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ABSTRACT Vision-based manipulation has been largely used in various robot applications. Normally,
in order to obtain the spatial information of the operated target, a carefully calibrated stereo vision system
is required. However, it limits the application of robots in the unstructured environment which limits
both the number and the pose of the camera. In this study, a calibration-free monocular vision-based
robot manipulation approach is proposed based on domain randomization and deep reinforcement learning
(DRL). Firstly, a learning strategy combined domain randomization is developed to estimate the spatial
information of the target from a single monocular camera arbitrarily mounted in a large area of the
manipulation environment. Secondly, to address the monocular occlusion problem which regularly happens
during robot manipulations, an occlusion awareness DRL policy has been designed to control the robot to
avoid occlusions actively in the manipulation tasks. The performance of our method has been evaluated on
two common manipulation tasks, reaching and lifting of a target building block, which show the efficiency
and effectiveness of our proposed approach.

INDEX TERMS Monocular vision, reinforcement learning, reward shaping, robot manipulation.

I. INTRODUCTION
Obtaining the position of the target is the cornerstone of
the general robotic manipulation for either regular motion
planning or the modern learning-based operations such as
the reinforcement learning approaches [1]. One of the most
prevalent methods for target location estimation is the class
of visual perception approaches. The traditional way for
obtaining the 3D position of targets in pixel is to directly
calculate the target location via the transition between the
pixel coordinate and the 3D cartesian coordinates, precision
of which depends heavily on the camera calibration [2].
To implement this type of method, one has to tell where the
target is in advance through additional object detection meth-
ods, which is indirect and might be inefficient for practical
implementations. Another direct way for the target position
estimation is to regress the location of the target directly based
on a given image containing the target by deep learning (DL)
techniques. One challenge is that both of the mentioned
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methods are only applicable to the scenario that the cam-
eras are fixed throughout the entire strategy-development-
and-implementation process. Once the camera is moved and
settled again, the calibration-based method has to repeat the
calibration process, and the regression-based method has to
collect new data from the altered camera perspective for the
training purpose, this is because the target-location estimator
trained with the data collected from a specific camera per-
spective usually performs poor when the camera is remounted
to a new location. To tackle the camera remounting problem,
one solution is to collect the data from various camera per-
spectives, which is apparently costly and time consuming.
Instead, one can benefit from utilizing the data augmentation
technique through simulation to produce a large amount of
diverse data to train the DL-based estimator for obtaining
target locations. However, this will introduce the problem
of ‘‘reality gap’’ due to the domain difference between a
simulation environment and a real scene.

Domain randomization [3] is a prevalent method to solve
the sim-to-real problem by increasing the diversity of the
simulated scenarios to cover the real scene. However, it is
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pretty difficult to achieve satisfactory model transfer from a
simulation setup to a real scene without significant expertise
and tremendous manual adjustment to config the simulation
parameters [4]. It is also noted that even with elaborate con-
figuration of simulation parameters, the transfer errors are
still inevitable. To tackle this problem, this paper proposes
a calibration-free method that relaxes the requirement of the
domain randomization, and further improves the accuracy of
a transferred model (DL-based estimator) trained based on
simulation data to a real scene. The additional cost of the fine
tuning procedure includes only 5-10 more real images and a
few fine training steps (as shown in the left panel of Fig. 1).
As the 3D position of the end-effector of a robotic arm can
be obtained easily, the sampling of the real images containing
target and location information can be done automatically via
several pick-and-place operations.

FIGURE 1. Left: Illustration of the framework for estimating 3D position
of a target based on images from random camera angles, which utilizes
a DL-based location estimator fine-tuned with a few real images. Right:
The state estimator is used to extract the information such as the position
and occlusion status of the target which are then feeded into the state
and reward shaping of the DRL. The combined state-based DRL makes
the agent learn a policy that avoids the self-occlusion actively, and thus
complete the task more efficiently.

It is noted that fine-tuned state estimator can work well
in the scenes that contain no unexpected objects. However,
during robotic manipulations, one of the biggest challenges
of applying a monocular camera to estimate states of a target
is the self-occlusion which could be induced directly by the
robot arm itself [5], [6]. In such a case, the predicted target
position usually comes with large error especially when the
target object is completely invisible in the camera’s perspec-
tive [3]. To overcome this challenge, inspired by the human
manipulation, which can avoid the vision self-occlusion by
adjusting his or her action actively, this study proposes to
incorporate the occlusion information into the deep reinforce-
ment learning (DRL) policy to make the agent be able to
aware and solve occlusion actively by itself (as shown in
the right panel of Fig. 1). This paper firstly develops and
validates the DL-based state estimator (without occlusions)
systematically, and then establishes the DRL strategy with
occlusion-awareness based on the developed state estima-
tor. Evaluation of the entire DRL scheme is performed on
two common robot manipulation tasks, reaching and lifting

(with occlusions). The result shows that the DL-based state
estimator can achieve a much higher accuracy compared to
the raw randomization method. Besides, the manipulation
results show that the DRL scheme with occlusion-awareness
can achieve an excellent performance in the simulation envi-
ronment. This study also evaluates the proposed scheme in
the real robot manipulation tasks by transferring the state
estimator from the simulation to the real scene. Though
with a certain of accuracy reduction for the model transfer,
the occlusion scheme can still complete the tasks with a high
success rate.

