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ABSTRACT Understanding the surrounding 3D scene is of the utmost importance for many robotic appli-
cations. The rapid evolution of machine learning techniques has enabled impressive results when depth is
extracted from a single image. High-latency networks are required to achieve these performances, rendering
them unusable for time-constrained applications. This article introduces a lightweight Convolutional Neural
Network (CNN) for depth estimation, NEON, designed for balancing both accuracy and inference times.
Instead of solely focusing on visual features, the proposed methodology exploits the Motion-Parallax effect
to combine the apparent motion of pixels with texture. This research demonstrates that motion perception
provides crucial insight about the magnitude of movement for each pixel, which also encodes cues about
depth since large displacements usually occur when objects are closer to the imaging sensor. NEON’s
performance is compared to relevant networks in terms of Root Mean Squared Error (RMSE), the percentage
of correctly predicted pixels (δ1) and inference times, using the KITTI dataset. Experiments prove that
NEON is significantly more efficient than the current top ranked network, estimating predictions 12 times
faster; while achieving an average RMSE of 3.118m and a δ1 of 94.5%. Ablation studies demonstrate the
relevance of tailoring the network to use motion perception principles in estimating depth from image
sequences, considering that the effectiveness and quality of the estimated depth map is similar to more
computational demanding state-of-the-art networks. Therefore, this research proposes a network that can
be integrated in robotic applications, where computational resources and processing-times are important
constraints, enabling tasks such as obstacle avoidance, object recognition and robotic grasping.

INDEX TERMS CNN, depth estimation, mobile robotics, motion perception, parallax.

I. INTRODUCTION
Autonomous systems require a complete and accurate 3D per-
ception of its surroundings to operate. Nevertheless, enabling
this awareness remains an extremely challenging problem
in computer vision. Advances in this field directly impact a
myriad of applications, e.g. autonomous driving, augmented
reality and robotics.

The acquisition of three-dimensional information is lim-
ited in terms of the range and resolution of the sen-
sor. Recent developments in machine learning techniques
have expanded the possibilities for 3D scene representation,
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enabling depth information to be estimated from a single
image. State-of-the-art results that emerge from these tech-
niques are quite accurate; however, most depend on pow-
erful deep convolutional networks [1], [2], rendering them
unusable in time-constrained applications such as robotic
grasping, obstacle avoidance, 3D reconstruction and object
recognition [3]–[6].

The ability to comprehend visual changes in a sequence
of images can be referred to as motion perception. It plays
a crucial part in autonomous systems, providing relevant
information about the speed and direction of any moving
object in a scene [7]. Additionally, information that directly
translates motion can also be valuable for 3D perception. This
article proposes a lightweight encoder-decoder architecture,

76056
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9016-525X
https://orcid.org/0000-0003-2465-5813
https://orcid.org/0000-0002-2404-7415


P. N. Leite, A. M. Pinto: Exploiting Motion Perception in Depth Estimation Through Lightweight CNN

FIGURE 1. A visual representation of the proposed approach. The magnitude of motion allows for a relative sense of depth, obtained by exploiting the
notion of Motion-Parallax: objects closer to an observer (highlighted in red) move faster than objects further away (highlighted in green). NEON combines
this input with the texture-based features captured from an RGB image to estimate highly reliable depth maps, in a fraction of the time when compared
to current State-of-the-Art solutions.

NEON (deNse dEpth from mOtioN-parallax), that exploits
the notion of Motion-Parallax - objects closer to an observer
are perceived to move faster than objects further away [8] - by
making use of the magnitude of pixel motion in a flow field.
This information is combined with texture-based features
from anRGB image, to obtain a dense and accurate depthmap
of the scene. A visual representation of the proposed pipeline
is presented in Fig.1.

By introducing the magnitude of motion as part of the
network’s input, the learning task shifts focus from solely
learning how to predict depth from texture, shadows and
occlusions; to also weighing in which magnitude of motion
corresponds to what depth value. This allows the network’s
complexity to be reduced, being capable of estimating depth
mapswith low-latency, whilemaintaining high levels of accu-
racy. In summary, the contributions of this work include:

• A lightweight Convolutional Neural Network (CNN),
designed to balance performance and inference times.
Near State-of-the-Art results are achieved - the average
absolute difference in terms of RootMean Squared Error
is 36 cm. NEON takes a fraction of the time to estimate
predictions, being 12 times faster than the currently top
ranked network.

