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ABSTRACT This paper presents a machine learning method, Gaussian Mixture Hidden Markov Model
(GMM-HMM), for device-free activity recognition using WiFi channel state information (CSI). The basic
concept of CSI is introduced and signal changes caused by human activity are described, which demonstrates
that human activity can be identified using a unique mapping between action and signal variations. The
phase difference expanded matrix is built by the mean and standard deviation of phase difference as feature
matrix after linear correction and Savitzky-Golay filter is performed on the CSI raw phase information. The
GMM-HMM is used for classification as the human activity can be modeled as the Markov process and the
complex activity patterns can be fitted by multiple Gaussian density functions, respectively. The proposed
system is verified on the self-collected datasets and several factors affecting the recognition accuracy are
analyzed. Furthermore, the system has compared with the previous work. High accuracy and robustness
in universal scenarios are realized. Experimental results show that the average recognition accuracy of the
proposed system is over 97%.

INDEX TERMS Activity recognition, channel state information (CSI), device-free, Gaussianmixture hidden
Markov model (GMM-HMM), phase difference.

I. INTRODUCTION
Recent years have witnessed increasing research interest in
human activity recognition as it benefits multiple applica-
tions, such as intrusion detection [1], [2], smart homes [3],
and health care services [4]. With the popularity of WiFi
devices and the rich channel characteristics of channel state
information (CSI), human activity recognition based onWiFi
CSI has attracted widespread attention. Traditional recog-
nition methods, such as sensor-based applications, usually
require users to wear or attach smart devices, which increases
inconvenience and obstruction for users [5], [6]. Vision-based
human activity recognition methods have the problems of
privacy security invasion and susceptibility to environmental
influences such as light interference [7].

Compared with these approaches, WiFi-based activity
recognition is capable of overcoming those disadvantages.
There is no need for users to carry any equipment. Moreover,
it enjoys the advantages of low cost, easy installation, and pri-
vacy protection. The current WiFi-based activity recognition
technology typically utilizes two wireless signals, namely
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Radio Signal Strength Indicator (RSSI) and Channel State
Information(CSI) [8]. RSSI is susceptible to narrowband
interference and multipath interference, with low identifica-
tion accuracy and limited performance. In the contrast, CSI
can present the amplitude and phase of multipath propagation
at different frequencies, thereby providingmore abundant and
stable channel parameters.

At the phase of activity recognition, the traditional Gaus-
sian Mixture Hidden Markov Model (GMM-HMM) is used
for it has strong data modeling capabilities and especially
Gaussian Mixture Model (GMM) is known as the universal
distribution approximator. Hidden Markov Models (HMM)
builds a statistical model for the time series structure of
the WiFi signal, and GMM is applied to fit the proba-
bility density function to generate the HMM observation
sequence. The architecture of the human activity recognition
system is shown in Fig. 1. In previous studies, CARM [9]
uses the HMM to identify human activities by establishing
a corresponding model between CSI changes and human
activity speed and a corresponding model between human
activity speed and activity type. CARM realizes activity
recognition with an accuracy of more than 96%, but as men-
tioned above, the construction of the model is extremely
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FIGURE 1. Activity recognition system architecture.

complicated. WiHACS [10] trains and tests multi-class sup-
port vector machine (SVM) to realize human activity classifi-
cation based onOFDMSubcarriers’ correlation. Even if it has
a nice recognition performance, SVM is difficult to realize
multi-classification when the sample size is too large.

Themain innovativeness and contributions of this paper are
summarized as below:

1) Phase difference is used as the characteristic signal of
human activity recognition, due to it uses space diversity and
frequency diversity technology, and can better perceive the
weak changes of the environment than phase. Furthermore,
the phase difference, the mean, and variance of phase differ-
ence are used as the expanded matrix to make the recognition
result more accurate.