There are two main contributions of this paper summa-
rized as follows. Firstly, we propose an efficient DL-based
state estimator that can estimate the 3D position of a tar-
get from random camera perspectives without camera cal-
ibration, which is based on the sim-to-real technique and
fine-tuning approach with a few real scene images. Secondly,
based on the state estimation method, the occlusion infor-
mation that caused by the robot arm itself is taken into the
DRL scheme through the estimated states and reward shaping
during the policy training, which enables the robot to solve
the self-occlusion problem during operations actively.

II. RELATED WORK
A. METHODS FOR TARGET POSE ESTIMATION
AND MODEL TRANSFER
Pose estimation of target objects has been widely studied.
A common method is based on the estimation of the cor-
responding relation between a 2D pixel and a 3D point.
In this setting, traditional method [7]–[9] or learning-based
method [10]–[12] are firstly used to extract the 2D fea-
tures, and then the pose can be calculated with Perspective-
n-Point (PnP) algorithms [13]. There are also methods
that combine the object detection and 6D pose estimation
together and directly regress the 6D object pose from RGB
images [14], [15]. Most of those methods are tested on com-
mon datasets such as YCB [16] and T-LESS [17] which
have rich label information. However, for a real scene, col-
lecting enough labelled data to train the deep network is
always costly. Besides, those methods can only work well
in the scene that the camera is fixed throughout the entire
strategy-development-and-implementation process, limiting
applications in practices.

In contrast to the expensive real scene data collection and
labelling scenario, a simulation environment can produce a
large quantity of labelled data quickly and freely, and the
camera can be simply mounted anywhere. However, it has
been shown difficulties of directly applying the model trained
using simulation data to a real scene for obtaining satisfactory
results due to the ‘‘reality gap’’. To solve the sim-to-real prob-
lem, domain randomization is proposed and has been widely
applied in vision system [18]–[20]. For example, in [18],
a VAE-based affordance representation model is trained for
following motion planning by random alteration of textures,
clutter and lighting. Researchers also applied the domain
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randomization to end-to-end policy training that directly
maps the images to action, such as flying real quadrotor
through indoor environments [19], lifting block [20] and
manipulating a block from an initial configuration to a goal
configuration [21]. Besides, domain randomization has been
extended to dynamical system which is called dynamics ran-
domization [22]. By randomizing the dynamics parameters
such as link mass [22], static and dynamic friction [23],
dynamic gap between a simulated robot and a real robot can
be largely narrowed.

Although randomization is powerful for enhancing capa-
bility of the sim-to-real technique, it is still unclear how to
select the form and parameters of those domain distribu-
tions [24], which requires significant expertise and tremen-
dous manual adjustments [4]. If the choice is not good,
the zero-shot performance in real scene may be poor. What’s
more, a generalized model that performs well across different
domains might not exist [25]. Fine-tuning of a model that
has been pretrained in ImageNet [26] can give well result
in object recognition [27], but it requires a large amount
of data for the fine tuning. Meta learning (MAML [28]) is
another method that can improve the generalization ability
of the model by utilizing a few data from a target domain,
which has been widely applied in object detection [29], [30]
and classification [31]. Inspired by the mentioned works,
this paper proposes to combine real scene data-based fine
tuning method with the domain randomization to relax the
requirement of designing the simulation parameters to further
improve the accuracy of the regular domain randomization.
When performing this technique to estimate target location,
we firstly construct the domain distribution with a large range
of camera angles in the simulation environment and train a
model based on the generated virtual data, and subsequently
utilize a few number of real scene images to improve the
model by fine-tuning or meta learning, which is capable of
utilizing costly data efficiently.

