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ABSTRACT Anomaly detection has been used for decades to identify and extract anomalous components
from data. Many techniques have been used to detect anomalies. One of the increasingly significant
techniques is Machine Learning (ML), which plays an important role in this area. In this research paper,
we conduct a Systematic Literature Review (SLR) which analyzes ML models that detect anomalies in their
application. Our review analyzes the models from four perspectives; the applications of anomaly detection,
ML techniques, performance metrics for ML models, and the classification of anomaly detection. In our
review, we have identified 290 research articles, written from 2000-2020, that discuss ML techniques for
anomaly detection. After analyzing the selected research articles, we present 43 different applications of
anomaly detection found in the selected research articles. Moreover, we identify 29 distinct MLmodels used
in the identification of anomalies. Finally, we present 22 different datasets that are applied in experiments
on anomaly detection, as well as many other general datasets. In addition, we observe that unsupervised
anomaly detection has been adopted by researchersmore than other classification anomaly detection systems.
Detection of anomalies using ML models is a promising area of research, and there are a lot of ML models
that have been implemented by researchers. Therefore, we provide researchers with recommendations and
guidelines based on this review.

INDEX TERMS Anomaly detection, machine learning, security and privacy protection.

I. INTRODUCTION
Detecting anomalies is a major issue that has been studied
for centuries. Numerous distinct methods have been devel-
oped and used to detect anomalies for different applications.
Anomaly detection refers to ‘‘the problem of finding patterns
in data that do not conform to expected behavior’’ [1], [2].
The detection of anomalies is widely used in a broad variety
of applications. Examples of these include fraud detection,
loan application processing, and monitoring of medical con-
ditions, An example of a medical application is heart rate
monitors [3]. Other widely used applications of detecting
anomalies include cyber security intrusion detection [4]–[6],
fault detection for aviation safety study, streaming, and hyper-
spectral imagery, etc. The importance of detecting anomalies
in various application domains concerns the risk that unpro-
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tected data may represent significant, critical, and actionable
information. For instance, detecting an anomalous computer
network traffic pattern may expose an attack from a hacked
computer [7]. Another example would be the detection of
anomalies in the transaction data of a credit card, which may
indicate theft [8]. Besides, detecting an anomaly from an
airplane sensor may result in the detection of a fault in some
of the components of the aircraft.

Anomaly is defined at an abstract level as a pattern, not
in line with the ordinary anticipated behavior. Anomalies are
classified into three main categories [1], [9], [10]:

1. Point Anomalies: If a single data instance can be con-
sidered anomalous for the remainder of the data, the instance
is called a point anomaly and is regarded as the simplest
anomaly form.

2. Contextual Anomalies: If in a particular context a data
instance is anomalous, but not in another context, it is called
a contextual anomaly. There are two attributes of contextual
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anomalies: contextual attributes and behavioral attributes.
The first attribute is applied to determine an instance’s context
(or neighborhood). For example, the longitude and latitude
of a location are contextual attributes in spatial datasets.
Moreover, time is a contextual attribute in time series data
that determines an instance’s position on the entire sequence.
The second attribute is considered as attributes of behavior
where it defines an instance’s noncontextual features. For
example, the amount of rainfall that occurs at any location
in a spatial dataset describing the world’s average rainfall is
a behavioral attribute.

The preference for using the technique of contextual
anomaly detection is determined by the significance of the
contextual abnormalities in the target area. The availability
of qualitative attributes is another significant aspect. In some
instances, it is easy to identify a context, and thus it makes
sense to apply a contextual detection technique. In other
instances, it is not possible to establish a sense such that
certain methods are difficult to use.

3. Collective anomalies: If a set of associated data
instances is anomalous for the entire dataset, it is called a
collective anomaly.

Statistical anomaly detection techniques are some of the
oldest algorithms used to detect anomalies [10]. Statistical
methods build a statistical model for the ordinary behavior
of the data provided. A statistical inference test may then be
carried out to detect whether or not an instance belongs to
this model. Several methods are used to conduct statistical
anomaly detection [11]. This includes proximity based, para-
metric, non-parametric, and semi-parametric methods.