• A thorough study on the impact of the introduction of
the motion perception features as an additional input
to the network. Ablation studies indicate a signifi-
cant performance gain when the Motion-Parallax effect
is exploited; and reveal that the network gives more
weight to the newly introduced information than to
texture-based features.

• An extensive benchmark analysis of the results obtained
from evaluating NEON’s performance on Eigen’s [9]
split of the KITTI dataset. Being composed of real world
data, this dataset allows NEON to be tested in a multi-
tude of scenarios, under various lighting conditions and
phenomena. Finally, NEON is compared to the most
relevant networks to date.

The remainder of this article is structured as follows:
Section II shortly presents a literature review; Section III
introduces the architecture of the proposed network; All the

conducted experiments are presented in section IV; Finally,
section V summarizes the conducted work and provides a
critical view of the obtained results.

II. RELATED WORK
Traditional methods rely on hand-crafted features and prob-
abilistic models. The advances in deep learning bypass this
step, extracting important characteristics directly from the
input. This section presents relevant works in the scope of
monocular (section II-A) and motion-based (section II-B)
depth estimation, as well as efficient networks capable of
carrying out this task (section II-C).

A. MONOCULAR DEPTH ESTIMATION
1) SUPERVISED LEARNING APPROACHES
A supervised approach at estimating monocular depth is first
presented in the work of Saxena et al. [10]. The image is
divided into small patches and hand-crafted filters are used
to extract relevant local features. Finally, a Markov Random
Field (MRF) models the relation between patches, achiev-
ing a global representation of the scene. This work is later
extended to a patch-based model that learns both the 3D
location and orientation of each patch [11]. Eigen et al. [9]
propose a complementary two-stack network, where first a
coarse prediction is inferred at a global level, and it is later
refined locally by a fine-scale network. Comparatively to pre-
vious approaches, this is the first work to learn directly from
pixel information without the need of hand-crafted features.
A combined application of a CNN and a Conditional Random
Field is introduced by Liu et al. [12] achieving amore detailed
and visually sharp prediction. Kuznietsov et al. [13] propose
a semi-supervised method. The sparse LiDAR ground truths
are used during training, however the learning is conditioned
to infer photoconsistent depth maps by means of a direct
image pair alignment loss. The work of Fu et al. [1] shapes
the learning of a depth map as a quantized ordinal regres-
sion while avoiding unnecessary spatial pooling operations,
in order to obtain faster convergence times. Yin et al. [14]
introduce 3D geometric constraints (virtual normal direc-
tions) as a loss term. This approach leads the network to
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encode strong global constraints, that in turn allow for a less
noisy and more faithful projection of the estimated depth map
into the 3D space. In 2020, Johnston and Carneiro [15] pro-
posed twomechanisms to improve self-supervisedmonocular
depth estimation: self-attention, to enable the exploitation of
more general features at non-contiguous regions; and, dis-
crete disparity prediction which provides robust and sharper
depth maps. This approach leads to the best results, in the
KITTI benchmark, so far as the self-supervised learning task
is concerned.

The current State-of-the-Art results are achieved by the
Big-to-Small (BTS) network, introduced by Lee et al. [2].
Local planar guidance layers are incorporated into several
stages along the decoding phase. This novel layer allows for
an explicit relation from internal feature maps to the desired
prediction. This methodology shows significant improve-
ments when compared to previous works, however, frequent
artifacts can be observed in predicted depth maps for the
KITTI benchmark dataset. The authors refer to the sparsity
of the ground truth data as the catalyst for this issue.