B. VISION-GUIDED DRL METHODS FOR TACKLING
ROBOTIC MANIPULATION WITH OCCLUSION
There is an increasing trend of studies that apply DRL
to the decision-making problem from directly using the
low-dimension physical characteristics [32]–[35], to the end-
to-end policy training with high-dimension input (such as
using images as states [36], [37]). Generally, compared
with the high sample complexity of end-to-end policy train-
ing [38], [39], the policy trained with low-dimension infor-
mation becomes more attractive. In manipulation, a common
way of applying DRL is to firstly pre-train a representa-
tion model to convert the high-dimension information (such
as images obtained from cameras) to the low-dimension
information which serves as the state during the policy
learning process. For instance, a representation model that
combines the current state and target state is trained to get
a target-driven visual navigation policy [39], [40]. In [41],
a compact and multi-modal representation which com-
bines the RGB image, force-torque and proprioception was

pre-trained to get a peg insertion policy that is robust to
external occlusion and perturbations. In [3], a detector that
based on the VGG-16 [42] has been trained to regress 3D
Cartesian coordinates of the target object. With the help of
domain randomization, the model can keep a relatively high
accuracy in a real scene by training in simulation. However,
it also shows a large accuracy reduction when the occlusion is
encountered. Actually, few attempts have been made to solve
the occlusion problem in the area of reinforcement learning.
A common method to tackle the occlusion is to apply the
camera-in-hand configuration. For example, in [43] and [44],
the camera is installed at the end of the robot, so that the robot
will not shade the key information during moving. While the
eye-in-hand method is good at solving occlusion problems,
it is not easy for a commercial gripper to have a camera
working with it, since the camera lens might be contaminated
or even damaged in some scenarios. In this paper, we fixed the
camera at a specific location to monitor the entire working
area to guide robotic manipulations. It should also be noted
that if the fixed-camera scheme performs well in our specific
tasks, the eye-in-hand structure should be able to perform
better.

Inspired by humanoid manipulation, active occlusion
avoidance should be a fundamental ability of vision-based
robot manipulations. Therefore, in this study, the occlusion
information is used in both robot manipulation state estima-
tor and the reward shaping to realize the occlusion avoid-
ance automatically. To fulfill reliable robotic manipulation
with calibration-free monocular vision guidance, the fol-
lowing contents are arranged: the DL-based state estimator
will be built and analyzed in section III; the DRL with
occlusion-awareness method and regarding manipulation set-
tings will be introduced in section IV; experiment results
and regarding analysis will be elaborated in section V, and
conclusion will be summarized in section VI.

III. DL-BASED STATE ESTIMATOR FOR OBTAINING
TARGET OBJECT LOCATION
To fulfill vision-guided DRL robotic manipulation of target
objects, a state estimator that used to obtain the 3D position
of the target needs to be established first. In this section,
we firstly compare and evaluate performances of several
general DL models that could serve as state estimators for
regressing location of a target block, and then the influences
of the occlusions are considered and analyzed.

A. GENERAL METHODS FOR REGRESSING
POSITION OF A TARGET BLOCK
To perform efficient training while maintaining generalized
capability of a DL model for estimating target location in 3D
task space of a real scene, domain randomization [3] is
applied in the simulation environment, and then the model
is fine-tuned by a few real scene images. For the domain
randomization, the color and texture of the background and
table are randomly selected. The light of the scene and the
position of the camera were also changed in a large range
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TABLE 1. Parameter ranges for randomization.

(see details in Table 1, it is noted that during altering the shaft
orientation of the camera, the direction of the focus is kept
in the center of the table). We totally collect 4,000 scenes
and 10 images for each scene (totally 40,000 images) in the
simulation environment as the training set. For the real scene,
a random camera position is selected (without knowing the
camera parameters) and 50 real scene images are collected
as the testing set. VGG-16 [42] and ResNet34 [45] are two
networks that serve as the main part of the state estimator (as
shown in Fig. 2). The input of the estimator is 224× 224× 3
RGB image which comes from a monocular camera. The
loss function of estimator is the mean squared error between
the predicted 3D position and the ground truth. In addi-
tion, the meta learning (MAML [28]) which aims to quickly
adapt a trained DL model to a new scene through a few of
samples-based fine tuning, is also taken into consideration.

FIGURE 2. The network structure of the state estimator for target block
location regression.

Fig. 3 illustrates the framework for training the state esti-
mator. When performing the common DL model training
method, all the scene images generated by simulation are
directly used to train the state estimator. Before applied to a
real scene task for performance evaluation, the state estimator
is fine-tuned with a few real images by Adam optimizer.
When performing the meta learning method for training the
state estimator, every single scene (e.g. a series of images of a
target object captured from a specific camera perspective with
randomly selected render setting) in simulation is designed
as the sub-task, and the support set contains 20% of images
of this scene while the remaining 80% images make up the
query set [28]. The fine tuning steps of the meta learning is
identical to that of the common deep learning. The evaluation
result is illustrated in Table 2, where ‘‘Fine-VGG’’ means that
the VGG-based model is firstly trained on simulation data
set, and then fewer real scene images (from 0 to 10) are used

FIGURE 3. Framework of the training process for optimizing a DL state
estimator.

TABLE 2. Performance comparison among three state estimators with
different settings.

to fine tune the model; the ‘‘Fine-ResNet’’ is similar to the
‘‘Fine-VGG’’, which is based on the ResNet34 backbone; the
‘‘Meta-VGG’’ is based on VGG backbone and trained using
Meta learning method. The values in the Table 2 is calculated
by three random seeds.