Machine learning (ML) techniques are increasingly being
used as one of the approaches to detect anomalies. ML is
the effort to ‘‘automate the process of knowledge acquisition
from examples’’ [12]. The technique is used to build a model
that distinguishes between ordinary and abnormal classes.
Anomaly detection can therefore be split into three broad
categories based on the training data function used to build
the model. The three broad classes are [1], [13]:
• Supervised anomaly detection: In this class, both the

normal and anomalous training datasets contain labeled
instances. In this model, the approach is to build a predictive
model for both anomaly and normal classes and then com-
pare these two models. However, in this mode, two issues
occur. First, the number of anomalies in the training set is
much lower when compared with normal instances. Second,
precise and representative labels are challenging to identify,
particularly for the anomaly class.
• Semi-supervised anomaly detection: Training here

includes only ordinary class cases. Therefore, anything that
cannot be classified as ordinary is marked as anomalous.
Semi-supervised techniques presume that training data have
labeled instances for the normal class alone. Since they do
not need anomaly class labels, they are more common than
supervised methods.
• Unsupervised anomaly detection: In this case, training

datasets are not required for the methods. Therefore, those

methods imply that normal instances are muchmore common
than anomalies in test datasets. However, if the assumption
fails, it leads to a high false alarm rate for this technique.

Many semi-supervised techniques can be adapted to oper-
ate in an unsupervised mode by using unlabeled dataset sam-
ples as training data. Such adaptation assumes that there are
very few anomalies in the test data and these few anomalies
are robust to the model learning during training.

This study’s primary objective is to conduct a systematic
review that represents a comprehensive study of ML tech-
niques for anomaly detection and their applications. More-
over, this review studies the accuracy of the ML models and
the percentage of research papers that apply supervised, semi-
supervised, or unsupervised anomaly detection classification.
We believe that this review will enable researchers to have
a better understanding of the different anomaly detection
methods and guide them in reviewing the recent research
done on this subject.

To the best of our knowledge, there are very few Systematic
Literature Reviews (SLR) on detecting anomalies through
machine learning techniques, which has motivated this work.
Research articles were read thoughtfully and were selected,
based on Kitchenham and Charter’s methodology [14]., with
regards to (i) the main prediction research work done in
anomaly detection, (ii) the ML algorithms used in anomaly
detection, (iii) the estimation and accuracy of ML models
proposed, and (iv) the strength and weaknesses of the ML
technique used.

The remainder of this paper is divided into six
sections: Section 2 provides information on related
work. Section 3 describes the methodology used in this
research. Section 4 lists the results and discussions.
Section 5 addresses the limitations of this review. Finally,
Section 6 contains a discussion and suggestions for future
work.

A. LITERATURE REVIEW
Detection of anomalies is an important issue that has been
investigated in various fields of study and implementation.
Many detection methods for anomalies have been created
specifically for certain applications, while others are more
generic. For example, Chandola et al. [1] provided an exten-
sive survey of anomaly detection techniques and applications.
A board review of different techniques of Machine learn-
ing as well as non-machine learning, such as statistical and
spectral detection methods, was discussed in detail. More-
over, the survey presents several applications of anomaly
detection. Examples include cyber intrusion detection, fraud
detection, medical anomaly detection, industrial damage
detection, image processing detection, textual anomaly detec-
tion, and sensor networks. The same authors introduced
another survey [10] on the topic of anomaly detection for
discrete sequence. The authors provided a comprehensive
and structured overview of the existing research on the prob-
lem of detecting anomalies in discrete/symbolic sequences.
In addition, Hodge and Austin [15] presented an overall
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FIGURE 1. Research methodology.

TABLE 1. Inclusion & exclusion criteria.

study of machine learning and statistical anomaly detection
methodologies. Also, the authors discussed comparatively
the advantages and disadvantages of each method. On the
other hand, Agrawal and Agrawal [8] proposed a survey on
anomaly detection using data mining techniques.

