs Using Diffusion Maps"

"A Deep Learning Approach for Network Anomaly Detection Based on AMF-LSTM"

"Reducing Features of KDD CUP 1999 Dataset for Anomaly Detection Using Back Propagation
Neural Network"
"Online Anomaly Prediction for Robust Cluster Systems"

"A study on anomaly detection ensembles"

"Big data analytics for network anomaly detection from netflow data"

"An anomaly-based network intrusion detection system using Deep learning"

"An Empirical Evaluation of Deep Learning for Network Anomaly Detection"

"Network Anomaly Detection Using Random Forests and Entropy of Traffic Features"
"Quarter Sphere Based Distributed Anomaly Detection in Wireless Sensor Networks"
"Anomaly based intrusion detection using meta ensemble classifier"

"Applying Machine Learning to Anomaly-Based Intrusion Detection Systems"

"Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks"
"AD-IoT: Anomaly Detection of [oT Cyberattacks in Smart City Using Machine Learning"
"Less is More: Building Selective Anomaly Ensembles"

"The best of both worlds: a framework for the synergistic operation of host and cloud anomaly-
based IDS for smartphones"

"A-GHSOM: An adaptive growing hierarchical self-organizing map for network anomaly
detection"

"Single-image splicing localization through autoencoder-based anomaly detection"

"Efficacy of Hidden Markov Models Over Neural Networks in Anomaly Intrusion Detection"

"An approach to spacecraft anomaly detection problem using kernel feature space"

"Machine Learning in Anomaly Detection: Example of Colluded Applications Attack in Android
Devices"

"Optimal virtual machine selection for anomaly detection using a swarm intelligence approach"

"Anomaly Detection in Power Quality Measurements Using Proximity-Based Unsupervised
Machine Learning Techniques"

“Network-Wide Traffic Anomaly Detection and Localization Based on Robust Multivariate
Probabilistic Calibration Model”

“Machine learning for anomaly detection and process phase classification to improve safety and
maintenance activities.”

“Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate
control. ”

"Anomaly detection in electronic invoice systems based on machine learning"
"Anomaly detection in wireless sensor network using machine learning algorithm"

"A Hybrid Unsupervised Clustering-Based Anomaly Detection Method"

“Network traffic anomalies detection and identification with flow monitoring”

“Network Traffic Anomaly Detection and Prevention, Concepts”

“Network Traffic Anomaly Detection Based on Information Gain and Deep Learning”
“Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation”
“Network traffic anomalies detection and identification with flow monitoring”

“Network Traffic Anomaly Detection and Prevention, Concepts”
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TABLE 8. Performance metrics among selected papers.

1D Type ML Model Performance Metrics value Dataset
Detection Rate (DR) 87.74
supervised and False Positive Rate (FPR 10.2 .
Al ugsupervised GHIENECRVL False Negative Rate (FNI){) NA MIT Lincoln Lab
Processing Time (PT) 27.27
Area Under Curve (AUC) 0.9863 six real life data set from UCI
: . Accuracy (ACC 0.0625 machine learning repository and
A2 unsupervised DBN with ISVM Testing "}l:i(me ) 02093 two synthetic %Balr)lana" r;/nd
"Smiley"
A3 semi-supervised DRBM Accuracy (ACC) 0.94 KDD99
Statistics Discrete 19
A4 semi-supervised multipule kernel Statistics Continouss 94 Flight Data Recorders
Statistics Heterogneous 114
Precision 0.8834
. . Recall 0.7277
AS unsupervised Ger;\e]rz:‘::/vekAtger\sIanal Sensitivity 0.7279 real-life-datasets
etwork (GAN) Specificity 0.8928
Area Under Curve (AUC) 0.89
A6 unsupervised eta one-class SVM é;eljl g:le[i?:tiggwe (AUQ) 37932102 s UCI machine learning repository
supervised and 99.6298% -
A7 uﬁsupervise | J48 Accuracy (ACC) 59‘97 §7%) KDD99
F-Score 94
True Positive Rate (TPR) 99.6
A8 supervised k-Means with C4.5 False Positive Rate (FPR) 0.1 KDD9%9
Accuracy (ACC) 95.8
Precision 95.6
A9 na SVM + DT + SA Accuracy (ACC) 99.96% KDD99
Mean Absolute Error (MAE) 0.0321
Root Mean squared Error (RMSE) 0.0321
Kappa Statistics 0.8926
Error Measure 0.254
Al0 supervised Random Tree Recall 0.968 NSL-KDD 99
Precision 0.968
F-Score 0.968
False Alarm Rate(FAR) 0.074
Accuracy (ACC) 0.9974
one class SVM with False Positive Rate (FPR
. na C4.5 Testing Time e 112 NSL-KDD 99
Al2 semi-supervised decision tree NA NA NA
Sensitivity 0.961538
. ID3 decision tree + k- Spemf"wlty' - 2 i) real evaluation test bed network
Al3 unsupervised Y Negative likelihood 0.038471 datasels
Positive Predictive Ratio 0.981567
Negative Predictive Ratio 0.999444
. SVM + K-Medoids Accure}cy (ACO) 99.79 Kyoto2006+ data set and KDD
Al4 unsupervised clustering Detection Rate (DR) 99.87 Cup 1999
False Alarm Rate(FAR) 0.99
Accuracy (ACC) 97.5
Sensitivity 93.49
Al5 supervised SVM + Random Forest | Specificity 98.38 NSL-KDD99 dataset
Precision 97.6
Recall 97.6
semi-supervised
Al6 and FRaC Area Under Curve (AUC) 1 UCI machine learning repository
unsupervised
Al7 supervised Cluster Area Under Curve (AUC) 0.996 UCI machine learning repository
supervised and ACCl.lr?Cy (ACO) 9% t0 97% “Golden Dataset” for Real-Time
Al8 unsupervised SVM Precision NA Anomaly Detection
Recall NA
. Super Learner ensemble g Undg g Cuncl( ) U
Al9 supervised ez e False Positive Rate (FPR) 5% MAWILab dataset
Detection Rate (DR) 97%
A20 | semi-supervised FRaC Area Under Curve (AUC) 0.9 UCI machine learning repository
Detection Rate (DR) 97.92
A21 supervised fuzzy genetic algorithm | False Negative Rate (FNR) 4.10% KDD99 dataset
False Positive Rate (FPR) 1.13%
A22 supervised one-class SVM Accuracy (ACC) 98.8796 network dataset
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TABLE 8. (Continued.) Performance metrics among selected papers.