From Table 2, it can be seen that though significant domain
randomization has been applied to the simulation environ-
ment, the state estimators with different settings still show
poor accuracy when there is no real scene data-based fine
tuning process. The result is quite different from that in [3],
and an explanation may be that the randomization parameters
need expertise experience to adjust and to determine. Though
there are poor performances of all three types of estimators
for zero-shot transfer from a simulation to a real scene,
the accuracy becomes higher as the number of images used
to the fine tuning process increases. It is also noted that the
Fine-VGG has a higher accuracy than that of the Meta-VGG,
independent of the number of images used in the fine tuning
process. The evaluation results indicates that the meta learn-
ing may not be suitable for the specific location estimation
task compared with the common training method which can
extract the common features more effectively. By comparing
performance of the Fine-VGG with that of the Fine-ResNet,
one can see all the results of the Fine-ResNet are better than
the counterpart, therefore, the ResNet34 is determined as the
backbone of the state estimator in the following study.

B. STATE ESTIMATOR CONSIDERING OCCLUSION
INFORMATION
In order to realize the intelligence for avoiding occlusion
during manipulation tasks, a robot has to know what is occlu-
sion. Different from the data set in part A above, which is
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sampled when the pose of a robot arm is frozen, a new data
set is collected in the simulation environment when there is a
randomly moving robot arm to train and to extend capability
of the state estimator. To show occlusion influence on the
performance of the state estimator, a range of camera settings
where occlusions are easily encountered are chosen. Based
on the Fine-ResNet, occlusion information is concatenated
to the 3D position information of a target. The occlusion
information is represented as the ratio of the target block’s
exposure area to its full surface area (as shown in Fig. 4).

FIGURE 4. Illustration of the occlusion occurs during the robot
manipulation: total occlusion (a), partial occlusion (b), and no occlusion
(c). The occlusion proportion is evaluated by calculating the ratio
between the exposed part and the full area of the target block.

The loss function of the state estimator considering
occlusion is defined as follows:

LResNet = −
∑3

m=1
(dm − d̃m)2 − |(O− Õ)|, (1)

where dm (m =1,2,3) represents the actual x, y and z value
in the world coordinate and d̃m (m =1,2,3) denotes the pre-
dicted x, y, z value generated by the state estimator. O and Õ
represent the actual occlusion ratio and the one predicted by
the state estimator, respectively.

The occlusion data proportion is controlled up to 30% dur-
ing training. A number of 180, 000 images were captured and
labeled automatically in the simulation environment to train
the state estimator. Another 25, 000 data (20, 000 data with
occlusion and 5, 000 data without occlusion) were used to
test the obtained state estimator. By adding the randomization
during the training process, the accuracy of the state estimator
has been improved significantly (themean error reduced from
10 cm to 0.84 cm for the data without the occlusion, and
from 12 cm to 1.34 cm for the data with occlusion). Although
the state estimator has tolerance of partial occlusion to some
extent, the error could be unbounded in the case of full
occlusion, which demonstrates the necessity of the occlusion
avoidance ability for robot manipulation.

IV. DRL STRATEGY WITH OCCLUSION AWARENESS
FOR ROBOT MANIPULATION
A. OVERVIEW OF THE POLICY LEARNING
The goal of this research is to control a robot in an unstruc-
tured environment with a robust policy that can complete
tasks using vision information from a single monocular cam-
era. Although some traditional controllers could also deal
with the noisy and uncertain feedbacks, it has to redesign

the control system once the environment changes. There-
fore, in order to make the control system scalable to various
environments, the robot should be able to learn the control
policy by itself. In this study, we use the DRL to build a
fully autonomous control algorithm that can complete the
manipulation in an unstructured environment. The policy
training process is shown in Fig. 5, the state estimator is
trained in section III and frozen in policy training, and the
proprioception contains the information of the angle and
angle velocity of each joint of the robot arm.

FIGURE 5. Illustration of the DRL structure and training process.

The policy learning can be considered as a standard
finite-horizon, discounted Markov Decision Process (MDP).
At time step t , the agent observes a state s ∈ S and takes an
action a ∈ A with respect to the policy π : S → A. Then the
agent gets a reward r according to the mapping S × A→ R,
and observes the next state s′. Horizon T and discount factor
γ ∈ (0, 1] represent the maximal step in a single episode
and the degree that rewards decay over time, respectively.
The γ is set to 0.9 for all experiments in this paper. Our
goal is to maximize the expected total reward G(π ) in the
finite-horizon T , where G(π) can be written as:

G(π) = Eπ

[ T∑
t=0

γ r(st , at )
]
. (2)

Particularly, S is the low-dimension information with clear
physical meaning which contains two parts: the robot propri-
oception (such as the angle of joint) in the joint space, and
the information of the target object (estimated by the state
estimator learned from high-dimension image data) in the
task space. A is defined as the continuous angle velocity of
7 joints and the grasping status of the end-gripper. The policy
is represented by a neural network with parameters θπ . In this
paper, we select the Deep Twin Delayed Deep Deterministic
policy gradient algorithm (TD3) [33] as the underlying RL
algorithm.