2) HMM is selected as a WiFi signal-based recogni-
tion methodology to enhance robustness and adaptability
in the work. Different from initializing the HMM parame-
ters directly, the HMM parameter B (observation probability
matrix), which has a great impact on the system accuracy,
is initialized with GMM.

3) A powerful system is established which can recognize
human activities with high precision. Experiments are con-
ducted in self-collected datasets to verify the validity of the
system for user activity recognition under WiFi signals. The
system performance is evaluated and the factors influencing
the accuracy are analyzed. Experimental results show that the
system has a strong ability to identify different activities and
has robustness under different environments.

The remaining of the paper is organized as follows:
Section II introduces the basic knowledge of CSI, data
preprocessing, and the construction of the feature matrix.
Section III describes the classification methodology. Then,
the work of data collection and the experiment results are
presented in Section IV. Finally, Section V concludes this
work.

II. DATA PREPARATION AND FEATURE EXTRACTION
Three basic characteristic quantities are usually obtained
from CSI data: amplitude, phase, and phase difference

FIGURE 2. The phase difference when performing different actions.

between adjacent antennas. The CSI phase information col-
lected initially will change turbulently, and there are no rules
at all, for the time and frequency synchronization between the
receiver and the transmitter in WiFi equipment. Therefore,
instead of using phase information, CSI amplitude informa-
tion is used in the initial research work. However, the ampli-
tude information lacks sensitivity to weak actions and is
difficult to apply to the recognition of fine-grained behav-
iors. Thanks to the phase correction algorithm [11], phase
information is gradually being used in various studies. In this
paper, the phase difference is used as the characteristic signal
of human activity recognition, due to it uses space diversity
and frequency diversity technology, and can better perceive
the weak changes of the environment than phase.

The phase difference changes when performing different
activities is illustrated in Fig. 2. It can be observed that
the phase difference during walking will fluctuate sharply
compared to in the stationary state. Therefore, the phase
difference can be used as an evaluation criterion to distinguish
different actions, and the characteristic information which
could distinguish any two states can be extracted from the
phase difference.

A. BASIC CONCEPT OF CSI
CSI is a fine-grained signal feature captured from the phys-
ical layer (PHY) of the WiFi communication via Orthogo-
nal Frequency Division Multiplexing (OFDM) technology.
It describes channel properties of wireless communication
links and amplitude and phase variations caused by path loss
and multipath effects, including scattering, diffraction, and
distance attenuation. CSI can make the signal transmission
of the communication system adapt to the channel conditions
of the current system, which enables a MIMO system to
achieve reliable system communication with high robustness,
stability, and more transmission information.

In the frequency domain, the wireless channel can be
expressed as Y (f , t) = H (f , t) × X (f , t), where X (f , t)
and Y (f , t) are the transmitted and received signals at
a certain OFDM carrier frequency of f and time of t ,
respectively. H (f , t) is the complex-valued Channel Fre-
quency Response (CFR) between a pair of antennas and
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FIGURE 3. Process of raw phase correction. (a) Raw phase, (b) Unwrapped phase, (c) Calibrated phase.

the time-series of CFR values for a given antenna pair
and OFDM subcarrier is called a CSI stream. Therefore,
CFR can be represented as H (f , t) = Y (f , t) /X (f , t).
Leveraging the off-the-shelf Intel 5300 NIC wireless net-
work with modified drivers, CSI information can be extracted
from the received packets. Generally, each CSI measure-
ment contains N matrices with dimensions of NTx × NRx,
where N ,NTx, and NRx are the number of OFDM subcar-
riers, the number of transmitting and receiving antennas,
respectively. This paper uses 20MHz bandwidth with 30 sub-
carriers in 5.320GHz for more stable and robust signals can
be provided compared to 2.4GHz. Consequently, the CSI of
three data streams from each data packet can be expressed
in the following equation (1) when adopt one transmitting
antenna and three receiving antennas.

CSI =

H1,1 · · · H1,30
...

. . .
...