ised and Correction Rate 94.7
A23 Szg:zvf;ig; SVM + GA False Positive Rate (FPR) 523 MIT Lincoln Lab
P False Negative Rate (FNR) NA
A24 supervised NA NA NA NA
A25 supervised eVOl‘g;‘t’;‘;ri:euml Effeecgii”gaiaggm) (1)670% 1999 DARPA IDEVAL dataset
semi-supervised Recurrent Neural Precision !
A26 and Networks (RNN) Recall 0.818 X-Plane simulation
unsupervised F-Score 0.89
CESVM) and Detection Rate (DR) 80% . . .
A27 NA ( (QSSVI)\/I) T U5 T (A0 0.9932 UCI machine learning repository
A28 unsupervised autoencoder Area Under Curve (AUC) 0.9764 spacecrafts’ telemetry data and
generated data from Lorenz system
: : o
A29 NA SVM + Entropy pcﬁielﬁiyl éﬁ‘iﬁg?ﬁ’gm (ECR) 277'205/0/" MIT Lincoln (DARPA, 1999)
. . Detection Rate (DR) 2400
A30 NA Ne‘%hbi’rh";do?mher CPU Utilization 10% KDD cup 99 dataset
actor ( ) Testing Time 95000 ms
. o Correctly Classification rate (CCR) | 97.76
modified gravitational - -
A3l supervised search algorithm Misclassified Rate (MR) 2.48 NA
(MGSA) False Alarm Rate(FAR) 0.21
Error Rate 2.24
Area Under Curve (AUC) 0.727 1 1A d
A32 unsupervised Bayesian networks False Positive Rate (FPR) NA ;Zznggzaﬁo;ltsomfte
True Positive Rate (TPR) NA ystem
A33 supervised random forest Precision 0.89 KPI data
0,
A34 unsupervised Clustering algorithms I?aclcsl::r;f))sliisecgite (FPR) 2?1202 NSL-KDD
Correctly Classification rate (CCR) | 99.36% set of network data recorded from
False Negative Rate (FNR) 0.90% an experimental test-bed
A35 unsupervised Fuzzy Rule Based Testing Time 0.212 ms mimicking the environment of a
critical infrastructure control
system.
A36 supervised TD False Alarm Rate(FAR) 0.002951 real life time data
Accuracy (ACC) 99.2140.04
. filters and regerssion Area Under Curve (AUC) 0.997+0.001
A37 Sheeiies Wrappegrs Recall 99.16+0.12 NSL-KDD
Precision 99.57+0.05
Precision 99.94
Fuzzy Means clustering | Recall 97.2
A38 NA algorithm and Artificial | F-Score 99.32 DARPA’s KDD cup dataset 1999
Neural Network Detection Rate (DR) 99.96
False Alarm Rate(FAR) 0.2
A3 superviseq and evolving Spiking Neural | Accuracy (ACC) 99.90% KDD Cup 1999 data
unsupervised Network
Accuracy (ACC) 97.90%
deep belief network True Positive Rate (TPR) 97.51%
A40 unsupervised using Logistic True Negative Rate (TNR) 99.48% DARPA KDDCUP’99 dataset
Regression False Positive Rate (FPR) 0.51%
False Negative Rate (FNR) 2.48%
Hierarchical Prediticion Error NA
A41 unsupervised Temporal Memory CPU Utilization NA Benchmark dataset (NAB)
(HTM)
ised and Accuracy (ACC) 99.9
A42 Sl‘l‘g:l’lvfrevi:e‘; True Positive Rate (TPR) 0.997 NSL-KDD dataset
P False Positive Rate (FPR) 0.003
. CPU Utilization 7%
A43 NA FNERRINERLTE S T e Tt ) 0.000171 NA
Ad4 supervised CALCEsvm Accuracy (ACC) 94% NA
A45 e DBN Accuracy (ACC) 729497 Benchmark Dataset and Home
Sleep Dataset
Accuracy of normal data (ACC) 100%
0,
A46 unsupervised cluster + 1-SVM ?:lcszr;iygzéj:?;:?;i](gcc) 39]{;% real traffic data
False Positive Rate (FPR) 20.50%
Detection Rate (DR) 97.09%
A47 supervised RNN Accuracy (ACC) 81.29% benchmark NSL-KDD dataset
False Positive Rate (FPR) 0.07
A48 | unsupervised SVM ?;f;g‘i:ﬁfg?;&m 277'24 1998 DARPA
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A49 supervised conditional random field Accuracy (ACC). 0.81 GPS data
Query by Committee 0.9
A50 supervised SVM Accuracy (ACC) 97% NSF I/UCR Center
Isolation Forest model Area Under Curve (AUC) 17
(F)
Al NA Ensemble Gaussian Area Under Curve (AUC) 14 VOIS S
Mixture Model (egmm)
NC + MLP + LC+AD False Positive Rate (FPR) 5.18%
NC+MLP + LC+ AD False Negative Rate (FNR) 5.30% . . .
A2 NA NC + MLP + LC+ ADAM | False Positive Rate (FPR) 6.38% UCI machine learning repository
NC + MLP + LC+ ADAM | False Negative Rate (FNR) 0.00%
Random Forest (RF) + Mean Absolute Error(MAE) 0.0145 .
— NA Linear Regressio(n (IER) Testing Time 143 s IR TR
CPU Execution Time 2.72s
A54 NA core Vector Machine Sup p"?‘ Vector 21 KDD'99 dataset
Detection Rate (DR) 99.74%
Accuracy (ACC) 99.87%
. Accuracy (ACC) 98.28 Airborne Visible/Infrared Imaging
ASS NA convolutional neural Testing Time 483 s Spectrometer and AVIRIS sensor
network i
True Positive Rate (TPR) 81.50% .
A56 NA SVM False Positive Rate (FPR) 001 DARPA IDS evaluation dataset
A57 NA NA similarity measurment NA two video sequence
. F-Score 0.64
A58 sup erv1sed and neural network Recall 0.64 MNIST dataset
unsupervised —
Precision 0.64
A59 upErite Self Organizing Map True Positive Rate (TPR) 98% IBM Systems and MemLeak and
(SOM) False Positive Rate (FPR) 1.70% NetHog dataset
A60 unsupervised DRMF ??stilrsxlgm"]rime 238(7)2 0s simulation and real-world data set
Area Under Curve (AUC) 0.9987
CPU Execution Time 2.697 s
A6l NA A% True Positive Rate (TPR) 0.913320.0327 KDD data set
False Positive Rate (FPR) 0.0697+0.0188
A62 unsupervised Extensible Generic Accuracy (ACC) 0.9 real and synthetic data
AG3 NA d.ecision tree (DT) and True Positive Rate (TPR) 100% real pati‘ent datasets from
linear regression (LR) False Positive Rate (FPR) 7.40% Physionet database
Testing Time 29.1 data from Hyperion on the EO-1
A64 NA Linear Embedding (LE) satellite and HYDICE on an
airborne platform
A65 unsupervised kernel + regression Area Under Curve (AUC) 0.89669 nonlinear synthetic data
A66 NA NA NA NA NA
A67 NA NA F-Score 0.86 Abilene datasets and ISP datasets
1 0,
A68 NA neural network PD::?tcisgrrlal::aE;I({?R) 29/04 KDD'99
Correctly Classification rate (CCR) | 98.24%
Misclassified Rate (MR) 1.46%
Precision 0.985
A69 supervised SVM Recall 1 DARPA dataset
Mean Absolute Error(MAE) 0.015
Kappa Statistics 0.646
Area Under Curve (AUC) 0.949
AT0 NA one-class support vector Area' Und.er Curve (AUC) 0.9905 CAN bus data from a 2011 Ford
Testing Time 04s Explorer
Area Under Curve (AUC) (video clips)
79.8%
AT NA i Area Under Curve (AUC) (continuous VALY RE T
videos) 68.5%