2) UNSUPERVISED LEARNING APPROACHES
An unsupervised learning method is presented by Godard
et al. [16], where depth estimation is formulated as an image
reconstruction problem. This approach makes use of stereo
image pairs, and tries to predict one perspective from the
other by using the estimated disparities. The estimation error
is used as the loss function, enforcing left-right consistency.
Garg et al. [17] also treat this problem as an image reconstruc-
tion, proposing an unsupervised encoder-decoder network
that is optimized through the photometric error in the recon-
struction. Mathew and Mathew [18] introduce an unsuper-
vised technique based on a shared encoder-decoder design.
It makes use of stereo pairs during the training process,
estimating a depth map for each of the images. The target
view is obtained by inverse warping the source view, using
the geometric camera projection, and the learning is enforced
through a stereo positive-negative loss.

B. ESTIMATING DEPTH FROM MOTION
Estimating depth from relative pixel motion is a complex
computer vision problem. Classic mathematical approaches
exploit camera motion, spline approximations and epipolar
geometry to infer relative depth maps [19]–[21]. The work
of Pathak et al. [22] takes advantage of the motion parallax
phenomena in a virtual reality context. Two spherical images
are used to estimate a dense optical flow, which is then
decomposed into a relative depth map.

When it comes to machine learning approaches, the work
proposed by Mancini et al. [23] uses both RGB images and
optical flows as inputs for a CNN, to estimate depth maps
for an obstacle detection task. This methodology prioritizes
fast inference times, sacrificing the accuracy of the estimated
predictions. Training is conducted with synthetic data and
validation is later conducted on the KITTI dataset. The net-
work is capable of running at 30Hz on an NVIDIA Tesla

K40 GPU, achieving an average RMSE of 7.508m. The
authors address the methodology’s weakness in close-range
estimations, which limits the practical application of this
work. Additionally, training with synthetic data does not
account for the implications of real world scenarios, which
would further hinder the network’s performance. A different
approach is presented by Ummenhofer et al. [24], where the
learning task mimics a typical structure-from-motion prob-
lem. The DeMoN network is composed of two consecutive
encoder-decoder structures. The first predicts the optical
flow, whereas the second takes this prediction into con-
sideration while inferring depth maps and surface normals.
A comparable approach is presented by Wang and Shen [25]
where the network first jointly estimates optical flow and
camera motion. A triangulation layer is then proposed to
encode this information and, finally, a depth map is esti-
mated. Jiang et al. [26] propose a self-supervised network,
that is pretrained with relative depth maps obtained from the
information encoded in the optical flow’s motion field. The
work of Chen et al. [27] also couples together the learning of
both optical flows and depth. Their network simultaneously
learns to predict optical flows and depth maps, benefiting
from exchanges of information between both segments of
the network. The research presented above gains from jointly
learning how to estimate depth and interpret motion, however,
shaping the learning task in such a way requires a very high
degree of network complexity. The use of cascaded or parallel
networks that share information and weights, not only suffers
from a much more arduous training process, but also limits
the applicability of these methodologies in real-time tasks,
due to the sheer amount of necessary calculations.

C. EFFICIENT ARCHITECTURES FOR DEPTH ESTIMATION
Most of the works presented above rely on powerful net-
works, which lead to inference times that are unsuitable for
real-time applications. Few networks have been specially
designed for low latency (e.g. MobileNet [28], [29], Effi-
cientNet [30]) however, these are tailored to perform feature
extraction, whereas very little emphasis is put into efficient
upsampling methods. The work of Wofk et al. [31] focus
precisely on this problem, proposing an encoder-decoder net-
work with low latency upsampling layers. Pruning techniques
are used to further reduce computational costs, achieving
178Hz on an NVIDIA Jetson TX2 embedded GPU platform,
for a single RGB input of size 224 × 224. Fast inference
times are also achieved by the architecture introduced by
Nekrasov et al. [32], composed by a MobileNet V2 and a
lightweight RefineNet [33]. It takes approximately 13ms,
on an NVIDIAGeforce GTX 1080 Ti GPU, to estimate both a
monocular-based depth map and the correspondent semantic
segmentation of the scene.