H3,1 · · · H3,30

 (1)

B. PHASE DIFFERENCE EXTRACTION
The received CSI data contain a relevant noise in the real
communication process for the wireless signal is interfered
with by the hardware equipment and the environment. Thus,
the wireless channel is represented as:

H (f , t)=
(∑N

i=1
ai (f , t) e−j2π f τi(f ,t)

)
e−j(2π1ft+θS+θN )

(2)

where ai (f , t) is the complex-valued representation for
both the attenuation and the initial phase offset of the
ith path, e−j2π f τi(f ,t) is the phase shift on the ith path
caused by a propagation delay of τi(f , t), N is the number
of subcarriers, e−j2π1ft is the phase shift caused by the
Carrier Frequency Offset (CFO), which is mainly induced by
the difference in central frequencies (lack of synchronization)
between the transmitter and receiver clocks. θS and θN are
the phase offset caused by sampling frequency offset (SFO),
environment, and hardware noise, respectively.

In general, the measured phase of the channel response of
the ith subcarrier can be expressed as:

φ̂i = φi − 2π
ki
N
δ + β + Z (3)

where φ̂i and φi are the measured and actual phase informa-
tion of the ith subcarrier, respectively. δ is the time offset of
the receiver, β is the constant phase offset, Z is the measured
noise, ki is the index of the ith subcarrier which is from
−28 to 28 in IEEE 802.11n, and N is the window size of
the Fourier Transform which is 64 in IEEE 802.11a/g/n.
The unprocessed phase information received by the receiver
cannot be directly used for human behavior analysis for it
contains a lot of noise. According to reference [12], a linear
correction is applied to the original phase data to eliminate
the main noises δ and β.

Define two variables a and b:

a =
φ̂n − φ̂1

kn − k1
=
φn − φ1

kn − k1
− 2πδ (4)

b =
1
n

∑n

j=1
φ̂j =

1
n

∑n

j=1
φj −

2πδ
N

∑n

j=1
kj + β (5)

when the sub-carrier frequency is symmetrical,
∑n

j=1 kj = 0,
b can be simplified to b = 1

n

∑n
j=1 φj + β. The calibrated

phase of the ith subcarrier can be expressed as:

φ̃i = φ̂i − aki − b = φi −
φn − φ1

kn − k1
ki −

1
n

∑n

j=1
φj (6)

The linear noise induced by δ and β is eliminated while
the measurement noise Z is small. Fig. 3(a) shows the orig-
inal phase sequence of 30 subcarriers in the stationary state,
which can be observed that there is a 2π jump. The phase
is converted to a continuous form by unwrapping, as shown
in Fig. 3(b). This process can be referred to as the unwrapping
function in MATLAB. Then the phase deviation is removed
by a linear transformation, as shown in Fig. 3(c). The cali-
brated phase φ̃i is used to construct the initial phase difference
matrix.

Subsequently, the Savitzky-Golay filter [13] is utilized
to eliminate sudden changes and small random variations.
Savitzky-Golay filter fits successive subset of adjacent data
points with a low degree polynomial by the method of linear
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least square. The polynomial order and the length of the
frame are set to be 3 and 7 in our experiments. Finally,
the featurematrix is built by the phase expandedmatrix which
is expanded using the mean and standard deviation of phase
difference, as well as phase difference itself.

III. CLASSIFICATION METHOD
The method of activity recognition is introduced in this
section. Inspired by Chen et al. [14], which propose an
HMM-based methodology for action recognition using star
skeleton, GMM-HMM is used as our method for activity
recognition. The basic concept of GMM and HMM is pre-
sented firstly. And then, the feasibility of GMM-HMM for
activity recognition is illustrated.

A. GMM BASICS
GMM is a parameterized model of the probability distribu-
tion, which aims to build the probability distribution P (x) of
N-dimensional datasets into a mixture of finite multivariate
Gaussian distributions. K -order Gaussian GMM probability
density function is as follows:

P (x|µ,6) =
∑K

k=1
ckN (x|µk , 6k) (7)

where ck > 0 are mixture coefficient that sum to 1, and
N (x|µk , 6k) represents a multivariate Gaussian distribution
which is parameterized by its mean vector µ, and covariance
matrix 6.

