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ABSTRACT Drilling operations consist of breaking the rock to deepen a wellbore for oil or gas extraction.
A drilling fluid, circulating from the surface through the drill pipe and from the annulus to the surface, is used
to remove rock cuttings and maintain hydrostatic pressure. Drilling fluid lost circulation incidents (LCIs) are
major sources of non-productive time (NPT) in drilling operations. These incidents occur due to preexisting
natural fractures (vugs, caverns, etc.) and/or drilling-induced hydraulic fractures. The initiation of an LCI
could lead to other hazardous drilling phenomena, such as formation influx or kick/blowout, stuck pipe
incidents, among others. LCIs are typically monitored at the rig site by observing drilling fluid levels in
the fluid tanks. This manual process incurs missing the occurrence or late detection of LCIs. Machine
learning (ML) and deep learning (DL) classification algorithms are powerful in processing time-series
data and achieving early detection of such temporal phenomena. In this study, we performed a large-scale
analysis of the surface drilling and rheology data obtained from historical wells with LCIs. This analysis
includes primary and secondary preprocessing steps including, aggressive sampling, feature engineering, and
window normalization to derive generalizable DL models for real-time operations. Focal loss was utilized
to account for data class imbalance and train robust and generalizable models. The results obtained from
different ML/DL algorithms showed that one-dimensional convolutional neural network models resulted in
the best performance with state-of-the-art precision, recall, and F1 scores of 87.34%, 73.40%, and 79.77%,
respectively, on unseen test drilling data.

INDEX TERMS Circulation losses, deep learning, drilling operations, industrial applications.

I. INTRODUCTION
A. BACKGROUND
Rapid industrialization across the globe has significantly
increased the energy demand over the past few decades.
Subsequently, the oil and gas industry has been drilling
and producing hydrocarbon at growing trends to meet this
demand. Upon the depletion of readily accessible reser-
voirs, exploration and exploitation of hydrocarbon reserves in
complex geological formations have become more common.
Consequently, the oil and gas drilling industry has been per-
forming operations in more challenging environments, e.g.,
deep-water, horizontal extended reach, among others.

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

Reserves are hydrocarbon-bearing rocks located deep
underground, typically from a few to several thousand feet
below the surface. Drilling is an operation that breaks rock
from the surface to reach the target hydrocarbon reservoirs.
Drilling involves the penetration through different types of
formations with different lithology, porosity, permeability,
etc. In the example shown in Fig. 1, five different formations
have to be drilling before reaching reservoir formation.

Drilling a well consists of three major operations: drilling,
casing, and cementing. These operations are conducted for
the drilling of each section or formation. For instance,
the entire sequence of drilling, casing, and cementing is
completed for formation A before starting the drilling of
formation B. This is due to the difference in the nature of the
formation, mud density and property requirements, etc. Tem-
perature and pressure naturally increase with the increasing
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FIGURE 1. Oil and gas drilling of a vertical well across different
rocks or formations.

FIGURE 2. Demonstration of drilling fluid circulation path during drilling
operations.

depth of the wellbore. During drilling, the pressure inside
the borehole is less than that of the formation around it.
The difference in pressure would lead to wellbore instability.
In order to stabilize the wellbore, a fluid (referred to as
drilling fluid or drilling mud) of a certain density is used.
Drilling fluid is circulated from the surface through the drill
pipe, exits through drill bit nozzles, and flows through the
annulus (space between the drill pipe and wellbore) back to
the surface, as shown in Fig. 2.

Drilling fluid is utilized to carry out several functions
during drilling. The most important function is to maintain
wellbore stability by providing hydrostatic pressure in the
hole to balance formation pressures. Therefore, the bore-
hole has to always be filled with fluid for the stability of
the wellbore. Moreover, the density of the fluid is tuned
carefully to keep the pressure at the bottom of the borehole
slightly higher than that of the formation pressure. In addi-
tion to providing hydrostatic pressure to balance the forma-
tion pressure, drilling fluids serve several other functions,
e.g., carrying drilled cuttings to the surface, cooling, and
lubricating downhole equipment. Based on the type of liq-
uid carrier used to formulate the drilling fluid, these fluids

are classified into three major categories: water-based, oil-
based, and synthetic-based fluids. There are several chem-
icals (additives) added to the drilling fluid system to carry
out the functional tasks. Essential additives include vis-
cosifiers, fluid loss control additives, and weighing mate-
rials. Depending on the nature of formations and drilling
requirements, other additives are also mixed in the drilling
fluid system. For instance, when drilling through water-
sensitive shale/clay formation, clay inhibitors/stabilizers are
commonly added. Meanwhile, highly permeable zones are
drilled with drilling fluids having bridging materials with rel-
atively larger grain sizes to minimize the loss of fluid into the
formation.

Drilling operations represent a is a dynamic and chal-
lenging environment due to natural, mechanical, and human
factors, where several issues could be encountered, which
may lead to non-productive time (NPT). Drilling fluid lost
circulation incidents (LCIs) are among the major contributors
to drilling NPT [1] that can increase the operational costs
substantially, especially in offshore operations [2]. The loss
of drilling fluid could be partial or total, depending on the
nature of the formation being drilled. In cases where circula-
tion losses are minimal, the drilling operation may continue
with partial returns of mud to the surface and under neces-
sary precautions to ensure safe drilling operations. However,
when circulation losses are severe, the drilling operation
has to be stopped, and losses must be cured to regain
circulation [3], [4].