A few efficient unsupervised techniques have also been
explored in the literature. Poggi et al. [34] make use of a pyra-
midal structure-based network to estimate monocular depth,
achieving 2Hz on the Raspberry Pi 3 and 40Hz on a standard
CPU. Liu et al. [35] make use of a recurrent module within
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FIGURE 2. The general encoder-decoder architecture of the proposed network (NEON): the encoder, is composed of a ResNet18 followed by a 1 × 1
convolutional layer that asserts the number of channels to the decoder, which is comprised of five upsampling layers, each followed by a bilinear
interpolation with a scale factor of two. Skip additive connections are implemented between both. Feature maps are presented as Channels x Height x
Width.

their encoder, as well as a novel upsampling method based
on depthwise separable convolutions, to achieve satisfactory
performance while keeping the network as lightweight as
possible. This approach is capable of running at 110Hz on
an NVIDIA Geforce GTX 1080 Ti GPU and about 2Hz on a
Raspberry Pi 3.

Most of the works presented above sacrifice accuracy
in order to have low latency. In comparison, this research
presents an approach capable of reaching near state-of-the-
art performances while spending 6.4ms per frame. The
short inference times are achieved through the design of a
lightweight architecture, and, the high depth map accuracy
is assured through the additional input (the magnitude of
motion), which proved to have the desired impact on the
network’s performance.

III. NEON-A LIGHTWEIGHT NETWORK FOR DEPTH
ESTIMATION
The proposed lightweight CNN is introduced in section III-A.
A thorough discussion of how motion perception can
be exploited in depth estimation tasks is presented in
section III-B. Finally, the most relevant implementation
details are discussed along section III-C.

A. NETWORK ARCHITECTURE
The proposed network is based on an encoder-decoder struc-
ture. Its full architecture is presented in Fig.2. The encoder is
responsible for extracting high-level characteristics from the
input. These become a set of low-resolution feature maps that
need to be merged and upsampled, so that the network is able
to output a dense and full resolution depth map. This task is
handled by the decoder. In the context of robotic applications,
processing power is a constrained resource. For this reason,

this work aims to develop a lightweight network capable of
inferring predictions in useful time, i.e. a few milliseconds,
while having minimal impact on accuracy.

The chosen encoder is based on the ResNet18. Its resid-
ual connections allow for an easier optimization due to the
improved flow of gradients [36], while providing a good
trade-off between accuracy and inference times (refer to
section IV-A). The ResNet is adapted from image classifica-
tion tasks, therefore some modifications are necessary. The
first convolutional layer has been altered to support a 4 chan-
nel input (an RGB image where the magnitude of motion is
added as the fourth channel), and the standard classification
layers removed and replaced with a 1 × 1 convolution that
asserts the correct number of channels for the decoder.

On the other hand, the decoder is the most time consum-
ing part of these types of network structures [31]. The use
of depthwise separable convolutions results in significantly
lower computational times. This concept is based on factor-
izing a standard convolution into two operations: a depthwise
convolution followed by a 1× 1 pointwise convolution [37].
The first applies a filter, whereas the second merges the
outputs. Contrary to a standard convolution, these depthwise
layers convolve with a single channel at a time, hence the
lower complexity [31]. The chosen decoder is composed by
five layers, where the upsampling is carried out by depthwise
convolutions followed by bilinear interpolation with a scale
factor of 2.

Similarly to the residual connections between layers within
the ResNet architecture, there are also benefits from mir-
roring the same logic between encoder and decoder. The
detailed features encoded from the original input can be lost
as these become iteratively more compact feature maps. Skip
connections allow high-level features from the encoder to be
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merged with low-level ones, during the upsampling process,
leading to a more detailed depth map. Fig.2 depicts the four
implemented connections between each ResNet block and the
corresponding upsampling layer.

B. EXPLOITING MOTION PERCEPTION IN A DEPTH
ESTIMATION TASK
The three-dimensional movement of objects in a scene
- translations and rotations - can be represented in a
two-dimensional space. The 2D vectors that translate this
motion, not only offer information about speed and direction,
but also encode information about depth.

An observer moving in a static scene can be defined with
a motion profile composed by: a translational velocity, 0̇ =
(tX , tY , tZ )T ; and a rotational velocity, � = (wX ,wY ,wZ )T .
Since both components are described in the imaging sensor’s
coordinate system, said systemmoves along with the camera.
A point P = (X ,Y ,Z )T represented in this coordinate space,
will thus change its position accordingly.