The initialization of GMM parameters is based on the
K-means algorithm. Since the observation probability density
function is the k th component of GMM, they are completely
defined by the parameters (ck , µk , 6k). The K-means algo-
rithm can calculate the optimization center of component µ
and covariance 6 for each state, and iterate step by step to
adapt to the state sequence.

After that, an optimized GMM model will be realized
with the Expectation-Maximization (EM) method. The EM
algorithm comprises two steps: E-Step and M-Step. E-Step
calculates the posterior probability γ (n, k) according to the
current ck , µk , 6k . Then, the calculated value is delivered
to M-step, so that ck , µk , 6k are updated. This process is
repeated until the log-likelihood lnp(x|c, µ,6) converges or
reaches themaximum number of iterations. Use the following
formula to update ck , µk , 6k :

µk =

∑N
n=1 γ (n, k) xn∑N
n=1 γ (n, k)

(8)

ck =

∑N
n=1 γ (n, k)

N∑
n=1

∑K
k=1 γ (n, k)

(9)

6k =

∑N
n=1 γ (n, k) (xn − µk )(xn − µk )

T∑N
n=1 γ (n,k)

(10)

where,

γ (n, k) =
ckN (xn|µk , 6k)∑K
k=1 ckN (xn|µk , 6k)

(11)

B. HMM BASICS
HMM is a statistical framework for modeling time-varying
spectral vector sequences and is a potent tool in pattern
recognition. HMM is expressed conventionally by five basic
elements N ,M , π,A,B.
N and M represent the number of model hidden states

and observable symbols generated in each state, respectively.
The state transition probability distribution between state
qi to qj is A = [aij]N×M , and the observation probability
distribution of emitting any vector ot at state qj is given by
B = [bj(k)]N×M . The probability distribution of the initial
state is π = [π i].

πi = P(i1 = qi) (12)

aij = P(it+1 = qj|it = qi) (13)

bj (k) = P(ot = vk |it = qj) (14)

As for HMM, there exist three main problems [15]. First
is the evaluation problem. Given an observation sequence
O = o1, o2, . . . , oT and a model λ = (A,B, π), the probabil-
ity of the observation sequence generated by the given model
P (O | λ) can be calculated with the Forward-Backward algo-
rithm. After defining the forward probability αt (i) and the
backward probability βt (i) respectively, the forward proba-
bility and the backward probability at the next moment can
be recursively achieved. The probability of the observation
sequence can be calculated by either of the following two
formulas:

P (O | λ) =
∑N

i=1
αT (i) (15)

P (O | λ) =
∑N

i=1
πiβ1 (i) bi (o1) (16)

where,

βt (i) = P(ot+1, ot+2, . . . , oT |it = qi, λ) (17)

αt (i) = P(o1, o2, . . . , ot , it = qi|λ) (18)

The second problem is the learning problem. Given the
observation sequence of the model O = o1, o2, . . . , oT ,
estimate the parameters of the model λ = (A,B, π) through
the observation sequence to maximize the probability of the
observation sequence P (O | λ) under the model. The essence
is the problem of using maximum likelihood estimation to
obtain parameters. The Baum-Welch algorithm is widely
used to solve learning problems.

The Baum-Welch algorithm uses the principle of the EM
algorithm to find the expected L

(
λ, λ̄

)
of the joint dis-

tribution P (O, I | λ) based on the conditional probability
P
(
I |O, λ̄

)
at E-step, where λ̄ is the current model parameter.