Several surveys were mainly focused on detecting anoma-
lies in specific domains and applications, such as [16] where
the authors presented an overall survey of wide clustering

based fraud detection and also compared those techniques
from several perspectives. In addition, Sodemann et al. [17]
presented anomaly detection in automated surveillance,
where they provided different models and classification algo-
rithms. The authors examined research studies according
to the problem domain, approach, and method. Moreover,
Zuo [18], provided a survey of the three most widely used
techniques of anomaly detection in the field of geochemical
data processing; Fractal/multi-fractal models, compositional
data analysis, and machine learning (ML), but the author
focuses mainly on machine learning techniques. On the other
hand, He et al. [19] surveyed the framework of log based
anomaly detection. The authors reviewed six representative
anomaly detection methods and evaluated each one. The
authors also compared and contrasted the precision and effec-
tiveness of two representative datasets of the production log.
Furthermore, Ibidunmoye et al. [20] provided an overview
of anomaly detection and bottleneck identification as they
related to the performance of computing systems. The authors
identified the fundamental elements of the problem and then
classified the existing solutions.

Anomaly intrusion detection was the focus of many
researchers. For instance, Yu [21] presented a comprehensive
study on anomaly intrusion detection techniques such as sta-
tistical, machine learning, neural networks, and data mining
detection techniques. Also, Tsai et al. [22] reviewed intrusion
detection, but the authors focused on machine learning tech-
niques. They provided an overview of machine learning tech-
niques designed to solve intrusion detection problems written
between 2000 and 2007. Moreover, the authors compared
related work based on the types of classifier design, dataset,
and other metrics. Similarly, Patcha and Park [23] pre-
sented an extensive study of anomaly detection and intrusion
detection techniques, and Buczak and Guven [24] surveyed
machine learning and data mining methods for cyber intru-
sion detection. They provided a description of each method
and addressed the challenges of using machine learning and
data mining in cyber security. Finally, Satpute et al. [25] pre-
sented a combination of various machine learning techniques
with particle swarm optimization to improve the efficiency of
detecting anomalies in network intrusion systems.

The detection of network anomalies has been an important
area of research [26], [27] Therefore, many surveys focused
on that topic. For example, Bhuyan et al. [11] presented a
comprehensive study of network anomaly detection. They
identified the kinds of attacks that are usually encountered by
intrusion detection systems and then described and compared
the effectiveness of different anomaly detection methods.
In addition, the authors discussed network defenders’ tools.
Similarly, Gogoi et al. [7] surveyed an extensive study of
well-known distance based, density based techniques as well
as supervised and unsupervised learning in network anomaly
detection. On the other hand, Kwon et al. [28] mainly focused
on deep learning techniques, such as restricted Boltzmann
machine based deep belief networks, deep recurrent neural
networks, as well as machine learning methods appropriate to
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network anomaly detection. In addition, the authors presented
experiments that demonstrated the practicality of using deep
learning techniques in network traffic analysis.

Our systematic review is different from those described
above, as we are presenting an extensive research study on
detecting anomalies through machine learning techniques.
Table 6 in Appendix A summarizes the related work and
displays the differences between it and our work.

Our study differs from the related work in various aspects,
such as:

1. Machine learning techniques are included, and the
model types of techniques include supervised, semi-
supervised, or unsupervised anomaly detection.

2. Precision comparison of each technique
3. A comprehensive approach is presented which includes

the advantages and disadvantages of each technique.
4. Covers the period from 2000 to 2020, which is quite

recent.

II. METHODOLOGY
In this study, we conducted a Systematic Literature
Review (SLR) based on Kitchenham and Charters method-
ology [14]. The method includes the stages of planning and
conducting research, and reporting. There are several phases
in each stage. The planning phase is divided into six dif-
ferent stages. The first stage is to identify study questions
that are based on the review’s objectives. The second stage,
in relation to specifying the proper search terms, is developing
the search strategy, for collecting research papers related to
the topic that fulfill the research questions. The third stage
is to identify the study selection procedures, which include
the exclusion and inclusion rules. In the fourth stage, rules
are identified for quality assessment to be used to filter the
collected study papers. The fifth stage involves detailing an
extraction strategy to answer the research questions that were
specified before. Finally, the sixth stage involves synthesizing
the data obtained. We followed the review protocol, and this
is demonstrated in the following subsections.

Error! Reference source not found. below illustrates this
research methodology.

A. RESEARCH QUESTIONS
This SLR intends to summarize, clarify and examine the ML
techniques and implementations that were applied in anomaly
detection from 2000 through 2020

inclusive. The following four research questions (RQs) are
raised for this purpose:

1.RQ1: What is the main prediction about research
work done in anomaly detection?

RQ1 aims to identify the prediction research work that is
done in anomaly detection, whether the prediction is an ML.