B. CONFIGURATION OF THE POLICY LEARNING
1) Task setup. We evaluate our scheme in two common
manipulations, reaching and lifting of a building block. Both
tasks are conducted in the Robosuite environment [46], which
is developed based on the MuJoCo physics engine [47]. All
the simulative experiments are running on 2080Ti GPU with
TensorFlow deep learning framework. The robot we used in
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this study is a 7-DOF robot (SCR5, Siasun. Co, Shenyang,
China) with a two-finger gripper. For the reaching task,
the gripper is kept closed, and the task is completed onlywhen
the end of gripper touches the target block orwithin 3 cm from
the center of the block. For the lifting task, the robot should
grasp the block at first, and then lift it 4 cm away from the
desktop to complete the task.

2) Reward shaping. To simplify the exploration and to
improve the learning efficiency, we adopt the following
staged reward function.

r1 = 1− tanh(10× d) (reaching)

r2 =

{
0.25 if block is grasped,
0 if else.

(grasping)

r3 =

{
1 if block is lifted for 4 cm,
0 if else.

(lifting)

ro =

{
−α × (1− o)2 if 1−o > β,

0 if else.
(occlusion)

where d is the Euclidean distance between the end gripper
and the target block. 1− o is the occlusion proportion which
is detailed in section III. α is the coefficient of the occlusion
reward. β is the occlusion threshold which means the occlu-
sion reward makes effect only when the occlusion rate is large
enough. For the reaching task, the reward for policy learning
is set as Rreach = r1 + ro. For the lifting task, the reward for
policy learning is Rlift = r1 + r2 + r3 + ro.
3) Evaluation metrics. The episode reward is used to eval-

uate the policy performance. Specifically, during the eval-
uation, the episode reward is calculated by the true state
(obtained from the simulation environment directly) rather
than the predicted state by the state estimator. For the reaching
and lifting experiments, the policy was run for 5, 000 and
15, 000 episodes, respectively, with each episode lasting for
200 steps. We evaluate 5 episodes every 20 training episodes.
Mean and standard deviation curves are drawn across 4 indi-
vidual tests with different random seeds. Besides, the suc-
cess rate of task completion is also used as an indicator of
manipulation performance that each policy can achieve.

V. EXPERIMENTAL RESULTS AND ANALYSIS
Particularly, the experiments are designed to address the
following questions: 1) How does the policy trained with
our state estimator perform in the robot manipulation tasks?
2) Whether the agent trained with our method can solve the
occlusion problem, and to what degree? To answer these
questions, we make several ablations for both reaching and
lifting task as follows:
Oracle: Using the ground truth as the state and to calculate

the reward.
End-to-end pixel (ETE): Instead of using the state esti-

mator, the system directly trains a policy to map the image to
action with sparse reward.
Predicted state with no occlusion information (PNO):

Using the position information predicted by the estimator as

the state, which means the occlusion information is not taken
into consideration of both the state and the reward.
Predicted state with occlusion information but no occlu-

sion reward (PNR): Using the position and occlusion infor-
mation predicted by the estimator as the state without involv-
ing the occlusion information into the reward shaping.
Predicted state with occlusion information and occlusion

reward (POR): Using the position and occlusion information
predicted by the estimator as the state, and using the occlusion
information in reward shaping.

A. TRAINING RESULTS OF THE REACHING TASK
The training curves of the reaching task are shown in Fig. 6.
It can be seen that the episode reward of the ETE nearly
maintains zero during the training process, which means that
the agent did not learn anything about how to complete the
task at all. It is consistent with the fact that it is hard to train
the policy directly from high-dimension input such as image
due to the high sample complexity, especially when occlusion
is involved.

FIGURE 6. The training curves of the reaching task. The solid line and
shade area represent the mean and standard deviation for different
random seeds, respectively. α and β are two coefficients that can be
adjusted in the POR, for example, POR-0106 means that α is 0.1 and β

is 0.6, respectively.