Considering that this point P is perceived to move away
from the camera, its velocity Ṗ is given by [8]:

Ṗ = −0̇ −�× P (1)

For a pin-hole camera model, x and y can be expressed as:

x = f
X
Z
; y = f

X
Z

(2)

where f represents the camera’s focal length. The
two-dimensional velocity vector v, of the projected point p,
can thus be represented by:

v ≡ (u, v)T =

 ∂x
∂t
∂y
∂t

 (3)

Substituting equation 2 into 3:

v =
f
Z

 Ẋ −
XŻ
Z

Ẏ −
Y Ż
Z

 = 1
Z

[
f Ẋ − Ż x
f Ẏ − Ż y

]

=
1
Z

[
f 0 −x
0 f −y

] Ẋ
Ẏ
Ż

 (4)

Now using equation 1:

v =
1
Z

[
−f 0 x
0 −f y

]
0̇

+
1
Z

[
−f 0 x
0 −f y

] 0 Z −Y
−Z 0 X
Y −X 0

� (5)

Finally, the two-dimensional velocity of p can be formu-
lated as:

v =
1
Z

[
−f 0 x
0 −f y

]
0̇

+


xy
f

−f −
x2

f
y

f +
y2

f
−
xy
f

−x

� (6)

Two major conclusions can be inferred from equation 6.
The first relates to the fact the vector sum of the velocity
does not directly depend on the three-dimensional position of
point P within the camera’s coordinate system. The apparent
motion, therefore, solely refers to the observer. Additionally,
the inverse of the depth appears coupled to the translational
component of the velocity, acting as a scaling factor: the
closer point p is to the observer, the faster it is perceived
to move. This phenomena is denominated Motion-Parallax.
Fig. 3 depicts a practical example of how the parallax effect
can be exploited to infer a relative sense of depth. The
information extracted from motion perception can thus be a
valuable addition to NEON’s input data.

FIGURE 3. Motion perception allows for a relative sense of depth to be
extracted from the 2D projection of motion vectors. Considering two
distinct viewpoints of the same static scene, the pixel displacement in
between both encodes information about its depth. The higher the
magnitude of motion associated to a pixel, the closer it is to the observer
and vice-versa (refer to the highlighted regions of the image).

C. IMPLEMENTATION DETAILS
The KITTI dataset [38] is one of the most well known
benchmark datasets for depth prediction tasks. It is com-
posed of 61 outdoor scenes, captured in different contexts,
providing visual information from a stereo camera pair with
a 375 × 1241 resolution, as well as point cloud data gath-
ered from a 64 channel Velodyne LiDAR. The split of the
KITTI data proposed by Eigen et al. [9] is used for training
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(23158 instances) and evaluation (697 instances) purposes.
The ground-truth data is a 2D projection of the LiDAR point-
cloud, therefore, the loss of a degree implies the loss of some
information. To mitigate the issues of training with sparse
data, the parts of the image where there is no correspond-
ing depth information are cropped, and, the ground-truth is
infilled by interpolating the missing depth values according
to the colorization algorithm proposed by Levin et al. [39].
Motion perception can introduce valuable information in a

depth estimation task. To exploit this information, the intrin-
sic movement of each pixel must be estimated. Optical flow
techniques are a classic approach to obtain the motion vectors
for each pixel [40]. Recent deep learning techniques improve
upon this concept being capable of estimating fast and robust
flow fields. The FlowNet 2.0 proposed by Ilg et al. [41],
the current state-of-the-art network, is used offline to obtain
the spatial evolution of pixels, assigning them the respective
motion vector.

Motion vectors are often estimated through a sequential
approach, i.e. pixel I (x, y) at time t , moves by δx and δy during
the time interval δt :

I (x, y, t ′ = t + δt ) = I (x + δx , y+ δy, t) (7)

Instead, the flow field is calculated from a stereo pair of
images captured at the same time instant t:

IRight (x, y, t) = ILeft (x + δx , y+ δy, t) (8)

This way, one is able to obtain two different viewpoints
from the same static scene, which is not possible with the
sequential approach. Additionally, the entropy caused by the
constant speed changes in a moving vehicle, which can break
the optical flow constraints if the movement of the pixels
becomes too steep, can be bypassed.