In LCIs, the fluid in the borehole may be lost into the
formation. Consequently, bottom-hole pressure may be insuf-
ficient to balance formation pressure and prevent formation
from collapsing into the wellbore. When drilling reservoir
sections (depths where hydrocarbon is trapped), lost circu-
lation may lead to an uncontrolled influx of hydrocarbon into
the wellbore, referred to as kick or blowout depending on
their severity [5]. In addition, wellbore collapse may occur
due to reduced pressure in the annulus resulting from lost
circulation, leading to drill pipe and downhole tools being
buried in the hole [6]. Loss of annular pressure may result
in stuck pipe incidents [7], [8], which would substantially
increase the complexity of mitigation operations and hence
NPT. Globally, the cost of lost circulation NPT is estimated
to be US$ 2–4 billion yearly [1].

Loss of circulation occurs while drilling through highly
permeable, fractured, and vugular formations, seen in Fig. 3.
The magnitude of the drilling mud losses depends on the
type of loss zones present in the formation. Seepage loss
of circulation is experienced while drilling highly permeable
zones. With adequate lost circulation material (LCM) added
to the drilling fluid system, drilling through these zones could
be continued. Generally, the extent of losses and complexity
of mitigation increase with wider, deeper, and interlinked
fractures. Natural fractures can be present in any formation,
but they occur mostly in geological settings with ongoing
tectonic activity. Vugs and cavities are present mostly in
carbonate formations [9]–[11].
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FIGURE 3. Types of Earth formations that could cause drilling mud circulation losses when encountered.

Induced lost circulation occurs due to inducing new frac-
tures while drilling, which often happens while drilling weak
formations with higher mud weights. The high overbalance
of the mud is enough to induce new fractures, or widen
the already existing fractures, in weak formations while
drilling [12]. Induced mud losses occur by hydraulic frac-
tures extending from the wellbore deep into the formation.
Induced lost circulation is often encountered when drilling
formations having narrow mud weight windows, which is
the safe mud weight margin between formation pressure and
fracture pressure. These induced losses could be mitigated
relatively quickly as the fractures are usually not deep nor
interconnected.

Various lost circulation scenarios associated with narrow
mud weight margins are weak and/or depleted zones, deep-
water formations, formations with natural fractures, and devi-
ated wellbores [13], [14]. Reducing the pore pressure in weak
and depleted formations can cause a significant reduction
in the fracture pressure, therefore, lowering the pressure-
bearing capacity. In deep-water environments, considerable
depth of water can result in lowering the formation fracture
pressure, leading to a narrow mud weight window. In such
situations, it is very challenging to maintain the required
wellbore pressure. Sudden and small fluctuations in wellbore
pressure may result in swab and surge, which can further
complicate operations. In the case of deviated wellbores, the
higher the inclination angle of the wellbore, the narrower
the mud weight window. This could even lead to a ‘‘zero’’
mud weight window and an un-drillable section. Naturally,
existing fractures in the formation can significantly affect the
pressure-bearing capacity of the wellbore. A tiny fracture in
the formation may result in lower tensile strengths near the
wellbore and, subsequently, the fracture will propagate when
the wellbore pressure overcomes the near-wellbore hoop

stress. When the fracture is wide and deep, the maximum
pressure awellbore canwithstandmay be reduced to the value
of minimum principal in-situ stress or pore pressure [15].

LCIs are categorized broadly into three major tiers based
on the number of barrels (bbls) of drilling mud lost.

Seepage LCI: < 40 bbls/hr
Partial LCI: > 40 bbls/hr and < 100 bbls/hr
Severe/Total LCI: > 100 bbls/hr
Various types of LCMs (e.g., particulates, fibrous materi-

als, flaky materials, sized bridging materials, among others)
are used for mitigating lost circulation [16]–[18]. For seep-
age loss zones, the drilling fluid is loaded with the above-
mentioned materials in particular proportions based on the
porosity and permeability of the formation, and the drilling
operation is not ceased. In partial and severe/total loss sce-
narios, the drilling operation has to be stopped and the LCM
slurry is prepared with the above-mentioned materials and
pumped downhole to mitigate loss by plugging and bridging.
The LCM slurry might fail to mitigate losses in the case of
severe/total losses. In such cases, different types of polymers,
resins, cement plugs, etc., could be used to cure losses and
regain mud circulation.

B. LITERATURE REVIEW
Studies on early identification of LCIs and mitigation meth-
ods have been at the center of attention in drilling for oil and
gas wells for some time as these events may result in well-
bore instability and additional costs due to the lost drilling
fluid. Equivalent circulating density (ECD) is a physics-
based model that has been consistently used to avoid LCIs.
As a result, several studies have been devoted to developing
annular pressure loss models to predict ECD and equivalent
static density (ESD). The primary objective of utilizing an
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ECD model is to ensure that the applied static/dynamic fluid
pressure is within the drilling margin. That is, to ensure a
drilling mud having sufficient mud weight to avoid wellbore
instability but not greater than the fracture pressure that would
induce formation fractures. Induced formation fractures and,
therefore, mud losses occur when the bottom hole pressure
(BHP) rises above fracture pressure.