Oracle represents the case using low-dimension informa-
tion such as the position of the target object, and both the state
and reward are just obtained from the environment directly
without any noise or disturbance. That is the reason why it has
the fastest convergence speed and the highest mean episode
reward (170). In addition, since all of the state and reward
come from the low-dimension observer, it is not necessary to
take the occlusion into consideration. However, in the real
practice of robot manipulation, it is difficult to obtain the
low-dimension information directly, unless a number of posi-
tion sensors are used in a structured environment. In such a
condition, the PNOmethod can feed back the agent with both
the estimated state and reward. Although this estimation is not
as accurate as the low-dimension observer, it still provides
a decent environment information that can make the agent
converge (as shown in Fig. 6). However, almost all of the
vision-based servo control methods experience the occlusion
problem including the PNO network. When the occlusion
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occurs, the agent will get less accurate state feedback (which
has been proved in section III) and thus it will become
difficult to maintain decent performance. This is a possible
explanation for the phenomenon that the PNO converges
relatively slow and obtains lower total reward (under 100)
compared with other methods.

To solve the occlusion problem, an alternative way is to
use multi-view information from the cameras at different
locations. However, it will increase both the system com-
plexity and hardware cost. Therefore, the best way to solve
the occlusion problem could be to make the control system
aware of the occlusion and avoid it actively. In order to verify
this assumption, we designed an experiment, inside which the
occlusion information is provided to the agent as the state
and corresponding occlusion punishment (POR). Hopefully,
the agent can solve the occlusion problem by avoiding occlu-
sion actively but still can complete the desired manipulation
task. The experimental results (as shown in Fig. 6) show that
during all of the 6 tests (for different reward coefficient and
occlusion threshold), all of the POR performed better than
PNO. In specific setting (α = 0.1 and β = 0.4), POR can
even get 60 episodes reward higher than PNO. It means that
thePOR can solve the occlusion problem actively without any
additional interference.

Interestingly, a different combination of α and β may
come out with quite different performance. For thePOR-0104
(α = 0.1 and β = 0.4), the episode reward reaches 160,
but for the POR-0208 (α = 0.2 and β = 0.8), the episode
reward is even lower than 100. It shows that a little change
in the occlusion reward could lead to very different policy
performance. A reasonable explanation for this is that when
the end-effecter (the gripper) of the robot arm is getting
close to the target block, it could produce new occlusion,
and the occlusion reward term may prevent the policy from
getting better performance. Therefore, the proper occlusion
coefficient setting is important for the agent to solve the
occlusion problem but does not affect the completion of the
manipulation task. To further investigate the influence of the
occlusion reward item, we designed another ablation experi-
ment which set both α and β to zero (PNR). The experimental
result shows that the policy performance of the PNR is similar
to the PNO, which means that simply adding the occlusion
to the state may not lead to better performance, and it can be
concluded that it is important to make the use of the occlusion
information in the reward shaping properly.

B. TRAINING RESULTS OF THE LIFTING TASK
To further evaluate our scheme in a more general manipula-
tion scene, we conduct a series of experiments in lifting task
which is a multi-stage task comprised of the reaching, grasp-
ing, and lifting process. The ablation experimental results
(as shown in Fig. 7) illustrate that the Oracle still gives
the best performance (the episode reward can reach as high
as 320). It is consistent with the analysis in reaching task,
because the agent can obtain the accurate state and reward

FIGURE 7. The training curves of the lifting task. The annotations are
consistent with the Fig. 6.

without any noise or error. As for PNO, the final episode
reward in the lifting task is similar to that in the reaching
task (both are under 100). It means that in the lifting task,
the agent trained withPNO can learn to reach the target block,
but cannot complete the followed grasping and final lifting
process. An intuitive reason is that compared to reaching
stage, the grasping stage and final lifting stage will encounter
more occlusions (in grasping stage and final lifting stage,
the gripper must touch the block and thus lead to the occlu-
sions). The occlusion problem reduces the accuracy of the
predicted position of the target block, and thus finally makes
a negative influence of the policy performance.

Compared to the PNO, the highest episode reward of the
POR (POR-0204) can reach 260, which is about 160 higher
than the PNO. It shows that our method can solve the occlu-
sion problem in a large degree. It should be noted that for
specific POR (POR-0108), the episode reward is even lower
than thePNO. As there is plenty room to adjust the coefficient
α and β, it is possible that there exist some typical combina-
tions of α and β to produce relatively good or bad result which
increases the complexity of parameter optimization work.
An amazing result is that the performance of the PNR (the
one uses the occlusion information for the state but not for the
reward), is quite similar to the best of the POR (POR-0108).
It illustrates that simply adding the occlusion information to
the state can produce surprising effect which contradicts the
result in the reaching task. A reasonable explanation is that
when more occlusions occurred in the lifting task, it becomes
more difficult to balance the occlusion reward item (ro)
and the task reward item (r1, r2, r3) through adjusting the
parameter α and β. For the POR, the agent may learn to
utilize the occlusion information in the state even without the
corresponding reward item, which performs more intelligent
behavior.