The expectation is maximized at M-step to get the updated
model parameter λ. EM iteration is continued until the values
of the model parameters converge. The following parameters
are updated to test whether the values converge or not:

aij =

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γt (i)

(19)
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bj (k) =

∑T
t=1,ot=vk γt (j)∑T

t=1 γt (i)
(20)

πi = γ1(i) (21)

where ξt (i, j) is the probability of being in the state qi at time
t and being in the state qj at time t + 1 giving model λ and
observation O, denoted as:

ξt (i, j) = P
(
it = qi, it+1 = qj |O, λ

)
= P

(
it = qi, it+1 = qj,O | λ

)
/P (O | λ)

=

αt (i) aijbj (ot+1) βt+1 (j)∑N
i=1

∑N
j=1 αt (i) aijbj (ot+1) βt+1 (j)

(22)

And γt (i) represents the probability of being in the state qi
at time t , denoted as:

γt (i) = P (it = qi |O, λ)

=
P (it = qi,O | λ)

P (O | λ)
=

αt (i) βt (i)∑N
j=1 αt (j) βt (j)

(23)

The last problem is the prediction problem. Also known
as the decoding problem. Given the model λ = (A,B, π)
and the observation sequence O = o1, o2, . . . , oT , the state
sequence I corresponding to the model can be found when
the maximum observation sequence conditional probability
P (I | λ) is obtained. In other words, when the observation
sequence is given, find the most likely hidden state sequence
corresponding to it. The Viterbi algorithm is usually used to
solve the prediction problem.

Define two variables: δ and 9.
The maximum probability of all single paths (i1, i2, . . . , it )

in state i at time t is:

δt (i) = max P (it+1 = qi, it , . . . , i1, it+1, . . . , i1) ,

× i = 1, . . . ,N (24)

Recursion can be obtained according to the above
definition:

δt+1 (i) = max
[
δt (j) aji

]
bi (ot+1) , i = 1, . . . ,N ;

× t = 1, . . . ,T − 1 (25)

At the same time, define all the single paths (i1, i2, . . . ,
it−1, i) whose state is q at time t , and record the maximum
probability of t − 1 nodes in the path as:

9t (i) = argmax
[
δt−1aji

]
, i = 1, 2, . . . ,N (26)

In other words, the backward pointer 9 is used to record
the previous state which leads to the maximum local proba-
bility of a certain state, and it is used to backtrack the optimal
path (optimal hidden state sequence) in the algorithm.

C. FORMULATION OF GMM-HMM
HMM is widely used in speech recognition, gesture recog-
nition, and other fields [16]–[18]. Its application in activity
recognition is based on one basic assumption: the activity
to be modeled as a Markov process. This process comprises
visible observations, with each observation corresponding to

a hidden state which the observer cannot see [19]. In this
paper, it is observed that human activity is composed of body
movements which will cause the CSI information change.
Therefore, the human motion is considered to be modeled as
HMM, where the visible CSI phase value is the observation
value and the limb transition is a hidden state. The possibility
of transition between different limbs depends on the particu-
lar structure of the action itself.

Human activity is a continuous motion in time and space,
and the complex motion patterns can be fitted by multiple
Gaussian density functions. HMM can be divided into dis-
crete HMM and continuous HMM based on the characteris-
tics of different observed variables. The difference between
the two lies in the model parameter B. The observation
of the former is a discrete random variable, and the cor-
responding model parameter B is a probability distribution
matrix. In continuous HMM, the observation is a continuous
random variable, and the corresponding model parameter B
is composed of the observation probability density function
of the state. Under normal circumstances, the distribution
of each state can be fitted with a mixed Gaussian distri-
bution. The probabilistic model can deal with data with
strong noise, at the same time has good robustness, and per-
forms well on high-dimensional data. In particular, the GMM
has strong coding capabilities for continuous and complex
motion trajectory data such as human motions. Therefore,
the GMM-HMM can be used to imitating and learn complex
human activities. The model frame is shown in Fig. 4.

FIGURE 4. GMM-HMM Model frame.