Ahmed and Miska [19] developed equations to calculate
annular frictional pressure for both power-law and yield
power-law fluids traveling across the annulus. Their equa-
tions consider various flow regimes (i.e., laminar, transitional,
and turbulent), inner and outer diameter ratio, and eccentric-
ity. However, there is a discrepancy in the proposed equation
as it assumes a clean drilling fluid passing across the annulus,
which may be invalid considering the fact that one of the
primary functions of the drilling fluids is to carry and remove
cuttings from the bottom-hole to the surface. Therefore, these
drilled cuttings impact the rheology, density, and velocity
of the drilling mud, thus, increasing annular pressure loss.
Whenever ECD goes above fracture pressure, then the rock
formation can break and initiate mud loss. In order to address
the assumptions of having a clean drilling fluid, Bassam [20]
further developed Ahmed and Miska’s equation to include
the transport of drill cuttings in the annulus by coupling a
pressure gradient equation with a cuttings transport model to
predict ECD. The model can be used to flag an increase in
ECD and alert the driller if the ECD goes beyond the fracture
pressure at any point of time and at different depths, not only
at total depth. This allows the crew to adjust drilling surface
parameters or mud parameters to ensure that the applied
static/dynamic fluid pressure is within themudweight margin
and to avoid induced loss circulation incidents.

Although physics-based models can be used to avoid LCIs,
data-driven models offer another layer of information that
can be used to estimate or predict unseen events based on
historical data from offset drilling operations as well as real-
time data collected during drilling operations. In this direc-
tion, different machine learning (ML) and deep learning (DL)
models have been developed to predict mud loss of circula-
tion from surface parameters [21]–[24]. Moazeeni et al. [25]
reported one of the earliest studies utilizing ML to develop
a model capable of predicting LCIs in different areas of a
specific oilfield, as well as to estimate the quantity and quality
of LCIs. The authors restricted their study to only a single
formation that was often associated with severe losses. The
data was collected from 32 drilled wells, using their daily
drilling reports, and filtered based on location (Northing and
Easting). The study incorporated several inputs for the model,
including depth of the incident, length of open hole section,
drilling bit size, mud weight, mud rheological parameters,
volume of drilling mud losses, among others. More recently,
another study [26] developed amodel that predicts LCIs using
support vector machines with radial basis function derived
from six drilling parameters (mud flow pump, rate of pene-
tration, pipe rotation, standpipe pressure, torque, and weight
on bit) and the depth of the lost circulation zone obtained

from two wells with LCIs. The data from the first well was
utilized for training, whereas the second well data was used
for validation.

While several ML/DL models for the detection of lost cir-
culation were reported, the lack of generalization capabilities
and required accuracy of the models have restricted their
implementation to guide real-time operations [27]. Arguably,
the scarce data from the limited number of considered wells
with LCIs may not be enough to represent all conditions and
characteristics leading to an LCI. Training competentML/DL
models requires a dataset that captures the joint distribution
of the input and output variables. This is challenging in
drilling as various parts of the joint distribution only occur in
specific aspects of the drilling operations. In addition, drilling
data also capture other dimensions of variability associated
with different types and setups of rig structures, sensory
equipment, down-hole formation properties, among others.
Additionally, drilling data are typically generated from mul-
tiple sources. These sources or sensors could also belong to
different drilling rig contractors and service providers who
collaborate to complete a variety of tasks and operations. As a
result, drilling databases host a collection of records stem-
ming from multiple sources, which results in asynchronous
data (the clock in every microcontroller is slightly different)
and potentially inconsistent sensor sampling frequency [28,
29]. Whereas these problems could be resolved or alleviated
by transmitting a common pulse to sensors to collect records
simultaneously, this is not a standard practice in drilling
operations.

Moreover, drilling is an aggressive process with signifi-
cant levels of vibration. It also involves a variety of sensors
stemming from different sources, raising the potential of
electromagnetic interference. This is further exacerbated by
the rough drilling environments (desert, forests, sea, etc.)
where power fluctuation is common. On-demand sensor
calibration is also a must (e.g., hook load is measured
using a load cell, which needs to be recalibrated on-demand
for each newly run bottom-hole assembly throughout the
drilling operation). Due to the absence of on-demand
and continuous sensor maintenance and recalibration, these
challenges result in inaccurate drilling data associated
with random noise, local outliers, and mis-calibrated
records.

In this study, we identified a statistically representative
number of wells from different fields and extracted the
surface drilling parameters that capture the different condi-
tions leading to an LCI. This study focuses on data prepro-
cessing, feature engineering, and normalization, as well as
model evaluation to derive a robust and generalizable DL
model. Additionally, the methodology proposed in this study
formulates the classification task as a time-series problem
to accurately detect the trends of the parameters instead
of the highly variable readings from the surface sensors.
The next section describes the methodology followed for
data extraction, normalization, and training of the ML/DL
models.
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FIGURE 4. General demonstration of the proposed ML/DL model development approach can be divided into two
tiers: training (blue) and testing (green). Training starts with historical drilling data collection, preprocessing, feature
engineering and normalization, algorithm selection, and training and tuning. Testing involves introducing a blind
historical well or real-time well (one that has not been shown to the model during training and validation) to the
model where data are first prepared in a similar fashion to the preceding training phase, then run through the model
to generate real-time probability curve indicating the likelihood of LCI at a given point of time.