2.RQ2:What kinds ofML algorithms are being applied
in anomaly detection?

RQ2 aims at specifying the ML methods that have been
applied in the detection of anomalies.

3.RQ3: What is the overall estimation and accuracy of
machine learning models?

RQ3 is concerned with ML model estimation. Estimation
accuracy is the main performance metric for models of ML.
This question focuses on the following three elements of
estimation accuracy: dataset building, performance metric,
and accuracy value.

4.RQ4: What is the percentage of papers that address
unsupervised, semi-supervised, or supervised anomaly
detection?

RQ4 aims to present the percentage of collected research
papers that use unsupervised, semi- supervised, or supervised
anomaly detection techniques.

B. SEARCH STRATEGY
We followed the following procedure to construct the search
term:

1) Main search terms are identified from the research
questions.

2) New terms were defined to replace main terms such as
intrusion, outliers, and synonyms.

3) Boolean operators (ANDs and ORs) are used to limit the
search results.

4) The search terms that are used in this review are related
to anomaly detection and machine learning.

Below are the digital libraries that we used in this search
(journals and conference papers):
• Google Scholar
• ACM Digital Library
• Springer
• Elsevier
• IEEE Explorer
According to our inclusion/exclusion criteria, 290 papers

were used in this review. They include 95 journal papers and
195 conference papers.

C. STUDY SELECTION
In the beginning, we collected 350 papers based on the search
terms mentioned earlier. Later, we filtered those papers to
verify that only papers related to the topic were included in
our review. The filtration process was discussed among the
co-authors at planned periodic meetings. The filtration and
selection processes are explained below:

Step 1: Remove all the duplicated articles that were col-
lected from the different digital libraries.

Step 2:Apply inclusion and exclusion criteria to avoid any
irrelevant papers.

Step 3: Remove review papers from the collected papers.
Step 4: Apply quality assessment rules to include only the

qualified papers that ensure the best answer for our research
questions.

Step 5: Search for additional related papers from refer-
ences in the collected papers from step 4 and repeat step 4 on
the new added articles.
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TABLE 2. Selected papers’ quality assessment results.

TABLE 3. Anomaly detection applications among articles.

The applied inclusion and exclusion criteria in this review
are discussed in Table 1. In the end, after conducting
the filtration steps, 290 papers were observed for this
review.

D. QUALITY ASSESSMENT RULES (QARs)
The QARs were the final step in the identification of the
final list of papers to be included in this review. The QARs
are essential to guaranteeing and assessing the quality of the
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FIGURE 2. Anomaly detection applications iteration per year.

FIGURE 3. Machine learning techniques observed.

FIGURE 4. Feature selection/extraction techniques observed in the literature.

research papers. Therefore 10 QARs are identified and each
is given a value of 1 mark out of 10. The score of each QAR is

selected as follows: ‘‘fully answered’’ = 1, ‘‘above average’’
= 0.75, ‘‘average’’ = 0.5, ‘‘below average’’ = 0.25, ‘‘not
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FIGURE 5. Utilized datasets in collected research articles.

FIGURE 6. Percentage of anomaly detection type.

answered’’ = 0. The summation of the marks obtained for
the 10 QARs is the score of the article. Moreover, if the result
is 5 or higher, we consider the article; otherwise, we exclude
it. Moreover, we choose the score 5 as it represents the middle
point of the good quality articles and it answers our intended
research questions.

QAR1: Are the study objectives clearly recognized?

FIGURE 7. Frequency of performance metrics among.

QAR2: Are the anomaly detection techniques well defined
and deliberated?

QAR3: Is the specific application of anomaly detection
clearly defined?

QAR4: Does the paper cover practical experiments using
the proposed technique?

QAR5: Are the experiments well designed and justifiable?
QAR6: Are the experiments applied on sufficient datasets?
QAR7: Are estimation accuracy criteria reported?
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TABLE 4. Machine learning techniques among research articles.

QAR8: Is the proposed estimation method compared with
other methods?

QAR9: Are the techniques of analyzing the outcomes suit-
able?

QAR10: Overall, does the study enrich the academic com-
munity or industry?