It is generally believed that the initial values of the param-
eters π and A will not have much influence on the model
results. When the basic constraints are met, random values
or uniform values can be used. However, the different initial-
ization methods of parameter B will greatly affect the model
results and usually choose a more complicated initialization
method according to different applications. This article uses
the GMM method in part A of Section III to initialize the
model parameters. In particular, 6 is set to the diagonal
covariance matrix (‘diag’), the Gauss number K is set as 3,
and the maximum number of iterations is set as 20. Except
that the calculation of probability distribution matrix B is
slightly complex, the three basic algorithms of GMM-HMM
are the same as those of HMM.

After obtaining the initial model parameters, the Baum-
Welch algorithm described in part B of Section III is used
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FIGURE 5. Experimental scenarios. The height of the WiFi device is 1.2m.

to train the model parameters with collected training datasets
and optimize the model parameters iteratively. For each activ-
ity sequence, a corresponding model will be trained. Then,
the test datasets are input to the trained model in the test-
ing phase. The Forward-Backward algorithm is utilized to
obtain the best model. After the observation sequence and
model parameters are obtained, the model that maximizes the
probability of the observation value can be solved with each
model corresponding to a specific activity. Subsequently,
the recognition of the action is achieved.

IV. EXPERIMENTS AND EVALUATION
The proposed system is assessed on the self-collected
datasets, the factors affecting the recognition accuracy are
discussed, and the system performance is compared with
previous work.

A. EXPERIMENTAL SETUP
Our system is implemented on COTS hardware. A LENOVO
desktop with three external antennas is used as a receiver
pinging packets from a Mini desktop with one antenna. Both
of them are equipped with Intel 5300 NIC and an open-source
driver modified by Halperin et al. [20] to promote the correct
reception of the network card. Then, the Linux 802.11n CSI
Tool software, working under the Ubuntu 14.04 LTS system,
is used to obtain the CSI data from the driver. The constructed
1×3MIMO system operates in a 5.320GHz environment and
collects samples at 100 Hz. After completing the extraction
of CSI information, the CSI data is preprocessed by Mat-
lab2017a and input into HMM to complete training.

A total of 600 (5actions× 30samples× 4volunteers) sam-
ples are collected by recruiting four volunteers with different
heights and shapes to imitate five different activities (calling,
squatting, walking, stand-fall, walk-fall) in a pre-configured
environment (a washroom as illustrated in Fig. 5(a)).
The volunteers are two females and two males ranging in age
from 22 to 25. The datasets are extracted in the washroom

FIGURE 6. Confusion matrix of 5 activities performed by 4 volunteers.

of size 5.4m × 5.35m and each sample consumes 10 sec-
onds. When each sample is collected, the specified action
is only performed from the 4th to the 7th second and the
volunteer remains still the rest of the time to prevent over-
lapping of the action data during data collection. The source
data is collected and named as subjecti_aj_sk , which repre-
sents the k th record of the jth action performed by experi-
menter i. The performance of the system is then evaluated
in diverse environments, such as the washroom, an office of
size 4.75m× 4.05m (as shown in Fig. 5(b)), and a classroom
of size 9.5m × 7.25m (as shown in Fig. 5(c)).

Note that unless otherwise specified, 1) the rate of trans-
mission is 100Hz. 2) for all samples of each action, 2/3 sam-
ples are randomly selected as training data, and the remaining
1/3 samples are applied as test data. 3) A total of 20 experi-
ments of each action are performed and keep a record of the
accuracy of every experiment. Then the average values of the
recorded accuracies of each action are calculated as the final
results to pursue a fair degree of precision.

B. EVALUATION
1) ACCURACY OF ACTIVITY CLASSIFICATION
The confusion matrix shown in Fig. 6 is established to assess
the performance of the proposed system, in which each
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element denotes the ratio used to classify actual activity and
predicted activity. The results show that the recognition accu-
racy of each activity is larger than 97%, indicating that the
system achieves a high classification accuracy overall activi-
ties. Four activities achieve over 96% classification accuracy
except for squatting activity since squatting is very similar to
falling and easy to be misjudged.