II. METHODS
The proposed DLmodel development approach for early LCI
detection goes through twomajor phases: training and testing,
as shown in Fig. 4. The training phase requires the collection
of sensors data obtained from historical drilling operations
with LCIs, preprocessing and time series formulation, cura-
tion, feature engineering and selection, data normalization,
model selection, and model hyperparameter tuning. The test-
ing phase, on the other hand, refers to the deployment of the
already trained and validated model to be tested on unseen
wells (either historical or real-time). In the testing phase,
data are handled and prepared in a similar fashion to that
of the preceding training phase before they are fed into the
DLmodel. The deployed model generates a probability curve
indicating the likelihood (i.e., between 0 and 1.0 referring to
lowest and highest probability, respectively) of encountering
an LCI in the corresponding drilling operations.

The following subsections introduce the techniques and
algorithms utilized for data collection and preprocessing,
feature engineering, data normalization, and model training
and evaluation.

A. DATASET
This study is based on historical data collected during drilling
operations using standard drilling rig equipment and appara-
tus [30]. These data contain the stored values of the multiple
sensors used by the rig crew to guide operations in real-time.
Although this data is stored, not all data are relevant to derive

ML models. Consequently, data collection and processing
are a crucial steps for deriving generalizable ML/DL models.
To alleviate the challenges associated with drilling data, it is
essential to collect data extracted from a significantly large
number of LCIs from multiple wells. These wells have to sta-
tistically represent the signals leading to LCI while being able
to discriminate from noise, outliers, missing, and irrelevant
data as well as to identify the different earth formations at
different depths that may lead to LCIs.

In this study, we identified∼200 wells with severe or total
losses from multiple fields and extracted the surface sensors
data (i.e., drilling parameters) with respect of time with an
average frequency of 0.2 hertz per record (i.e., one data vector
every five seconds). Table 1 shows the list of the selected
surface sensors data with their respective units. Clearly,
the differences between flow-in rate (FLWIN), i.e., the fluid
entering the wellbore through the drillpipe, and flow-out rate
(FLWOUT), i.e., the amount of fluid exiting the wellbore,
could be used to directly identify early signs of LCIs. How-
ever, the readings of these two sensors are in different units,
have time lags, and contain large uncertainties due to the
sensor technology. Consequently, we also considered weight
on bit (WOB), and revolutions per minute (RPM) as these are
the variables controlled by the driller and which have a sig-
nificant effect on the rest of the parameters (i.e., torque – TQ,
rate of penetration – ROP, standpipe pressure – SPP, and hook
load – HKL). The trends and linear or nonlinear relationships
of these data can be used to identify the signals leading to LCI.
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TABLE 1. Selected surface drilling parameters.

For instance, a larger fracture may be surrounded by smaller
interconnected cavernous formations, which would result in
a sudden increase in ROP and a decrease in TQ prior to the
LCI.

For each of the selected wells with LCIs, we extracted the
surface drilling parameters described in Table 1. Since each
well has roughly fivemillion data vectors (surface parameters
for collected during/months of drilling operations), only the
relevant data must be selected. A window of 20 minutes
surrounding the LCI (15 minutes before and five minutes
after). This window is a 2-dimensional (2D) matrix where
rows represent the 240 timesteps (in 20 minutes with a 0.2 Hz
frequency) and the columns the drilling parameters, shown
in Table 1. For each of the 20-minute segment of data sur-
rounding an LCI, we used an additional 15-minute sliding
window with a stride of one row (∼5 seconds) to produce
the data samples assigned to the LCI category, i.e., each LCI
is defined by 60 2D matrices of 15 minutes (180 rows) and
11 columns (drilling parameters and sensors readings).

In order to capture the normal drilling operations (i.e., not
overlapping any LCI), we first extracted two 24-hour seg-
ments of data before the LCI while discarding 30 minutes of
data between the two segments to avoid incorrectly capturing
LCI patterns during this semi-automated labeling process.
Additionally, we extracted 24 hours of data after the LCI.
We then concatenated the three 24-hour segments of data
(resulting in a 72-hour segment) and extracted several ran-
dom 20-minute segments. We used the same sliding window
approach for each of the different segments with capturing
normal operations

Whereas we have one LCI per well, there exist many non-
LCI or ‘‘normal’’ operations across these wells. If we sim-
ply sample one normal operation segment per LCI segment,
then we only capture limited portions of the normal drilling
operation probability distribution, which is extremely com-
plex and multidimensional. Although class balance (equal
number of LCI and non-LCI windows) is always desired
in ML/DL model development, sampling one normal win-
dow per LCI window does not truly capture the complex