E. DATA EXTRACTION STRATEGY
In this step, our aim was to analyze the final list of papers
to extract the required information for answering the four
research questions. Consequently, we extracted the following
information from each paper: paper number, title of the paper,
publication year of the paper, publication type, anomaly
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FIGURE 8. Anomaly detection classification type per year.

application type, RQ1, RQ2, RQ3, and RQ4. Due to the
unstructured nature of information, extraction was challeng-
ing. For instance, for associated methods such as ‘‘J48’’ or
‘‘C4.5,’’ researchers would use distinct terminologies. It is
essential to note that the four research questions were not
answered by all papers.

F. SYNTHESIS OF EXTRACTED DATA
In order to synthesize the information obtained from the cho-
sen papers, we used various processes to aggregate evidence
to answer the RQs. The following describes in detail the
method of synthesis we followed: We used the technique of
narrative synthesis to tabulate the information obtained in
accordance with RQ1 and RQ2. We use binary outcomes to
analyses the results for the information obtained (quantita-
tive) in RQ3 and RQ4, which came from different papers with
distinct accuracy calculation methods that are presented in a
comparable way.

III. RESULTS AND DISCUSSIONS
In this section, we address the outcomes of this review. This
subsection gives an overview of the selected papers of this
review. The results of each research question are addressed
in detail in the following five sections. A total of 290 stud-
ies were chosen which implemented machine learning for
anomaly detection. These research articles were published
between 2000 and 2020. The list of these papers is included
in Table 7 in Appendix A. As explained earlier, a quality
assessment criterion is used to stream the articles on the basis
of the marks obtained. Research articles of grade 5 or higher
(out of 10) have been taken into consideration. Moreover,
the frequency of the QAR score of the selected paper is listed
in Table 2.

A. ANOMALY DETECTION APPLICATIONS
In this section, we address RQ1 which aims to identify the
prediction research work that has been done in anomaly
detection.

Anomaly detection techniques are mainly divided into two
classifications: machine learning based, and non-machine
learning based. The non-machine learning based techniques
can be classified into statistical and knowledge based.
Regarding this review, there are 274 articles that discuss
the detection of anomalies through machine learning tech-
niques. On the other hand, there are 16 articles that focus on
non-machine learning based techniques.

Detection of anomalies can be used in a wide variety of
applications. In this review, we identified 43 different appli-
cations in the selected papers. The list of these applications
appears in Table 3.

As shown in Table 3, the review indicates that intru-
sion detection, network anomaly detection, general anomaly
detection, and data applications are the studies applied most
often in the anomaly detection area. In addition, the table
contains comprehensive information on the frequency with
which anomaly detection application is used by the selected
articles.

Moreover, the review shows that researchers began to adopt
more applications of anomaly detection between 2011 and
2020. For further information on results, Figure 2 illustrates
the distribution of anomaly detection application per year
during the period considered.

B. TYPES OF MACHINE LEARNING TECHNIQUES
In this section, we address RQ2, which aims at specifying
the machine learning techniques that have been used to detect
anomalies between 2000 and 2020.
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TABLE 5. Machine learning techniques strength and weakness.

As a fundamental point of this review, the most frequently
used ML methods in anomaly detection are identified along
with an evaluation of these methods. The evaluation of the

TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

methods considers all the phases of the method’s experiment,
such as the feature selection phase, extraction phase, etc.
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TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

TABLE 5. (Continued.) Machine learning techniques strength and
weakness.
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TABLE 5. (Continued.) Machine learning techniques strength and
weakness.

As shown in Figure 3, we identified 28 ML techniques that
had been applied by researchers in the development of models
to detect anomalies on their application. These techniques
can be divided into six categories: classification, ensemble,
optimization, rule system, clustering, and regression. Those
ML techniques are used in two forms: standalone or hybrid
models. Hybrid models are obtained by combining two or
more ML techniques. Table 4 represents the frequency of ML
techniques among the collected research articles. Accord-
ing to Table 4 in Appendix A, it can be seen that a lot of
researchers used to combine more than one ML technique.
This includes A2 (DBN with one class SVM), A23 (SVM
withGA), andA14 (SVMwithK-Medoids clustering).More-
over, SVM is the most used technique as either standalone or
in hybrid models.