C. SUCCESS RATE FOR REACHING AND LIFTING TASK
To study the influence of the occlusion on the state, the suc-
cess rates of two ablations (PNO and PNR) are illustrated
in Fig. 8. It can be seen that for the reaching task, the success
rate of the PNR is 12.2% higher than that of PNO. For the
lifting task, the success rate of the PNR is 69.2% while that of
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FIGURE 8. Success rate comparison between the policies with and
without occlusion ratio in their state for completing the two tasks.
100 episodes are determined for each ablation, and it shows the mean
value of the 100 episodes for each ablation with 4 random seeds.

the PNO is only 8.2%. It shows that considering the occlusion
information into the state can produce positive effect on
the policy, which enables the agent to utilize the occlusion
information effectively. The reason for the PNR performing
much better than the PNO in the lifting task compared to
that in the reaching task should be that, for PNO policy in
the lifting task, the agent could encounter more occlusions,
which limits the performance. As discussed in part B of this
section, if more occlusions are encountered, the accuracy
of the predicted position of the target block reduces more,
and it will finally make a negative influence on the policy
performance.

To further study the influence of the occlusion in the
reward, the success rates of all ablations in reaching and
lifting tasks are collected and shown in Fig. 9. It can be
seen that for the reaching task, the POR-0104 can get 97.2%
success rate, which means that the agent can almost complete
the reaching task for all 4 random seeds. However, for the
lifting task, the success rate of PNR is 69.2%, which is much
higher than the best of POR. As the PNR is a special case of

FIGURE 9. The success rate of the tasks with different α and β value.

the POR (when α = 0 and β = 0), suggesting that it is better
to let the agent utilize the occlusion information itself rather
than to specify the parameters of reward shaping.

To quantitatively illustrate that the proposed scheme can
solve the occlusion problem, a series of tests of occlu-
sion proportion during manipulation tests were calculated.
For each ablation experiment in previous subsection A and
B, we recorded the average blocked-to-exposed proportion
of 100 episodes, which is shown in Fig. 10. The maximal
exposed proportion for each step is defined as 1.0 corre-
sponding to the situation that the target block is completely
exposed, and the maximal exposed value of each episode is
200 as there are 200 steps contained in each episode. For the
POR, we select the policy that performs best in the ablation
tests (POR-0104 for reaching task and POR-0204 for lifting
task).

FIGURE 10. Average and standard deviation of blocked-to-exposed
proportion of 100 episodes for different ablations.

The Fig. 10 shows that for both reaching and lifting
tasks, the policy POR employing visual occlusion reward
has a much higher average blocked-to-exposed proportion.
In detail, 157 and 166.7 for reaching task and lifting task,
respectively. It means that the PNO scheme can improve
the visual occlusion problem significantly compared to the
PNO and PNR. In addition, for the reaching task, both of
PNO and PNR have a similar relatively low average blocked-
to-exposed proportion (88.2 for PNO and 86.3 for PNR).
It means that in the reaching task, introducing the occlusion
information into the state only cannot solve the visual occlu-
sion problem, which is consistent with the result and analysis
in the subsection A. For the lifting task, we find that PNR has
a superior performance for tackling the visual occlusion com-
pared to PNO (133 for PNR and 85 for PNO), which explains
why PNR performs much better than PNO in subsection B.
A reasonable explanation for the different performances
between PNR and PNO for tackling the visual occlusion in
various tasks is that for the lifting task, the gripper touches the
target block more frequently, and thus has a higher occlusion
probability, which finally enhances the learning ability of
PNR for solving the visual occlusion problem.
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D. REACHING TASK WITH DIFFERENT TARGET BLOCKS
To evaluate the performance of our scheme on reaching
target blocks with different shapes, we set up a scene that
contains three types of building blocks with cube, rectangle
and cylinder shape. Instead of training and testing the policy
with each type of block independently, these blocks aremixed
and utilized to train the policy together. In detail, for the
initial state of each episode, one of three types of block is
randomly selected as the target to interact with the robot
arm and the environment. Typical training process images
containing different targets are shown in Fig. 11.

FIGURE 11. The scene with three different types of building blocks: The
size of the cube block (a) is 5 cm×5 cm×5 cm, rectangle (c) is
4 cm×5 cm×6 cm. The height and radius of the cylinder (b) is 8 cm and
3 cm, respectively.

It has been shown in Fig. 6 that setting hyperparameter
α and β to 0.1 and 0.4 can achieve the best performance
among the existing parameters in the reaching task, thus
we adopt this setting (POR-0104) and conduct another three
ablation experiments ((PNO, PNR and Oracle) to illustrate
the effectiveness of the proposed strategy. The training curves
of the reaching taskwith different blocks are shown in Fig. 12.

FIGURE 12. The training curves of reaching task with different blocks. The
annotations are consistent with that of Fig. 6.