FIGURE 5. Methodology for the extraction of LCI and normal operation
samples. Each well with LCI generates 180 non-LCI 2D samples and 60 LCI
2D samples. Each of these 2D samples is defined by a 180 × 11 matrix
where columns represent the surface drilling parameters and rows the
time steps in 15 minutes. The data surrounding the LCI are discarded to
avoid incorrect labelling LCI patterns as normal operations.

drilling probability distribution function. Therefore, we per-
formed aggressive sampling where we sampled three non-
LCI windows for each LCI window. However, this results
in class imbalance that may hinder ML/DL model training
and requires a solution. This problem will be addressed using
focal loss for training the ML/DL model, which is explained
in detail in the following subsections. Fig. 5 shows the process
for extracting LCIs and normal operations for a well. Note
that we refer to the input of themodel (2Dmatrix) as a sample.
Each sample is defined by a 180× 11 matrix, where columns
represent the surface drilling parameters and rows the time
steps in 15 minutes. Each well yields 240 samples based on
a 1:3 aggressive sampling ratio of LCI:normal operations.
In total, this process yields 48,000 samples (2Dmatrices) and
8,640,000 rows (1D vectors) for the 200 considered wells.

B. DATA PREPROCESSING
Data quality problems represent a significant challenge for
developing predictive DL models, often the case when using
drilling sensors data obtained at drilling rigs. Proper handling
and preprocessing of drilling data are essential for DL algo-
rithms to learn consistent and physically correct information
from the data feed. The drilling literature addressed various
aspects related to data quality, where preprocessing is essen-
tial [31]. Table 2 provides a summary of the general data
preprocessing criteria conducted in the context of LCI.
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TABLE 2. Data processing criteria.

The next subsections introduce and discuss three special-
ized preprocessing techniques: 1) feature engineering, 2) win-
dow normalization, and 3) aggressive sampling. Unlike the
preliminary preprocessing steps described in Table 2, these
methods are more algorithmically advanced and capable of
resolving complex data quality challenges, i.e., multiple data
sources, inaccurate data, and data diversity.

1) FEATURE ENGINEERING
Feature engineering is a technique commonly used inML/DL
model development [32], [33]. This technique utilizes domain
knowledge and expertise to extract a new representation of
the raw data, aiming to improve the ML/DL model train-
ing process that involves nonconvex optimization over thou-
sands or millions of parameters. There is an infinite number
of features that could potentially be engineered for any appli-
cation. The process of creating and selecting useful features
heavily relies on domain knowledge, data structure (time-
series in this application), and data quality issues [34]. In this
study, we utilized four categories of features: 1) moving
average filtering (MAF), 2) Gaussian filtering (GF), 3) dif-
ferencing, and 4) drilling pumps on/off indicator.

MAF is a common representation of raw time-series
records, which serves in denoising data and providing a

zoomed-out snippet of a particular drilling activity. MAF
has a single hyperparameter, n, which refers to the number
of previous time-series data points. As in Eq. 1, MAF of a
particular drilling feature can be computed at time t using
the n preceding data points

[
Pt ,Pt−1, . . . ,Pt−(n−1)

]
. Note

that this simple MAF formulation weighs all data points
equally [35].

MAF =
1
n

∑t

i=t−(n−1)
Pi (1)

We applied MAF twice for each feature with n ∈ [24, 48]
records, which correspond to [2, 4] minutes, respectively,
in the most common data frequency of 0.2 Hz. This allows
for two levels of macroscopic trends and also two denoising
stages, which the ML/DL model can learn from during train-
ing. MAF is useful in alleviating the problems of multiple
data sources and inaccurate data. However, it is not ideal in
denoising data as MAF is associated with a temporal lag,
which may hinder early detection in classification tasks.

Whereas MAF is a causal filtering approach (only utilizes
present and past data points), GF is a non-causal filtering
approach, which does not result in temporal lag. Actually,
causality is almost not relevant in this context since it does not
involve forecasting the future. In this study, we utilized a one-
dimensional GF to smoothen drilling features individually.
GF is also a true low-pass, so it does not create high-frequency
artifacts. For each feature x, one-dimensional GF convolves a
one-dimensional kernel defined using a Gaussian distribution
g(x), as described in Eq. 2. Note that we assume a zero-mean
Gaussian distribution in this application [36], [37].

g (x) =
1

√
2πσ

e−
x2

2σ2 (2)

GF is a linear filter that performs aweighted average giving
more weight to the central timesteps and less weights to
farther timesteps. These weights are defined by the standard
deviation σ of GF. Larger σ values flatten the Gaussian bell
curve, which in turn assigns more weight on neighboring
timesteps and blurs the signal further. However, the noise type
and frequency associated with drilling operations differ from
one operation to another and from one sensory equipment to
another. Whereas this type of noise is often random and time-
variant, we tackled the noise frequency issue by engineer-
ing multiple GF features with different standard deviations,
namely σ ∈ [3, 24, 48]. Overall, GF is useful in alleviating
data inaccuracy, particularly noise, and local outliers.