Feature selection/extraction has been discovered exten-
sively in the literature and it is a significant move towards dis-
carding irrelevant data, which helps to enhance and improve
the precision and computational efficiency of the suggested
models. Figure 4 demonstrates 21 different feature selec-

TABLE 6. Related work summary.
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TABLE 6. (Continued.) Related work summary. TABLE 6. (Continued.) Related work summary.

tion/extraction techniques that are being applied. Moreover,
we notice that PCA and CFS are the feature selection tech-
niques being used most often in anomaly detection. Even
though this step is very important, most of the research arti-
cles did not include it. While some research articles did apply
this step, the techniques were not discussed.

Table 5 in Appendix A represents some of the research
articles that mentioned the strength or weakness of their
proposed machine learning model. Therefore, Table 5 shows
the research article number, the machine learning technique,
and the strength or weakness if mentioned.

C. OVERALL ESTIMATION AND ACCURACY OF ML
MODELS
In this section, we address RQ3 which is concerned with the
estimation of ML models. Estimation accuracy is the pri-
mary performance metric for machine learning models. This
question focuses on the following four aspects of estimation
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TABLE 7. Selected research article.
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TABLE 7. (Continued.) Selected research article.
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TABLE 7. (Continued.) Selected research article.
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TABLE 7. (Continued.) Selected research article.
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TABLE 7. (Continued.) Selected research article.
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TABLE 7. (Continued.) Selected research article.
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TABLE 7. (Continued.) Selected research article.
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TABLE 8. Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.

VOLUME 9, 2021 78679



A. B. Nassif et al.: Machine Learning for Anomaly Detection

TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.
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TABLE 8. (Continued.) Performance metrics among selected papers.

VOLUME 9, 2021 78689



A. B. Nassif et al.: Machine Learning for Anomaly Detection

TABLE 8. (Continued.) Performance metrics among selected papers.

accuracy: performance metric, accuracy value, dataset for
construction, and model validation methods.

Since building a ML model relies on the dataset,
we reviewed the data source of ML models for anomaly
detection utilized in the selected research articles. Moreover,
we identified 22 different datasets that have been used in
the experiments of related articles and many other general
datasets. The datasets can be classified as synthetic data,
real life data, and virtualized data. Figure 5 demonstrates
the frequency of utilized datasets in the collected research
articles. As shown in Figure 5, the most frequently used
dataset in the selected research papers was real life dataset,
according to anomaly detection application. In addition,
48 research papers utilizedKDDCup 1999 virtualized dataset
and 38 research papers adopted benchmark datasets.

In addition to datasets,MLmodels should also be evaluated
with performance metrics. We found 276 papers that clearly
presented the performance metrics of their proposed models.
Figure 6 shows that the performance metric used most was
True Positive Rate (TPR), which is also known as detection
date, sensitivity, and recall. It measures the anomalies that are
correctly classified.Moreover, 116 papers used False Positive
Rate (FPR) as a performance metric. This metric measures
anomalies that are falsely classified, and it can be known
as false alarm rate as well. Furthermore, Accuracy (Acc),
precision, and were F-score applied often by researchers as
a performance metric. Acc is the percentage of anomalies
that were correctly classified. Adding more, AUC measures
the whole two dimensional area under the entire ROC curve.
ROC curve is one of the strongest metrics used to efficiently

assess intrusion detection systems performance, and it is a
graphical tool that illustrates accuracy across FPS. On the
other hand, Precision is usually associated with F-score and
recall, and it measures the ratio of anomalies that are correctly
classified as an attack. In addition, we find that 64 of the
290 papers used only one performance metric, and most of
those papers used only accuracy or AUC, which is not suffi-
cient to determine the quality performance of the ML model.
On the other hand, papers like A10 and A69 used 7 to 9 per-
formance metrics to represent the performance of their ML
models. Furthermore, a lot of papers present computational
performance metrics in addition to performance metrics, such
as CPU utilization, execution time, training time, testing time,
and computational time. Table 8 in appendix A presents
each paper ID and the proposed ML model along with the
performance and computational metrics applied. Moreover,
it presents anomaly detection types whether it is supervised,
unsupervised, and semi-supervised. As well as the dataset
used for that model.

D. PERCENTAGE OF UNSUPERVISED, SEMI-SUPERVISED
OR SUPERVISED ANOMALY DETECTION TECHNIQUES
In this section, we address RQ4, which aims to present the
percentage of collected research papers that use supervised,
semi-supervised, or unsupervised anomaly detection meth-
ods.