The motion vectors are then transformed into polar coordi-
nates, and, since the aim is to obtain how much a pixel moves
and not its direction, only the magnitude is used as input for
the network. This information is finally concatenated with
the RGB image, forming an 4x192x1120 input. Additionally,
to increase the generalization capabilities of the trained mod-
els, data augmentation is performed:
• Random rotations (between [−5, 5] degrees) are applied
with a 60% probability;

• Horizontal flips with a 60% probability;
• Further augmentation is done to the RGB image by
randomly shifting the brightness, contrast and gamma
values;

• Motion blur is added to the RGB image to simulate a
vehicle’s movement.

Vertical flips are not considered because of the application
context, e.g. the road should always be on the bottom.

IV. EXPERIMENTS
This section thoroughly discusses the results obtained by
evaluating NEON’s performance in Eigen et al.’s [9] test
split of the KITTI dataset. Along this section, ablation stud-
ies are presented for both the network’s design and choice

of input modalities. Finally, a state-of-the-art benchmark is
provided and conclusions are inferred by using the work
of Lee et al. [2] as baseline for comparison. All the dis-
cussed experiments were run with an NVIDIA GeForce RTX
2080 SUPER with 8GB of VRAM, and the Intel i5-8600K
CPU @ 3.60GHz with 6 cores. The implementation of
the NEON network was conducted with the deep learning
framework Pytorch. Optimization is carried out through the
Stochastic Gradient Descent algorithm, with a learning rate
of 0.1, decreased by 10 every 3 epochs. Training is conducted
with a batch size of 8, during 12 epochs and the Huber loss is
used to guide the learning task. A weight-decay of 1e − 3 is
applied to ensure regularization.

The following metrics are used to evaluate the inferred
predictions during this section:

• RMSE: Root Mean Squared Error;
• REL: Mean Absolute Relative Error;
• δn: Percentage of predicted pixels whose relative error is
within a threshold (refer to (9)).

δn =
card({ŷ : max{ ŷiyi ,

yi
yi
}}) < 1.25n

card({yi)}
(9)

where yi and ŷi are the ground truth and prediction, respec-
tively. card represents the cardinality of a set.

Since the global scale of a depthmap can be ambiguous [9],
the Scale-Invariant Logarithmic Error (SIlog) is also consid-
ered as a metric of evaluation:

SIlog =
1
n

∑
i

(di)2 −
1
n2

(
∑
i

di)2 (10)

where n is the number of valid pixels in the ground truth, and
di is given by:

di = log(ŷi)− log(yi) (11)

where ŷi and yi represent the prediction and ground truth,
respectively.

Finally, since fast processing times are indeed a concern for
robotic applications, the model’s efficiency - i.e. the elapsed
GPU time during inference - is also considered as an evalua-
tion metric.

A. ABLATION STUDIES: NETWORK DESIGN
During the design of the architecture presented in section III-
A, multiple encoders - MobileNet, ResNet18, VGG11,
DenseNet121 - and decoders - BLConv5, DeConv5, UpProj,
UpConv - were experimented with. This section aims at
discussing the most relevant conclusions inferred from these
experiments, justifying the choice of the ResNet18 and
BLConv5 for the encoder-decoder structure, as well as
the benefits of having additive connections between both.
Every model was trained with the same hyperparameters,
as described in section IV, and the Huber loss function.
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1) ENCODER
The extraction and encoding of high-level features is a crucial
part of any network. To choose an encoder with the best possi-
ble compromise between accuracy and complexity, multiple
networks that have been adapted and used in state-of-the-art
depth estimation applications were studied. For sake of a fair
comparison, the BLConv5 (with depthwise convolutions) was
used as the decoder across every experiment.

Similarly to the process described in section III-A, each
of the presented encoders was adapted to work with a four
channel input and, the classification layers were removed and
substituted with a convolution layer that asserts the number
of necessary channels for the decoder.