2) COMPARED WITH PREVIOUS WORK
We compare our recognition system with previous work,
Random forest, HMM, LSTM in terms of lie down, fall, walk,
run, sit down, stand up [21]. To make sure it is a fair and
convincing comparison, the datasets from reference [21] are
used in the proposed system. In other words, all the meth-
ods participating in the comparison use the same datasets.
The participating in the comparison use the same datasets.
The details of the parameters and datasets are shown below.

For the Random forest method, the PCA is applied on the
CSI amplitude and STFT is used to extract features (the first
25 frequency components are used as the feature vector).
Then, a Random forest with 100 trees is used for activities
classification. The extracted features using STFT are also
applied in HMM and the MATLAB toolbox is used for
HMM training. The raw CSI amplitude with 90-dimension
(3 antennas × 30 sub-carriers) is used as the feature vector
for evaluating the performance of LSTM and the number of
hidden units is set to be 200 where only one hidden layer is
considered. Furthermore, samples of datasets1 are collected
at 1KHz sampling rate in an indoor office area where the Tx
and Rx are located 3 m apart in LOS condition and a total
of 720 samples (6actions × 20samples × 6volunteers) are
collected.

Fig. 7 and Table 1 give the confusionmatrix and comparing
results, respectively. It can be observed that the proposed
system has the highest average accuracy of 97.8%, for the
selected feature is phase difference and the GMM algorithm
is utilized to initialize HMM parameters, which can identify
activities more accurately.

FIGURE 7. Confusion matrix of 6 activities in literature [21] using the
proposed system.

In addition, we also compared the system with refer-
ences [22] in terms of boxing, empty, walking, pushing,

1https://drive.google.com/file/d/19uH0_z1MBLtmMLh8L4BlNA0w-
XAFKipM/view?usp=sharing

TABLE 1. Identification precision of different method.

waving. Reference [22] proposes Mel frequency cepstral
coefficient (MFCC) feature extraction for audio signals for
CSI time series classification and MFCC features are used in
CNN, LSTM, and HMM classification methods. ITI datasets
consist of five activities with 50 training samples for each one.
The data were collected from a person moving in a 3.1 m
by 7.0 m office room, in multiple positions and directions.
It can be observed from Figure 8 and Table 2, which represent
confusion matrices and comparison results respectively, the
identification accuracy of our system is 99.0%, which is
superior to other methods when using ITI datasets.

FIGURE 8. Confusion matrix of 5 activities in literature [22] using the
proposed system.

TABLE 2. Mean accuracy of different methods.

3) OPTIMAL LOCATION PARAMETERS DETERMINATION FOR
WIFI DEVICES
When an action occurs, the position of the person changes
on the vertical plane and the horizontal plane. Therefore,
the height of the device and the TX-RX distance will affect
the recognition accuracy. To find the height and distance for
WiFi devices that can provide the most accurate recognition
accuracy, two experiments are conducted using the activity
data of a volunteer (30 samples) collected in the washroom:
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FIGURE 9. Detection accuracies at different heights.

FIGURE 10. Detection accuracies at differentdistances.

diverse device heights with 0.4m, 0.85m, 0.95m, 1.25m, and
1.55m, and different TX-RX distances including 1.0m, 1.5m,
2.5m, 3.5m, and 4.5m. Fig. 9 and Fig. 10 show the evaluation
results at different heights and distances for WiFi devices.
It can be observed that when the two elements are set at 0.95m
and 2.5m, the system can achieve the best identification
accuracy for all the activities. Therefore, 0.95m and 2.5m are
selected as the height of the device and the TX-RX distance
in the following experiments, respectively.