AT72 unsupervised Bayesian Network + PCA | NA NA NA
. False Alarm Rate(FAR) 0.225 UCR time series
AT3 G kNN Computational Cost 0.025 classification/clustering page
. Detection Rate (DR) 0.966 KDD cup 99 dataset and Kyoto
AT4 unsupervised SOM + k-means False Positive Rate (FPR) 0.13 i data set ’
AT5 NA cluster Detection Rate (DR) 100% database prqduced by Domain-IP
Mapping component
F-Score 0.9645
Precision 0.975
A76 NA neural network Recall 0.4647 MIT-BIH Arrhythmia Database
False Positive Rate (FPR) 0.0119
True Positive Rate (TPR) 39.05
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. NA NA Edinburgh Informatics Forum
Gy THRIIss s Pedgestrian Database
Detection Rate (DR) 99.04
False Positive Rate (FPR) 1.31
A78 supervised RBM and SVM Accuracy (ACC) 99.98 real-time and benchmark datasets
Precision 99.03
F-Score 99.5
ised and Detection Rate (DR) 99.90%
A79 | Supervised "“21 SOM + J.48 Correctly Classification rate (CCR) | 99.84 KDD cup 99 dataset
unsupervise False Positive Rate (FPR) 1.25
one class Naive Accuracy (ACC) 99.28% MIT Lincoln Labs and University
A80 unsupervised Bayes algorithm and K- | Detection Rate (DR) 100% of New Mexico (UNM) ) system
Means clustering False Positive Rate (FPR) 1.29 call sequences
Accuracy (ACC) 95.7 synthetic and real data sets
A8l . - Detection Rate (DR) 96.32 (KDDCup'99 data set and
unsupervised clustering — L .
False Positive Rate (FPR) 7.75 Wisconsin Breast Cancer and
Indian Diabetes)
Area Under Curve (AUC) 0.91 Avenue Dataset and Subway
. surveillance dataset and the
A82 unsupervised NA Personal Vacation Dataset and the
UMN Unusual Activity Dataset
CPU Utilization 13% trained data of about two thousand
Detection Rate (DR) 83% connection records and test data
AS3 superviseq and Neural network + CES Testing Time 110000 ms includes five thousand connection
unsupervised records and a group of forty-one
derived features received from
every connection
A84 superviseq and SHNN-CAD ?_CSC:J::Y (ACC) 2872 four different labeled trajectory
unsupervised - datasets
Detection Delay 10.3
Area Under Curve (AUC) 1.85 smaller benchmark
AS5 e kernel methods Accuracy (ACC) 1.7 datasetswithknownanomalyclasse
(EXPoSE) and KDD'99 cup and forest cover
type
ised and False Negative Rate (FNR) 0.91
A8G | Supervised "“;‘i DCM and DCRM False Positive Rate (FPR) 0.07 testbed
unsupervise Freq. of validation 29.82
3 -
A7 unsupervised Niche Clustering aceuracy 202220 syntheltg)ggire);l;ata =t
.. Detection Rate (DR) 83.24
A88 NA Naive Bayes, KNN False Alarm Rate(FAR) 233 NSL-KDD
A89 NA SVM cross-validation 90.3 na
Relevance Vector Ratio of Thruster, Estimated na
A90 NA Maching (RVM) Iand Outputs of All Thrusters Rendezvous Simulation
Dynamic Bayesian
Network
Anomaly mean 0.76 real data of raw sensor data and
A91 NA temporal relations Anomaly standard deviation 0.14 synthetic data of instances of a
Anomaly threshold 0.99 predefined set of activities
A92 NA One-class SVM Accuracy (ACC) 96% 1999 DARPA audit logs
Accuracy (ACC) 93.8 Flame website dataset plus
A93 unsupervised OCSVM False Positive Rate (FPR) 0.1 ernhing ot e gwn
True Negative Rate (TNR) 100
SVM Precision 98.2
A9%4 NA DNN Recall 69.9 SWaT testbed
F-Score 80.2
True Positive Rate (TPR) 99.48
A9 NA TCM-KNN True Negative Rate (TNR) 2.81 KSS Cup 1999
A96 NA na Detection Rate (DR) 100 generated dataset
A97 NA Recursive Least Squares | True Positive Rate (TPR) 21 3 synthetic datasets and the real-
(RLS) True Negative Rate (TNR) 4.9 world datase
OneClassSVM Precision 99%
Local Outlier Factor Recall 99%
. Shuttle dataset
A98 unsupervised . lfOF F-Score 99% satellite dataset
isolation forest
Elliptic Envelope
knearest neighbor, and F-Score na
A99 NA one-class support vector real life time data
machine
LSTM Precision 92%
A100 NA Gradient Boosting Recall 63.94% na
Regression Trees F-Score 89.37
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A101 unsupervised Oneflsa;lsvS[VM sty (LG 020 DCASE
One-class small Precision 98.17%
AL02 NA hypersphere ) Recall 97.16% NSL-KDD
support vector machine
classifier (OCSHSVM)
A103 NA ELM Accuracy (ACC) 99.94% NSL-KDD
. Accuracy (ACC 995
A104 unsupervised AE K-Means Precisioz, ( ) 99% KDD99
Detection Time 25.43s
. NA ] Accuracy (ACC) 96.57% na
Precision 80.64%
A106 NA xgboost Recall 78.23% real world dataset
F-Score 79%
LERAD na na
A107 NA CLAD DARPA 99
. Accuracy (ACC) 99%
Al108 supervised LR+ RF categoriz/ing Accuracy 93.60% UNSW
False Positive Rate (FPR) 3%
A109 NA Bayesian Detection Rate (DR) 99% DAPRA 1998
Al10 NA DCNN + LSTM Accuracy (ACC) 89% NSLKDD
centered hyperellipsoidal | Detection Rate (DR) 80%
Alll NA support vector machine | False Positive Rate (FPR) 10% real world dataset
CESVM
All2 unsupervised na Detection Rate (DR) 92.06% RTDS
Detection Rate (DR) 94.60%
All13 NA CSI-KNN False Positive Rate (FPR) 3% KDD99
Accuracy (ACC) 95.10%
Accuracy (ACC) 96.24%
Kemeans False Positive Rate (FPR) 0.03% NAD
All4 NA .. True Positive Rate (TPR) 0.76% DED
ID3 Decision Tree
F-Score na MSD
Precision na
Accuracy (DT): 99.36%
Decision Tree FP (DT): 1.29%
FN (DT): 0.00%
ALLS NA Accuracy (NB) 95.23% DARPAI998
Naive Bayes FP (NB) 8.57%
FN (NB) 0.97%
Accuracy 95.50%
1 0,
All6 unsupervised once class SVM ?;T:Z?Z;ife 3333&’4 UNM dataset
Correlation: 0.85
Detection Rate (DR) na
Al17 NA PCA False Negative Rate (FNR) na Abilene (Internet2 backbone)
AUC na
Fuzzy c-means na na
clustering (FCM) + K-
A118 NA means clustering and Netflow data
Gaussian mixture Model
(GMM)
Accuracy (ACC) 82.46%
1 0,
Al19 unsupervised Fuzzy Rough C-means ?;ZCJZ?:niagaggléLR) 34113(5)“2 KDDCup’99
correlation 0.556
Detection Rate (DR) 0.961
Al20 NA DBSCAN Clustering | False Alarm Rate(FAR) 0362 KDD Cup 1999
Al21 NA Extreme lgaming Recall 0.98897 synthetic datasets and three UCI
machine Accuracy (ACC) 0.9513 datasets
. False Positive Rate (FPR) na