As previously mentioned, anomaly detection can be
divided into three broad classes depending on the feature
of the training data that is applied to construct the model.
The three broad classes are unsupervised anomaly detection,
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semi-supervised anomaly detection, and supervised anomaly
detection. For this RQ we reviewed the classification type
of anomaly detection techniques used in research articles.
According to Figure 7, 27% of the selected papers applied
unsupervised anomaly detection type, making it the most
used technique among the research articles. On the other
hand, 18% applied supervised anomaly detection, while
7% applied both supervised and unsupervised anomaly
detection classification. In contrast, 5% of research articles
adopted semi-supervised learning. Furthermore, 1% applied
semi-supervised with unsupervised anomaly detection. Sur-
prisingly, 42% of the research articles did not mention the
classification type of the anomaly detection they applied.

According to Figure 8, the unsupervised anomaly detection
type has been applied from 2002 until 2020. As for super-
vised anomaly detection type, it was adopted by researchers
in 2002 and has been used until the present time. Supervised
and unsupervised anomaly detection types were utilized from
2005 to 2019. In contrast, supervised and semi-supervised
anomaly detection types were adopted only in 2013 and 2018.
Similarly, unsupervised and semi-supervised anomaly detec-
tion types have only been used twice, in 2011 and 2016. It can
be seen then, that combining semi-supervised learning with
either supervised or unsupervised learning was not adopted
by many researchers compared to the supervised anomaly
detection type or unsupervised anomaly detection type. For
further information on results, Table 8 in Appendix A present
the anomaly detection type of each research article.

IV. LIMITATION OF THIS REVIEW
This systematic literature review is limited to journal and
conference papers related to ML in the field of anomaly
detection. We excluded several non-relevant research papers
by implementing our search approach in the first stages of
the review. This ensured that the research papers chosen
met the research requirements. However, we believe that this
review would have been further enhanced by drawing on
additional sources. Moreover, the same concept applies to
quality assessment since we applied a strict QAR.

V. CONCLUSION
This systematic literature review studied anomaly detection
through machine learning techniques (ML). It reviewed ML
models from four perspectives: the application of anomaly
detection type, the type of ML technique, the ML model
accuracy estimation, and the type of anomaly detection
(supervised, semi-supervised, and unsupervised). The review
investigated the relevant studies that were published from
2000-2020. We queried 290 research articles that answered
the four research questions (RQs) raised in this review.

The findings of RQ1 were that we identified 43 different
applications of anomaly detection in the selected papers.
We observed that intrusion detection, network anomaly detec-
tion, general anomaly detection, and data applications are
the studies most often applied in the anomaly detection area.
Furthermore, between 2011 and 2019 researchers started to

adopt more applications for anomaly detection. As for RQ2,
we demonstrated 29 different ML models that have been
applied by researchers, with the most commonly used being
SVM. Moreover, we noted an interest in building hybrid
models. In addition, we identified that PCA and CFS are the
most commonly used among 21 feature selection/extraction
techniques. In RQ3 we presented the performance metrics
applied by each research paper, and we found that 64 of
the 290 papers used accuracy or AUC as their main perfor-
mance metric, which is not efficient enough. Furthermore,
we identified 22 different datasets that have been used in the
experiments of related articles as well as many other general
datasets, and most of the experiments used real life dataset as
training or testing datasets for their models. Lastly, in RQ4we
counted the classification type of anomaly detection used in
selected research articles. We found that 27% of the selected
papers applied unsupervised anomaly detection type, making
it the most used approach among the research articles. The
next most utilized approach was applied supervised anomaly
detection, at 18%, followed by 7% of the papers which
applied both supervised and unsupervised anomaly detection
classification.

Based on this review, we recommend that researchers con-
duct more research on ML studies of anomaly detection to
gain more evidence on ML model performance and effi-
ciency. Moreover, researchers are also encouraged to create
a general structure for introducing experiments on ML mod-
els. Moreover, since we found research papers that did not
mention feature selection/extraction type, this field is impor-
tant for improvement. Furthermore, some of the research
papers reported their results using one performance metric,
such as accuracy, which needs more improvement and more
consideration. We also noticed that several researchers used
old databases in conducting their research. We recommend
researchers use more recent datasets.

APPENDIX
See Tables 4–8.
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