4) IMPACT OF ENVIRONMENTAL INTERFERENCE
TheCSI characteristics are different for diverse environments.
The identification precision of our system in the classroom,
office, and washroom, as well as washroomwith interference,
is evaluated, respectively. Thirty samples of each activity

FIGURE 11. Recognition accuracy in different environments.

for one volunteer are collected in every environment so that
the total number of all samples in the experiment is 600.
As shown in Fig. 11, the average recognition accuracies in
the above environments are 100%, 100%, and 100%, 98.2%.
The accuracy for the washroom in the second case is slightly
lower due to there is an additional subject making pretty
small movements at the edge of the experimental field in the
process of data collection, which causes some interference.
The results show that the proposed method can achieve high
accuracy in different environments while it is difficult to
correctly collect data in an environment with interference.

5) THE MODEL ENVIRONMENT ROBUSTNESS
To assess the robustness of the proposed model in different
environments, we tested models trained in each environment
using data collected from other environments. For example,
models trained in the classroom will be used to test data col-
lected from bathrooms and offices to assessmodel robustness.
Thirty samples of each activity are collected from a volunteer
in each environment. As shown in TABLE 3, the accuracy
of the trained model in other different environments is above
95.9%. which indicates that the proposed method is robust to
different environments.

6) IMPACT OF DIFFERENT TRANSMISSION RATES
The impact of transmission rates on human recognition accu-
racy is further investigated. Fig. 12 shows the average identi-
fication precision of five activities collected from a volunteer
in the washroom at six diverse sampling rates. It can be

TABLE 3. The system robustness in different environment.
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FIGURE 12. Impact of sampling rates on accuracy.

FIGURE 13. Impact of training datasets dimensionalities on accuracy.

observed that severely degraded performance happens when
the sampling rate is around 50 Hz and accuracy improves
with a higher sampling rate for noticeable changes of CSI
can be captured during movement (maximum accuracy is
reached at 800Hz), but the increase in accuracy is not obvious
beyond 100Hz. Therefore, 100Hz is selected in the following
experiments as our sampling rate to obtain a good compro-
mise between computational cost and precision.

7) IMPACT OF TRAINING-SAMPLE SIZE AND HUMAN
DIVERSITY
Two proof schemes are designed to evaluate and analyze
the system performance on our own collected datasets. The
different number of training samples has an important influ-
ence on the accuracy of activity recognition. The results of
three different proportions of the training datasets of five
activities collected from a volunteer in the washroom are
shown in Fig. 13. The results suggest that increase the size of
the training datasets appropriately can get a better recognition
accuracy.

The diversity of people not only increases the diversity of
CSI but also increases the difficulty of identifying activities
for people who have different movement patterns, such as
speed, ranges, and styles. There are six volunteers in the
experiment, three of whom do targeted training before the
experiment and three of whom do not. Fig. 14 shows that
volunteers A, B, and C who exercise regularly achieve accu-
racy of 100%, 100%, and 99.8%, respectively. The remaining
volunteers D, E, and F who are not trained reach 97.8%,
97.5%, and 97.6%, which are slightly lower than the former.

FIGURE 14. Impact of human diversity on accuracy.

The accuracy of the fusion data of the six volunteers is 98.5%
which is better than the three untrained volunteers. So that,
targeted practice of simulated activities before performing
experiments could perhaps improve accuracy standard.

V. CONCLUSION
In this paper, an activity recognition system using commod-
ity WiFi devices is proposed, the factors affecting accuracy
are explored, and the ability and robustness to recognize
human activities are demonstrated. The results show that the
proposed system achieves an average accuracy of greater
than 97% on self-collected datasets. It is worth noting that
the recognized activities include two types of falling actions
(stand-fall and walk-fall), which reminds us that the system
has great potential to be a practical, non-intrusive solution for
activity recognition and fall detection. The solutions of how to
identify more fine-grained human activities, simultaneously
identify the activities of multiple people, and improve the
system robustness in complex environments are urgent prob-
lems to be solved in engineering applications. Those above
challenges will be considered in our future work.
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