Al22 unsupervised random forest Detection Rate (DR) na KDD Cup 1999
convolutional neural Accuracy (ACC) 98.60%
network (CNN), long Recall 89.70%
Al123 NA short-term memory Yahoo S5 Webscope Dataset
(LSTM), and deep
neural network (DNN)
Accuracy (ACC) 85.60%
Al124 NA SVM True Positive Rate (TPR) na real life dataset
False Positive Rate (FPR) na
. Detection Rate (DR) 95%
Al25 | unsupervised LibSVM False Positive R(ate (FPR) 7% KDD Cup 1999
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1 0,
A126 unsupervised SVM and P-kernel ?;t:eciiggigj;ef{(i?zFPR) z;ﬁ’ KDD Cup 1999
sequence-matching False Positive Rate (FPR) 1.5
A127 NA True Positive Rate (TPR) 92.8 Purdue University dataset
algorithm
. Extreme Learnin, Detection Rate (DR) 91%
Al128 supervised Machine (ELM)g Misclassified Rate (MR) 9% ISCX-IDS 2012 dataset
one-class support vector | Accuracy (ACC) 98.59
A129 | semisupervised | machine Witrl)lpramp lose | Detection Rate (DR) 98.25 NSL_KD%E??;;ESX&NBIS g
function False Alarm Rate(FAR) 1.25
A130 supervised SVM and SVR Mean Absolute Error(MAE) na The Argo datasets
Accuracy (ACC) 90%
.. Precision 0.0973
Al131 NA decision tree Recall 0.9074 KDD Cup 1999
ROC Area 0.9073
Accuracy (ACC) 99.40%
Decision Tree, Random | Precision 0.99
Al132 NA Forest, and ANN Recall 0.99 DS20S traffic traces
F-Score 0.99
deep neural network Accuracy (ACC) 99.99%
(DNN), random forest
A133 NA (RF), variational CIDDS-001
autoencoder
(VAE)
Probabilistic Anomaly Detection Rate 95%
Al34 unsupervised DQetection, File False Positive Rate (FPR) 2% real life dataset
Wrapper
F-Score na
. Precision na .
Al3S supervised naive Bayes and knearest | Recall na weall o GBI
neighbo ROC Area na
one-class support vector | Detection Rate (DR) 95.61% .
A136 NA machine (I())pCSVM) Falses Alarm Rate (FAR) 2.14% real life dataset
F-Score 0.4752
A137 | semisupervised Deep Belief Nets 0.0044 real life dataset
Recall 0.5514
Precision 0.4175
. KMeans clustering and True Positive Rate (TPR) na
Al138 supervised SVM SMO ¢ False Positive Rate (FPR) na WHOIS data
Detection Rate (DR) 81.25%
A139 NA Bayes net True Positive Rate (TPR) 97.30% Google play dataset
False Positive Rate (FPR) 31.03%
k-means clustering Mean Squared Error(MSE) na
A140 unsupervised and hierarchical real life dataset
clustering
. rule based decision tree | False Positive Rate 0.13% .
Al41 supervised (RBDT) Detection Rate (D) ol real life dataset
Kohonen neural network | Detection Rate (DR) 83.90%
Al42 NA (KNN) and support KDD Cup 1999
vector machine (SVM)
Genetic Algorithm, Self- | Detection Rate (DR) 88.28
AlM3 superviseq and Organised Feature Map, | False Positi\'/e rate (FPR) 9.17 KDD Cup 1999
unsupervised and Support Vector False Negative Rate (FNR) 15.75
Machine
Al44 NA SVM Standard deviations 0.826 automobile dataset and UCI
benchmark datasets
Support Vector Machine L ceuncyiliCe) 0} NOL
Al45 supervised LIS L b synthetic data set
Random Forest Accuracy (ACC) 0,999 936
F-Score 0,999 968
. Detection Rate (DR na
A146 supervised SVM-+entropy ROC Arca (DR) na KDD Cup 1999
Al47 unsupervised I{/Ziigrsﬁlzzﬁiniupport na na real life dataset
Support Vector Machine | Detection Rate 92.30%
Al148 unsupervised and Self-Organizing KDD Cup 1999
Map
A149 supervised Boosted Decision Tree, | Accuracy (ACC) 0.928 Simulated Dataset and Real-world
Neural Network ROC Area na Dataset
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A150 unsupervised e L el real life dataset
Networks
F-Score 0.88
Al151 NA SVM-RBF Eﬁgtéhz::ammla“on coefficient 8:28; Slammer, Nimda, Code Red I
Precision-Recall 0.8
Accuracy (ACC) 0.941
Sensitivity 0.893
a batch relevance-based ]Ef:;lsf;lg:y gggg
Al52 supervised fuzzyfied learning . NSL-KDD
i - F—Score' 0.914
correlation 0.87
ROC Area 0.93
Error Ratio 0.059
Artifical Neural Network | na na
. . and Mahalanobis Real and synthesized ener;
AIS3 | semisupervised distance based statistical consu);nption data &
approach
| AdepiveNewo ORI AR 56 o
Al154 | semisupervised Anon[;elily ]Z_)titectlon False Alarm Rate(FAR) 0.0159 Kyoto University’s 2006+
S F-Score 0.9148
ROC Area na
naive Bayesian Total Events 252 .
AISS NA classif}';er True Positive Rate (TPR) 29 (17.7%) real life dataset
Average Prediction Time 12.2s
supervised and Detection Rate (DT) 100% .
— ugsupervised SVM False Positive Rate (FPR) 8% Rt
random forest, t Accuracy (ACC) 85%
A157 | unsupervised n:;;g&‘f:fﬂ;ﬁ:;;fg“a_ real life dataset
SNE)
A158 NA structure analysis AUC 0.9967 UMN Dataset
Accuracy (ACC) - standard 96%
. . Accuracy (ACC) - 96%
Al159 unsupervised Hleﬁrchlcal E&z}xﬁgoral reward f}e]w false positive uPMU Dataset
emory (HTM) Accuracy (ACC) - 98%
reward few false negative
one class extreme AUC 0.9706:+0.0029
A160 unsupervised learning machine Kernel real life dataset
(ELMKk)
. Recurrent Neural AUC - word 0.984
Al6l unsupervised Network + LSTM AUC - character 0.977 LANL Dataset
Accuracy (ACC) 98%
True Positive Rate (TPR) 99.4987
Genetic Algorithms + False Positive Rate (FPR) 1.7806
Al62 NA SV%\/I True Negative Rate (TNR) 98.2194 KDD Cup 1998
False Negative Rate (FNR) 0.5013
Mean Squared Error(MSE) 0.0167
Canonical Correlation Mean Squared Error(MSE) 7.5
Al163 NA Analysis (CCA) + novel dataset
Support Vector
Machines (SVMs)
Convolutional Neural precision 0.95
Recall 0.38
Networks (CNN), Deep | F-Score 0.54
Belief Networks (DBN),
ised and Stacked
Al64 supervisea al(ll CTU dataset and real life dataset
unsupervise AutoEncoders (SAE),
Long Short-Term
Memory Recurrent
Networks (LSTM),
A165 supervised SVM Accuracy (ACC) 90% real life dataset
Al66 NA Gaussian models na na na
Al67 NA Hidden Markov Model Detection Rate (DR) 99.60% real life dataset
D-Markov machine with | na na
Al68 NA symbolic false nearest na
neighbors
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real-value negative Detection Rate (DR) na