Another engineered feature is based on a temporal deriva-
tive of each drilling parameter based on the first-order back-
ward finite difference, as shown in Eq. 3, which estimates the
derivative of a drilling parameter over time for point values
P. We also parameterized this feature with d , the distance or
timesteps between differentiated records. In this application,
we used multiple d ∈ [1, 24]. This family of features is
important to time-series analysis as it provides a sense of
change with respect to time, which alleviates the multiple
data sources issue of variant frequencies across operations
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and sensory equipment.

gradient =
Pt − Pt−d
t − d

(3)

We also curated an additional feature, based on technical
domain knowledge of LCI, to indicate whether drilling fluid
pumps are on or off. Early LCI signals are commonly associ-
ated with a sudden or gradual drop in FLWOUT due to loss of
drilling fluid into the formation, followed by a sudden drop
in FLWIN when the rig crew decides to turn off the drilling
pumps. This behavior is similar to intervals where the rig
crew simply turns on the rig pumps where both FLWOUT
and FLWIN suddenly drop to zero (or other relatively low
values in cases where sensors are mis-calibrated). Hence,
we engineered an indicator feature that indicates local peaks
and troughs in FLWOUT and/or FLWIN. This indicator takes
one of three values: ‘‘0’’ if neither FLWOUTnor FLWINhave
peaks nor troughs, ‘‘1’’ if either FLWOUT or FLWIN has a
peak and/or trough, and ‘‘2’’ if both FLWOUT and FLWIN
have peaks and/or troughs. This is done by firstly running
GF on FLWIN and FLWOUT to smoothen the signals. Then,
peaks and troughs are located by sliding windows, which
perform a simple comparison to neighboring timesteps. Peaks
and troughs were required to be greater than 1.5 ·σ within its
window, where σ is the standard deviation. This family of
features assists the models in learning the difference between
LCI signals and pumps-on/off patterns associated with nor-
mal drilling rig activities, critical for avoiding false positive
alarms.

2) WINDOW NORMALIZATION
As discussed before, the sensors and calibration frequency
are different depending on the drilling rig performing the
drilling operations. Additionally, drilling parameters are not
limited to specific ranges of values, rather they differ based
on the condition of sensors, rock being drilling, hole size,
among others. As a result, the distribution of the drilling
parameters data (Table 1) considerably varies from sample to
sample, causing the well-known dataset and covariance shift
that limits the generalization capabilities of any data-driven
model [38], [39]. To avoid such generalization problems,
the training data would have to include all possible ranges to
avoid extrapolation, which is practically impossible as opera-
tions differ and sporadic readings are frequently present. Con-
sequently, normalizing these data enables the models to focus
on the trends rather than on the values. Magana-Mora et al.
demonstrated that the generalization capabilities of the model
considerably improved after normalizing the drilling data [8].

Normalization is also known as the ‘‘tricks and trade’’ of
developing ML/DL models as it expedites training where
standardization limits oscillation on the ML/DL loss function
before reaching an optimal point [40]–[42]. The popular form
of normalization is to simply scale input based on the mean
and standard deviation of the training data. However, this
approach is inappropriate when dealing with time-series data
that is collected from multiple data sources (asynchronous

FIGURE 6. Demonstration of window normalization across grouped
windows, timesteps, and features extracted from a single well. The orange
columns represent an example of the scaling range, which spans all
timesteps and features of training windows coming from a specific well.

data with inconsistent frequency) and inaccurate readings
(noisy, local outliers, and mis-calibrated). Meanwhile, there
are other forms of normalization, which are commonly used
in computer vision and natural language processing, e.g.,
batch normalization [43], layer normalization [44], group
normalization [45], and instance normalization [46].

In this time-series ML/DL model development, we
introduce a new technique referred to as ‘‘window normaliza-
tion’’ for scaling time-series data that suffer from the afore-
mentioned quality issues. Window normalization is closest
to group normalization conceptually, yet it involves practi-
cal variances. As shown in Fig. 6, window normalization
does not rely on scaling statistics computed using the entire
training dataset, instead, it groups windows based on wells
and scales them accordingly using each batch’s scaling min-
max statistics. This technique aims to eliminate or minimize
variations across operations (drilling rig crew practices and
sensory equipment, size of the wellbore, rock heterogeneity
at drilling well location, etc.). This normalization method
considerably improved the performance of the models for the
early detection of LCIs.

C. DATA SPLIT AND TUNING OF ML/DL ALGORITHMS
A proper data split technique is essential for avoiding
model over training and optimistic validation/test results. For
instance, in the extracted time-series data for LCI, adjacent
samples extracted from the selected segment using a sliding
window, shown in Fig. 5, have similar surface drilling param-
eters and sensor readings. Therefore, a random data partition
to select training, validation, and test sets would induce some
data leakage and would produce over-optimistic results. For
instance, consider two 15-minute windows extracted at time
steps ti and ti+1 used for training and testing, respectively.
In such a scenario, it would be almost equivalent to testing
the model with training data as the testing window ti+1 is
similar to the training sample ti. Consequently, we divided
the training, validation, and testing data at the level of the
wells. More specifically, we used 80%, 10%, and 10% of the
wells for training, validation, and testing, respectively. Note
that for each well 60 and 180 samples are extracted for LCIs
and normal operations, respectively, as seen in Fig. 5. Hence,
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the number of training, validation, and testing samples (2D
matrices) are 38,400 (from 160 wells), 4,800 (20 wells), and
4,800 (20 wells), respectively.