It can be seen from Fig. 12 that the Oracle still can
obtain highest mean episode reward (170) when the accu-
rate low-dimension information is used, which is consistent
with the result shown in Fig. 6. In addition, the PNO, that
does not utilize any occlusion information, performs worst,
which illustrates the importance of incorporating occlusion
information into the DRL learning scheme. Different from
the results shown in Fig. 6, the mean episode reward of

POR-0104 can only reach up to 135 in this scenario, which
is about 30 lower than that of Fig. 6. The most possible
reason is that for the scenario with different types of blocks,
the fixed parameter setting (α to 0.1 and β to 0.4) is not
quite suitable, and there should be some other parameter
configuration that fits this task better. It is also noted that the
mean episode reward of thePNR is 20 higher than POR-0104,
which is also inconsistent with the result of Fig. 6. The reason
might be that targets with different shapes prefer different
hyperparameter settings, therefore, it is better to only add the
occlusion information into the state and let the agent learn
how to utilize the information itself.

E. REAL ROBOT IMPLEMENTATION
An advantage of the proposed scheme is that it can achieve
decent policy transfer from a simulation to a real scene by
domain randomization technique. To test the effectiveness of
our scheme in a real scene, we conducted two experiments
of the reaching task. One is the PNO corresponding to the
scene that only utilizes the position information of the target
block. Another one is POR (POR-0104) corresponding to the
scheme that involves the occlusion information in the state
and reward shaping. We firstly trained the two policies above
for PNO and POR in our Robosuite simulation environment
for angle control instead of angle velocity as the real robot
only supports angle control. After that the trained policies
were transferred to the real robot control system directly. The
hardware setup for this experimental test is shown in Fig. 13.
The platform contains a monocular camera (ZED, Stereolabs,
San Francisco, CA, US, only a single view was used in
this study), a 7-DOF robot (SCR5, Siasun. Co, Shenyang,
China) with a flexible gripper, and an operation table with
a cubic building block on it. The size of horizontal table
and building block are 80 cm×80 cm and 5 cm×5 cm×5 cm,
respectively. At the beginning of each episode, the config-
uration of the robot and the position of the target block

FIGURE 13. Experimental setup for the robot manipulation.
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were randomly selected. For both simulation and real scene,
we tested 10 episodes and recorded the success rate for the
PNO and POR, which are summarized in Table 3.

TABLE 3. The comparison of success rate.

As is shown in Table 3, the POR policy has a better
performance in the term of success rate compared with the
PNO policy, which is consistent with our simulation result.
It means that the occlusion information is important in the
policy training and testing process. It should be also noted
that both of the success rates of the POR and PNO in the sim-
ulation are higher than that in the real scene. An explanation
for this phenomenon is that although domain randomization
has been used in this experiment, the state estimator comes
up with larger variance after transferring, which could be the
main reason for this lower success rate. However, through
further randomization and fine-tuning process, the gap should
be smaller and thus the result in the real scene should be more
consistent with that in the simulation.

FIGURE 14. A rollout for the real robot manipulation tests of PNR and
POR.

To illustrate the relation between the occlusion and effec-
tiveness of manipulation, some frames in each testing episode
of PNO and POR during the robot manipulation are shown
in Fig. 14. It can be seen that, for the POR, the robot tries
to avoid the occlusion actively when the robot is about to
shield the target block, and thus complete the task effectively.
However, for the PNO, although the robot tries to get close to
the target block at the beginning, as the robot cannot perceive
the occlusion (there is no occlusion information in state and
reward), it is easy to encounter the occlusion problem which
leads to an inaccurate state and reward to the agent. That is
the reason why the success rate of the PNO is lower than POR
in both simulation and real scene.

VI. CONCLUSION
In this study, we propose a universal method that can esti-
mate the 3D position of a target object in random camera

perspective without calibration. By fine tuning the state esti-
mator with a few real scene images, the accuracy of the
state estimator can reach up to 7.8 mm without occlusions
which is the highest accuracy as we know. The occlusion,
which is a common but neglected problem, is also taken into
consideration of the DRL policy design. By introducing the
occlusion information to states and reward (when α = 0.1
and β = 0.4), we find that the policy is improved much in
the reaching task (the success rate rises from 77.8% to 97.2).
Besides, a pair of α and β performing well for all different
tasks may not exist. But in the scene that occlusion is easily
encountered, we find that adding the occlusion information
to the state only can improve accuracy of the DRL policy
(improve the success rate from 77.8% to 90.0% for the reach-
ing task and improve the success rate from 8.2% to 69.2% for
the lifting task). In addition, in the real robot implementation,
our scheme can achieve 70.0% success rate in the reaching
task by transferring the policy from simulation to the real
scene directly without any further training, and that illus-
trates the effectiveness of the proposed policy with occlusion
awareness. Thismethod could also be easily extended to other
manipulation tasks through modifying the reward function
accordingly without altering the state estimator.
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