A169 unsupervised selection + multilayer False Alarm Rate(FAR) na MIT -Darpa 98, MIT- Darpa 99
perceptron
correlational True Positive Rate (TPR) 95%
A170 unsupervised paraconsistent machine | False Positive Rate (FPR) 4% real life dataset
(CPM) ROC Area na
Negative selection + Detection Rate (DR) 100%
multilayer neural True Positive Rate (TPR) 100 . L
A171 NA network False Positive Rate (FPR) 0 fris datase\t; Se.tosla’ Virginica,
(backprogagation) + True Negative Rate (TNR) 50 ersicolor
evolutionary algorithm | False Negative Rate (FNR) 0
* Cluster-based Detection Rate na
Al172 e Estimatio.n False Positive Rate na KDD CUP 1999, 1999 Lincoln
* K-nearest neighbor ROC Area na Labs DARPA
* One Class SVM
A173 NA na Accuracy (ACC) about 80% real-time data from smartphone
False Alarm Rate(FAR) na 1999
Al74 NA DARPA/Lincoln and real-time
LERAD dataset
Correctly Classification rate (CCR) | 99.92%
AL75 NA Incorrectly.clfassiﬁed instance na real life dataset
Kappa Statistics na
Clustering Mean Absoulte Error na
* Adaboost
A176 supervised *SVM AUC, Average Precision 0.99 real life dataset
* Entropy
V-detector
Al77 supervised negative selection detection rate, false alarm rate 99.98 Fisher Iris
SVM 0ocSVM100
Al78 unsupervised Cluster confusion matrix na generated dataset
A179 unsupervised Prmmpfil Components ROC, FPR, TPR na real life dataset
Analysis
A180 NA ;Zrl\rfe;r GA with Neural detection rate 99% KDD Cup 1999
Al81 unsupervised AutoEncoder mean squared error na real life dataset
relevance vector .
A182 NA regression and false alarms rate, detection rate na telerr}etry Gt obtame-:d f“’“.’ an
- orbital rendezvous simulation
autoregression
False alarm probability, Path loss
exponent, Transmission ISR, .
A183 NA gumber of unauthorized na real life dataset
One class SVM transmitters
Al84 T S detectioq r_ate 80.3% nine UNIX users from Purdue
false positive rate 15.30% University
Al85 supervised a Stacked Auto-encoder accuracy 98.67% real life dataset
A186 unsupervised e e e accuracy na CoverType, Mueltccr.(.)ss, Smip, U2R,
A187 supervised k-means clustering na na real life dataset
. detection rate 99.90%
A188 semi- SOM + J.48 decision | classification rate 99.84% KDD Cup 99
supervisesd =
tree false positive rate 1.25%
False Positive Rate (FPR) 833
semi- False Negative Rate (FNR) 619 .
Al89 supervisesd F-Score g 96% real life dataset
LSTM, NN detection rate (DR) 99.99%
two-class SVM with a Accuracy (ACC) 94%
. Radial experimental laboratory earth
A190 TR Basis Function (RBF) F-Score 96% ’ embemkmcntsry
kernel
Al91 NA LSTM accuarcy 99.50% Code Red, Nimda, Slammer
Bayesian
A192 NA accuracy, false alarm, learning time | accuracy: 99% real life dataset
estimation
A193 supervised evolutionary neural Detection rate, False Alarm rate na 1999 DARPA
networks
A194 ] 3D convolutiona AUC 91.2 UCSD pedestrian dataset, . The
AutoEncoder EER 16.7 UMN dataset
A195 unsupervised PCA recall, FPR, Precision na real life dataset
. . AUC-ROC, 0.916+0.004
AR | EEmiETyEmies Neural Network AUC-PR(Precision-Recall) 0.5744+0.008 R G
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synthetic data and data in public
A197 supervised na na domains such as: Colorado Water
1-SVM Watch
Auto encoder based on Precision 0.996 benign
A198 unsupervised Artificial Neural recall 0.999
networks F-Score 0.997 ToT traffic
accuracy, false alarm rate, 95.73
precision, recall, fl-measure
. False Alarm Rate(FAR) 11.86
A199 supervised Random Forest precision 78.65 UNSW-NB15
algorithm and regression | recall 78.65
tree F-Score 78.65
four single classifers Precision 0.8803
(DT, RF, kNN and Recall 0.7017
GBDT) and Linear F-Score 0.8376 System Log of server clusters in a
A200 NA . N . :
Regression Biz Business financial company
GBDT: gradient Type
boosting Decision Tree
simulated data and real HYDICE
A201 NA non linear Mercer kernel ROC curves na
function images
swarm Detection Rate (DR) 92%
A202 unsupervised intelligence-based False Positive Rate (FPS) 10% KDD Cup 1999
clustering
Hidden Markov Model precision 86‘1624 massive real-world datasets from
A203 NA and Support Vector recall 80.07% . AIS
Machine F-Score 83.00% vessel tracking in coagtal waters of
accuarcy 96.70% North America
Ensemble learning True Positive Rate (TPR) 98.1
Autoencoder False Positive Rate (FPR) 1.98 st alin voviatedl b
A204 NA Support Yector AUC na Powersnl:i ths Yy
regression
Random forest
A205 NA ' ROC na simulated MANET and real life
ensemble + clustering dataset
. Accuracy 85.2
A206 R Bayesian mixture False Positive Rate (FPR) 73 LDID) i 1
A207 | unsupervised ‘;‘{f&mble of one class AUC, ROC na DARPA’99 , GATECH
Error Rate 44%
. System Error 202 out 4000 .
A208 NA Naive Bayes ur}llsure 20 out of 4000 real life dataset
corpus error 158 out of 4000
AUC-ROC 0.8661 +
A209 supervised StOCh]jl;:)l;}tigr:‘ gadlent Procision gg;;? < real life dataset
0.0100
Accuracy (ACC) 92.79%
Error Rate (ER) 7.21%
200 | meharpeeies Gaussian model F-Score 94.26% call detail records of real cellular
False Positive Rate (FPR) 14.13% network
Precision 92.34%
Recall 97.05%
Detection Rate (DR) 99% Channel 6
A211 supervised False Positive Rate (FPR) 0.10%
dataset
n-gram ROC Area na
recursive least squares
(RLS) + online
sequential extreme
A212 unsupervised }S[a‘r]\]/jll)nf :i‘r?;{lel?la(yoef— Precision, Recall, F-measure na real world dataset
feed-forward neural
network
(SLEN)
Secure Water
A213 unsupervised Recurrent Neural Cumulative Sum, false positive rate na
Networks Treatment Testbed (SWaT)
Single-window True Positive Rate (TPR) 93% .
s s claisiﬁcation False Positive Rate (FPR) 0.86% real life traffic dataset
A215 NA negative selection-based | Accuracy (ACC) 96.10% KDD Cup 1999
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TABLE 8. (Continued.) Performance metrics among selected papers.