These samples are then used to derive a supervised binary
classification model. However, there are many different ML
algorithms that can be used to derive these models for the
early detection of LCI. These include logistic regression,
naïve Bayes, support vector machines, decision trees, ensem-
ble learning, amongst others [47]. Shallow ML algorithms
are generally simpler and easier to train and optimize in
comparison to DL algorithms, so they cater a baseline model
to evaluate more complex algorithms. Hence, we selected
an ensemble learning algorithm, i.e., random forest (RF),
to compare and demonstrate the effects of the window nor-
malization scheme proposed in this study.

RF is a tree-based ML algorithm that randomly splits
training samples and features into subgroups and trains mul-
tiple decision trees on each subgroup which are then com-
bined to output a probability of the most likely class based
on vote count [48]. RF is a robust (it does not require
exhaustive hyperparameter tuning) and versatile model as
it can handle various types of features, e.g., continuous,
binary, categorical, among others. [49]. Additionally, exten-
sive empirical studies have shown that, on average, RF out-
performed other shallow learning models [50], [51]. In this
study, we tuned three RF hyperparameters based on the val-
idation set: 1) ‘‘n_estimators’’ (number of tree estimators),
2) ‘‘max_features’’ (number of features to be considered
when making each tree split), and 3) ‘‘min_sample_split’’
(minimum number of samples required to split an internal
node).

Meanwhile, DL algorithms provide an extended level of
complexity by using deep artificial networks consisting of
layers and nodes associated with nonlinear activation func-
tions [52]. These layers and nodes interact algebraically to
construct a representation that correlates input features to
predict an output variable. The most basic form of these
algorithms is a feedforward neural network (FNN) [53], [54].
FNN only passes node signals from one layer to another
without cyclically passing data within each layer.

The disadvantage of the aforementioned ML algorithms
and FNN is that they only accept a one-dimensional vec-
tor input, hence the extracted windows must be flattened
out. However, flattening the input matrix results in a sig-
nificantly large number of temporal features and subse-
quently hinders the learning process. Thus, we investigated
the convolutional neural network (CNN) [55], [56] and recur-
rent neural network (RNN) [57], [58] algorithms, which
both naturally accept a two-dimensional input matrix and
directly enable their parameters to draw temporal correla-
tions amongst drilling features. CNN and RNN architectures
are most popular in computer vision and natural language
processing applications, respectively. We investigated vari-
ations of both architectures in achieving early detection of
LCI. Note that CNN and RNN architectures are followed
by an FNN layer to reduce the output feature into the

TABLE 3. DL hyperparametr ranges.

target number of classes—binary classification in this LCI
application.

The complexity of these models could often result in
overfitting the training set [59]. Besides experimenting with
different DL structures, we also applied dropout as a form of
regularization [60]. The structuring and training of DL mod-
els involve tuning many hyperparameters, so we performed
extensive experiments to span the various combinations of
hyperparameters and allowed for various DL model param-
eter initializations to arrive at improved optima.

The loss function is what DL models aim to minimize
during the learning process. As a result of the aforementioned
aggressive sampling, the training dataset suffers from class
imbalance. To mitigate this problem, we investigated class-
weighted cross-entropy and focal loss [61] as the choices for
the loss function. Note that the focal loss is parametrized
with gamma and alpha. Gamma controls the shape of the loss
cross-entropy loss function, i.e., the model can focus on the
harder-to-classify training examples. Alpha introduces class
weight where the rare class (LCI in this context) is empha-
sized further during training. We used the random search
technique to tune the hyperparameters of the considered ML
models based on the results obtained from the validation set.
Table 3. shows the range of hyperparameters we investigated
in this work.
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TABLE 4. Model performance comparison.

III. RESULTS AND DISCUSSION
The key contributions of our study are the analysis of the
sensor data obtained from two hundred historical drilling
operations with LCIs to derive a robust DL model. The
study emphasized on the data processing, normalization tech-
niques, and DL model training required to derive a robust
model applicable for critical drilling operations in real-time
while reducing false alarms.

This section demonstrates the results obtained using the
proposedmethods and techniques previously described. First,
we compare the performances of the different normalization
approaches (standard versus window normalizations), and
ML and DLmodels (described in the Methods Section). Note
that all models discussed in this sectionmake use of the afore-
mentioned methods: primary and specialized preprocessing,
feature engineering, aggressive sampling, and hyperparame-
ter tuning. Table 4 compares a variety of ML/DL algorithms
with and without window normalization. Trained models are
compared in terms of accuracy, precision, recall, and F1 score.
While validation metrics were used to tune each model, test
metrics represent each model’s performance in the prediction
of LCI in unseen wells.

We firstly introduce a baseline model trained using RF
algorithms and standard normalization, which achieves an
F1 score of 34.91% on the test dataset. Moving over to DL
models, an ANNmodel with standard normalization achieves
an F1 score of 69.28% on the test dataset, superior to the
baseline RF model. Whereas both RF and ANN require
flattening the input timestep-feature two-dimensional matrix,
ANN introduces more algebraic operations that better capture
the underlying nonlinearity in LCI classification. Introducing
window normalization, test F1 scores of both RF and ANN
significantly improved to 59.48% and 73.56%, respectively.
This improvement in evaluation metrics confirms the hypoth-
esized impact of window normalization, which scales data
across operations (drilling rig crew practices and sensory
equipment, size of the wellbore, rock heterogeneity at drilling
well location, etc.).