Supervised: Logistic
regression, Decision
g tree, and Support vector -
A216 superv1se'd 3 machine (SVM) Accuracy, Recall, Precision, F- na HDFS and BGL
unsupervised . measure
Unsupervised: Log
Clustering, PCA,
Invariants Mining
A217 unsupervised n-grams efficiency, stability, scaling na na
Detection Rate (DR) 94.48%
A218 supervised K-mean + SMO False Alarm Rate(FAR) 1.20% NSL-KDD
Accuracy (ACC) 97.37%
most relevant principal True Positive Rate (TPR) 91.40%
A219 NA components + neural False Positive Rate (FPR) 3.70% real life dataset
networks
. Detection Rate (DR) 78%
A220 supervised KNN False Alarm Rate(FAR) 1% ADFA-LD
desired false positive rate (DFP),
A221 unsupervised Ensemble of One-Class real false positive rate (RFP), na real life dataset
SVM DR, AUC
Accuracy (ACC) 88.32
A222 unsupervised [l?r?:icstif;l-lli:(t:ﬂ(lDR) zg;g CSIC 2010 data set
Isolation Forest F-Score 84.12
support vector machines | Detection Rate (DR) 90.30%
A223 supervised with a radial basis kernel | False Positive Rate (FPR) 0.50% DARPA/KDD-99
(SVM-RBF)
A224 NA program behavior traces FP, Recall na 1998/1999 Dataset
False Positive Rate (FPR) 3.73%
Fuzzy Adaptive Hit Rate 80.00%
Resonance Theory Cost 0.424
Evolving Fuzzy Neural False Positive Rate (FPR) 2.61%
A225 unsupervised Networks Hit Rate 76.00% KDD Cup 1999
Cost 0.397
False Positive Rate (FPR) 15.70%
SVM Hit Rate 80.00%
Cost 1.14
Anomaly mean 0.76
A226 NA Anomaly standard deviation 0.14 real and synthetic dataset
Temporal relationships | Anomaly threshold 0.99
Naive Bayes Accuracy (ACC) 78.941
Decision table Accuracy (ACC) 94.41
A227 NA 148 Accuracy (ACC) 97.62 KDD dataset
PART Accuracy (ACC) 97.5179
. Digital Corpora, 2008, 2009, and
A228 NA Stream clustering-based CREsT na i I3::;:11 dataset
A229 | unsupervised z‘e’?e‘i‘;‘(‘)’r‘l‘al anomaly Precision-Recall 0.72 KDD CUP 1999
neural network Neuro- Accuracy (ACC) 86.72%
A230 NA Hl:leltzsg d real time data collected by the city
Binary Support Vector | Accuracy (ACC) 98.65% of Aarhus, Denmark
Machines
A231 unsupervised Bayesian Networks Prediction errors na real time data
. Naive Bayes with False Positive Rate (FPR) 4.23%
A232 I adabZost Detection Rate (DR) 84.32% KDD Cup 1999
negative and positive True Positive Rate (TPR) 0.997
A233 supervised selection + C4.5 and False Positive Rate (FPR) 0.028 UCI data repository
Naive Bayes
Precision 96.55%
A234 NA Online Kalman Filtering | Recall 98.25% real time dataset
False Alarm Rate(FAR) 11.11%
Accuracy (ACC) 88.65%
Precision 96.48%
A235 NA Recall 33.08% NSL-KDD
Auto Encoder F-Score 89.28%
AUC 92.50%
A236 unsupervised deep Gaussian mixture Accuracy (ACC) 75.40% WEHD Ped]l)é]i)t:i:et, AT
model + PCANet Equal Error Rate (EER) 15.10%
A237 | semi-supervised gg?;g“:ge Adversarial AUC AUC: 0.882 | CIFARI0 Dataset, MNIST Dataset
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TABLE 8. (Continued.) Performance metrics among selected papers.

78688

. False negative, false positive,
— SUEEREEE Echo State Networks Detectioi rate i na real life dataset
accuracy:
A239 NA Genetic algorithm (GA) accuracy 85.38% NSL-KDD
] 0,
A240 NA Deep Neural Network l?;t:eci(i;lrﬁaltfaigg\m 103/02 real life dataset
CART Decision Trees
(CART), Random Forest
supervised and (RF), S upport Vector‘
A241 . Machines (SVM), Naive ROC ROC: 0.997 MAWILab
unsupervised
Bayes
(NB) and Neural
Networks (MLP)
A242 NA Hidden Markov Model training time na “inetd” and “sride" dataset
A243 NA SVM classified, actual na real time dataset
A244 unsupervised augmenteq Dl iCa TP, TN, FP, FN na stock quote data sources
Mean. Daikon
. J48 + Naive
A245 | supervised and accuracy, TP, TN, FP, FN 88% UNSW-NBI5
unsupervised
Bayes
148 Detection Rate (DR) 99.8
False Alarm Rate(FAR) 0.1
A246 NA BayseNet FD;t:ecZ(izrialt:a?e)(g\R) 39‘9 real time dataset
SMO Detection Rate (DR) 98.6
False Alarm Rate(FAR) 2.9
Deep Belief Network Accuracy (ACO) 94% MINIST
A247 | semi-supervised and Restricted Accuracy (ACC) 94.66% NSL-KDD
Boltzmann Machine Accuracy (ACC) 95% HTTP CSIC 2010
A248 unsupervised K-means clustering na na KDD cup 1999
AUC Area 0.96
K-NN Accuracy (ACC) 85.60%
Hoeffding Adaptive AUC Area 0.79
Trees (HAT) Accuracy (ACC) 99.60%
A249 NA Adaptive Random AUC Area 0.99 MAWILab
Forests (ARF) Accuracy (ACC) 98.20%
Stochastic Gradient AUC Area 0.99
Descent (SGD) Accuracy (ACC) 99.30%
ised and Detected 25
A250 Sll;rl::;vtesri/isaelzi Kernel Recursive Least | Missed 9 network-wide traffic datasets
P Squares FALSE 0
Autoencoder + Kernel AUC Area 0.987
density estimation model
(OCKDE)
A251 NA Autoencoder + Centroid | AUC Area 0.986 NSL-KDD
(OCCEN)
Once class classifier AUC Area 0.971
Autoencoder (OCAE)
False Positive Rate (FPR) 1.2
A252 NA Genetic algorithm (GA) | True Positive Rate (TPR) 96.49 FAmD e 1422
AUC-EER-Exit 90.2/16 UCSD (Ucsd anomaly detection
A253 supervised and fully convolutional AUC-EER-Entrance 90.4/17 dataset, 2017) and Subway
unsupervised neural network
benchmarks (Adam et al., 2008)
Adversarial autoencoder | Area Under Precision Recall Curve 1
(AAE) (AUPRC) . . .
A254 NA variational autoencoder | Area Under Precision Recall Curve | 1 synthetic data, cifar-10, Pixabay,
(VAE) (AUPRC)
A255 supervised Neural networks Detection Error Rate, 0,01375% simulation dataset
True Positive Rate (TPR) 98
A256 NA False Positive Rate (FPR) 0.021 NSL-KDD
F-Score 98
ensemble ROC Area 99.6
. one class SVM + particle
A2s7 | Supervised and AUC 0.952 UCI data set
unsupervised L
swarm optimization
= =
A258 NA Isolation Forest lI;reecc;]sllon 222202 real life dataset
frequent item-set mining | Accuracy (ACC) > 98%
A259 supervised (FIM) + C5.0 + decision | False Positive Rate (FPR) <1% real life dataset
tree
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A260 supervised Ij\;‘cagt SRS e accuracy, precision, recall, F-value 99.50% real life dataset
A261 NA convex-hull SVM ROC curve na KDD’99
Precision 70
Recall 95.4 SWaT
GAN to train LSTM- F-Score 0.81
= R RNNs Precision 53.75
Recall 74.92 WADI
F-Score 0.62
Accuracy (ACC) 0.999 .
A263 NA n-grams Precision 0.993 real life dataset
Precision 0.98
Recall 091
A264 NA Attention-base Multi- F-Score 0.94 CICIDS2017
Flow LSTM Flows 348631
Accuracy (ACCO) 91%
Precision 0.996699
A265 NA KDD Cup 1999
Back Propagation Neural | Recall 0.90059 up
Network F-Score 0.94615
A266 NA Bayesian Learning + true positive rate, false positive na real life dataset
Markov models rate, accuracy
greedy . ]
. AUC, True postive rate, false . ALOI and synthetic data from
A267 unsupervised ensemble positive rate, ROC curve AUC:0.84 MNIST and UCI datasets
A268 unsupervised clustering-based Accuarcy (ACC) 96% public data
n rvised Restricted Boltzmann
A269 | umsupervise Machines (RBM) and na na KDD Cup 1999
and supervised
Autoencoder
Accuracy (ACC) 99%
. Precision 98.30%
A270 unsupervised Recall 99.60% NSL-KDD and Kyoto-Honeypot
LSTM F-Score 99.00%
Precision 0.83
A271 NA Random Forests and Recall 0.85 DARPA 1999 dataset
Entropy F-Score 0.84
A272 NA (s)r\IICI;Z RGN0 detection rate, false positive rate na real life dataset
A273 NA ensamble Accuracy (ACC) na UCI
Precision 0.9992
A274 unsupervised Random Forest Recall 0.9969 NSL-KDD
Classifier F-Score 0.998
A275 NA LSTM-RNN classification accuracy na KDD 1999 dataset
Accuracy (ACC) 99.34%
Precision 0.98
A276 NA Recall 0.98 UNSW-NBI15
Random Forest F-Score 0.98
unsupervised
A277 and supervised | ensamble Accuracy (ACC) na UcCI
Accuracy (ACC) 99.60% SMS- real life dataset
A278 NA Accuracy (ACC) 99.10% iDMA- real life dataset
Accuracy (ACC) 99.20% iTL- real life dataset
Random Forest Accuracy (ACC) 80.60% Touchstroke- real life dataset
Accuracy (ACC) 97.12% TD-Sim
A279 unsupervised False Positive Rate (FPR) 2.60% TD-Sim
P growing hierarchical self | Accuracy (ACC) 99.63% KDD Cup 1999
organizing map False Positive Rate (FPR) 1.80% KDD Cup 1999
. true positive rate, false positive F-measure: .
RS e Autoencoder rate, F-measure 0.418 (basic) CPTHEES Gt
normal Generalization 80
Intrusive Generaliztion 83 C tor 1 Svst
A281 NA Hidden Markov Models | Overall Generaliztio 81.48 omputer immune Systems
— benchmark data
False Positive Rate 20
False Negative Rate 17
Probability Density Function,
A282 NA Kernel PCA Thruster Duty na telemetry data
0,
s [peano (O s
A283 NA Accuracy (ACC) 04.49% real life dataset
FFNN
F-Score 0.97
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TABLE 8. (Continued.) Performance metrics among selected papers.

Neural network, Precision 95.70%
A284 NA Analogous Particle System Efficiency 5.60% real life dataset
swarm optimization Error Rate 0.0403
A285 unsupervised (iOOC]?; Outlier Factor True Positive Rate na real life time series dataset
Precision 99.90%
Decision Forest Recall 99.90%
A286 supervised PFr;:i(i::ir:n g 9929 19 30 real life dataset
Decision Jungle Recall 99.21%
F-score 0.9921
Mean Absolute Error(MAE) 2.9
Mean Squared Error(MSE) 15.8
A287 supervised autoencoder (AE) AUC 0.9969 real life dataset
True Positive Rate (TPR) 98.6
False Positive Rate (FPR) 0.9
A288 supervised k-means and Skip-gram accuracy 98 real life dataset
Detection Rate (DR) 86%
AUC 0.54
Locally Weighted Fl-score 0.86 .
A289 na Proj ect?on Re%gression Precision 0.85 real life dataset
Accuracy (ACC) 0.91
Error rate 16%
Sub-Space Clustering Detection Rate (DR) 0.9
A290 T (SSC) and One Class _ False Alarm Rate(FAR) 0.0905 NSL-KDD dataset
Support Vector Machine
(OCSVM)

accuracy: performance metric, accuracy value, dataset for
construction, and model validation methods.