Next, we investigated the performance of CNN and
LSTM algorithms, where they both feed on the input
timestep-feature two-dimensional matrix without flattening.
The premise of these models is to capture the temporal corre-
lations across features to improve the differentiation of LCI
versus non-LCI events. Based on the random hyperparameter
tuning experimentation, the best CNN and LSTM models
achieve test F1 scores of 79.77% and 78.42%, respectively.
Practically, one can argue that precision is more important
than recall in this application because drilling operations are
less forgiving to repeated false alarms as drilling time is costly
and the crew would quickly lose confidence in such a model.
Overall, optimizing both prediction and recall is most and
desirable.

Although CNN and LSTM models achieve similar F1
scores, we will only focus on the analysis visualization of
the CNN model as it achieved the best performing results in
terms of accuracy, recall, and F1 score. Table 3 summarizes
the optimal hyperparameters of this CNN model. Arguably,
expanding the hyperparameter search space may result in bet-
ter model performance. However, due to the computational
demands, we only considered the hyperparameter ranges
described in Table 3.

It is important to note that focal loss is more effective than
weighted binary cross-entropy in tackling class imbalance
which stems out of the aforementioned aggressive sampling.
At inference, the resultant LCI occurrence probability is to
be used by the rig crew as a soft indicator. To generate a hard
indicator (yes/no indicator) for LCI, then a threshold must be
chosen between 0.0 and 1.0. Tuning this inference threshold
on the validation F1 score, we arrived at a threshold of 0.78.
Example #1, seen in Fig. 7, shows a scenario where severe

LCI happened suddenly and the drilling rig crew reacted
immediately by shutting off the pumps. The model success-
fully predicted this case with a probability of over 95%.
Example #2, seen in Fig. 8, shows a scenario of gradual LCI,
which does not result in zero FLWOUT suddenly. The drilling
rig crew managed to contain the losses in the first few hours
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FIGURE 7. Example #1 of the optimal CNN model real-time prediction results (right column). The grey horizontal dashed line indicates when the
drilling rig crew reported LCI, which reflects human performance but it does not necessarily indicate the onset of LCI. This case indicates a scenario of
total losses where the drilling rig crew shut off the pumps immediately. The model successfully predicted the onset of this incident with probability of
more than 95%.

FIGURE 8. Example #2 of the optimal CNN model real-time prediction results (right column). The grey horizontal dashed line indicates when the
drilling rig crew reported LCI which reflects human performance but it does not necessarily indicate the onset of LCI. This case indicates a scenario of
total losses where the drilling rig crew shut off the pumps immediately. In this case, the model predicted the onset of this incident with probability of
more than 90% before it was even detected by the drilling rig crew.

before they decided to shut off the pumps and attempt to cure
the losses with more aggressive lost circulation material. The
proposed CNN model successfully detected LCI early when
it first happened, hence it is successful in the early detection
of gradual LCI as well.

IV. CONCLUSION
This study demonstrated the use of advanced time-series
analytics and ML/DL algorithms for the early detection of
LCIs, which represent common and significant sources of
NPT in drilling operations. While several models have been
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proposed for the early detection of LCIs, the models have
failed to properly account for the different challenges in the
data quality to derive a model able to generalize to unseen
drilling operations (usually performed by different drilling
contractors/service providers with different sensors and cal-
ibrations). To account for these challenges, the proposed
approach involves the development and implementation of a
data extraction pipeline, primary and secondary preprocess-
ing, aggressive sampling, time-series feature engineering,
window normalization, and DL modeling. After exhaustive
hyperparameter tuning andmodel exploration, results showed
that CNN models performed best in the early detection of
LCIs with state-of-the-art precision, recall, and F1 scores
of 87.34%, 73.40%, and 79.77%, respectively, on wells with
LCIs unseen to the model (test set). Although the model was
derived to detect severe/total fluid losses, the model was able
to detect sign leading to seepage or partial losses. Conse-
quently, the statistical measures used to assess the model may
underestimate the model performance by penalizing correct
predictions for less severe losses.

The objective of an accurate model for the detection
of LCIs in real-time is to immediately detect fluid losses
(seepage, partial, or complete) to enable the crew to take
prompt correctivemeasures. For instance, seepage lossesmay
occur due to induced fractures, which can be corrected by
adjusting the drilling mud/fluid weight. Conversely, seepage
losses may be observable before severe/complete losses when
drilling through a cavernous formation where smaller frac-
tures may surround a larger fracture or cavern.

Note that model development and evaluation were
conducted to simulate real-time settings to fully resemble
practical implications. Additionally, the model can be easily
re-trained with data captured by novel sensors, such as a
tuning fork that measures the drilling fluid viscosity and
density in real-time [62].

Finally, the proposed approach can be applied similarly
for the detection and prediction of other hazardous drilling
events (stuck pipe incidents, kick/formation influx, amongst
others).
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