Since building a ML model relies on the dataset,
we reviewed the data source of ML models for anomaly
detection utilized in the selected research articles. Moreover,
we identified 22 different datasets that have been used in
the experiments of related articles and many other general
datasets. The datasets can be classified as synthetic data,
real life data, and virtualized data. Figure 5 demonstrates
the frequency of utilized datasets in the collected research
articles. As shown in Figure 5, the most frequently used
dataset in the selected research papers was real life dataset,
according to anomaly detection application. In addition,
48 research papers utilized KDD Cup 1999 virtualized dataset
and 38 research papers adopted benchmark datasets.

In addition to datasets, ML models should also be evaluated
with performance metrics. We found 276 papers that clearly
presented the performance metrics of their proposed models.
Figure 6 shows that the performance metric used most was
True Positive Rate (TPR), which is also known as detection
date, sensitivity, and recall. It measures the anomalies that are
correctly classified. Moreover, 116 papers used False Positive
Rate (FPR) as a performance metric. This metric measures
anomalies that are falsely classified, and it can be known
as false alarm rate as well. Furthermore, Accuracy (Acc),
precision, and were F-score applied often by researchers as
a performance metric. Acc is the percentage of anomalies
that were correctly classified. Adding more, AUC measures
the whole two dimensional area under the entire ROC curve.
ROC curve is one of the strongest metrics used to efficiently
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assess intrusion detection systems performance, and it is a
graphical tool that illustrates accuracy across FPS. On the
other hand, Precision is usually associated with F-score and
recall, and it measures the ratio of anomalies that are correctly
classified as an attack. In addition, we find that 64 of the
290 papers used only one performance metric, and most of
those papers used only accuracy or AUC, which is not suffi-
cient to determine the quality performance of the ML model.
On the other hand, papers like A10 and A69 used 7 to 9 per-
formance metrics to represent the performance of their ML
models. Furthermore, a lot of papers present computational
performance metrics in addition to performance metrics, such
as CPU utilization, execution time, training time, testing time,
and computational time. Table 8 in appendix A presents
each paper ID and the proposed ML model along with the
performance and computational metrics applied. Moreover,
it presents anomaly detection types whether it is supervised,
unsupervised, and semi-supervised. As well as the dataset
used for that model.

D. PERCENTAGE OF UNSUPERVISED, SEMI-SUPERVISED
OR SUPERVISED ANOMALY DETECTION TECHNIQUES

In this section, we address RQ4, which aims to present the
percentage of collected research papers that use supervised,
semi-supervised, or unsupervised anomaly detection meth-
ods.

As previously mentioned, anomaly detection can be
divided into three broad classes depending on the feature
of the training data that is applied to construct the model.
The three broad classes are unsupervised anomaly detection,
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semi-supervised anomaly detection, and supervised anomaly
detection. For this RQ we reviewed the classification type
of anomaly detection techniques used in research articles.
According to Figure 7, 27% of the selected papers applied
unsupervised anomaly detection type, making it the most
used technique among the research articles. On the other
hand, 18% applied supervised anomaly detection, while
7% applied both supervised and unsupervised anomaly
detection classification. In contrast, 5% of research articles
adopted semi-supervised learning. Furthermore, 1% applied
semi-supervised with unsupervised anomaly detection. Sur-
prisingly, 42% of the research articles did not mention the
classification type of the anomaly detection they applied.

According to Figure 8, the unsupervised anomaly detection
type has been applied from 2002 until 2020. As for super-
vised anomaly detection type, it was adopted by researchers
in 2002 and has been used until the present time. Supervised
and unsupervised anomaly detection types were utilized from
2005 to 2019. In contrast, supervised and semi-supervised
anomaly detection types were adopted only in 2013 and 2018.
Similarly, unsupervised and semi-supervised anomaly detec-
tion types have only been used twice, in 2011 and 2016. It can
be seen then, that combining semi-supervised learning with
either supervised or unsupervised learning was not adopted
by many researchers compared to the supervised anomaly
detection type or unsupervised anomaly detection type. For
further information on results, Table 8 in Appendix A present
the anomaly detection type of each research article.

IV. LIMITATION OF THIS REVIEW

This systematic literature review is limited to journal and
conference papers related to ML in the field of anomaly
detection. We excluded several non-relevant research papers
by implementing our search approach in the first stages of
the review. This ensured that the research papers chosen
met the research requirements. However, we believe that this
review would have been further enhanced by drawing on
additional sources. Moreover, the same concept applies to
quality assessment since we applied a strict QAR.

V. CONCLUSION

This systematic literature review studied anomaly detection
through machine learning techniques (ML). It reviewed ML
models from four perspectives: the application of anomaly
detection type, the type of ML technique, the ML model
accuracy estimation, and the type of anomaly detection
(supervised, semi-supervised, and unsupervised). The review
investigated the relevant studies that were published from
2000-2020. We queried 290 research articles that answered
the four research questions (RQs) raised in this review.

The findings of RQ1 were that we identified 43 different
applications of anomaly detection in the selected papers.
We observed that intrusion detection, network anomaly detec-
tion, general anomaly detection, and data applications are
the studies most often applied in the anomaly detection area.
Furthermore, between 2011 and 2019 researchers started to
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adopt more applications for anomaly detection. As for RQ2,
we demonstrated 29 different ML models that have been
applied by researchers, with the most commonly used being
SVM. Moreover, we noted an interest in building hybrid
models. In addition, we identified that PCA and CFS are the
most commonly used among 21 feature selection/extraction
techniques. In RQ3 we presented the performance metrics
applied by each research paper, and we found that 64 of
the 290 papers used accuracy or AUC as their main perfor-
mance metric, which is not efficient enough. Furthermore,
we identified 22 different datasets that have been used in the
experiments of related articles as well as many other general
datasets, and most of the experiments used real life dataset as
training or testing datasets for their models. Lastly, in RQ4 we
counted the classification type of anomaly detection used in
selected research articles. We found that 27% of the selected
papers applied unsupervised anomaly detection type, making
it the most used approach among the research articles. The
next most utilized approach was applied supervised anomaly
detection, at 18%, followed by 7% of the papers which
applied both supervised and unsupervised anomaly detection
classification.

Based on this review, we recommend that researchers con-
duct more research on ML studies of anomaly detection to
gain more evidence on ML model performance and effi-
ciency. Moreover, researchers are also encouraged to create
a general structure for introducing experiments on ML mod-
els. Moreover, since we found research papers that did not
mention feature selection/extraction type, this field is impor-
tant for improvement. Furthermore, some of the research
papers reported their results using one performance metric,
such as accuracy, which needs more improvement and more
consideration. We also noticed that several researchers used
old databases in conducting their research. We recommend
researchers use more recent datasets.

APPENDIX
See Tables 4-8.
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