The VGG network [42] has been used in several depth
estimation works (e.g. [1], [26]), however its large amount of
Multiply-Accumulate1 (MAC) operations (see table 1) make
it rather time consuming to train. When compared with a
ResNet, trained within the same conditions, the latter does
perform better as seen in the work presented by Fu et al.
[1]. The simplest version of this network, VGG11, was used
during these experiments. The results presented in table 1
align with the aforementioned statement, since VGG has the
worst performance out of the remaining encoders, with a
3.406m RMSE and 93.7% of correctly predicted pixels.

TABLE 1. Comparison between multiple encoders. For a fair comparison
the BLConv5 decoder was fixed across every experiment. The MAC
operation count was obtained for a 4x192x1120 input (CxHxW) and
doesn’t take the decoder into account.

A network that has commonly been used for this regression
task is the ResNet [36]. Its residual connections allow for
the training of deeper networks while avoiding vanishing
gradients. This residual network and its variants are at the
core of state-of-the-art architectures such as the BTS network
presented by Lee et al. [2]. On the other hand, the DenseNet
[43] also promotes a strong gradient flow, since each consec-
utive block is an iterative concatenation of previous feature
maps. From testing both in this application, one is able to
conclude that these achieve very similar results (in terms of
RMSE and δ1, refer to table 1). However, when comparing
both SIlog percentages (5.41% and 5.51%, respectively) the
ResNet does infer a more faithful representation of the scene,
i.e. it better captures its scale. Furthermore, the DenseNet
takes the longest time to estimate a prediction out of the four
encoders, approximately 3.2 times higher than the ResNet.

1Estimated with: https://github.com/sovrasov/flops-counter.pytorch

Finally, the MobileNet [28] is one of the most lightweight
networks that have been used for estimating depth maps in
real-time [31]. Its low amount of parameters andMAC opera-
tions (2.51G)make it the fastest network to train as well as the
quickest to infer a prediction (4.8ms), while still performing
rather well.When comparing it to the ResNet, the latter is able
to achieve better results, being marginally slower. Therefore,
from this set of experiments, the ResNet can be consid-
ered the most suitable network for a performance-latency
compromise.

2) DECODER
The second part of the architecture, the decoder, is respon-
sible for merging the features extracted by the encoder and
upsampling them to a given resolution. The ResNet18 is
the encoder of choice, while several upsampling layers were
studied on a fixed five layer decoding structure with a final
convolution at the end.

The work presented by Laina et al. [44] introduces two
distinct upsampling layers:

• UpConv: composed by a 2×2 unpooling stage followed
by a 5× 5 convolution;

• UpProj: composed by a 2 × 2 unpooling operation fol-
lowed by two branches: one performing both a 5×5 and
a 3 × 3 convolution; and the other with a single 5 × 5
convolution. Both branches are added up and fed to a
ReLU layer.

The UpProj module leads to the better quantitative results
in terms of RMSE and δ1, with 3.181m and 94.4%, respec-
tively. It also performs the best when it comes to captur-
ing the global scale of the scene, reaching a percentage
of 5.04 SIlog (see table 2). On the downside, this decoder
employs a rather complex structure, which is reflected in the
higher number of learnable parameters and MAC operations
(120G), which consequently lead to a high inference time
of 41.5ms. The UpConv, on the other hand, offers a better
complexity-accuracy trade-off, halving the time of inference
at the cost of a slightly less accurate prediction (average
RMSE of 3.225m).

Further comparison can be drawnwith the decoder variants
proposed by Wofk et al. [31]:

• BLConv5: composed by a 5 × 5 convolution followed
by bilinear interpolation with scale factor of two;

• DeConv5: composed by a 5× 5 transpose convolution.

The DeConv5 performs metrically worse than the remain-
ing decoders, achieving anRMSE of 3.438m, as well as a per-
centage of correctly predicted pixels of 93.8%.When it comes
to the BLConv5, even though the RMSE is higher (3.215m),
and the overall quality of the prediction is slightlyworsewhen
compared to the UpProj module (both in terms of δ1 - 94.1%;
and global scale - 5.24% SIlog); it presents itself as the
better option for this architecture. The BLConv5 massively
outperforms the UpProj in inference times, being capable of
outputting a prediction 4.2 times faster.
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FIGURE 4. Impact of skip additive connections. Dense depth maps inferred from the same architecture, with and without skip connections between
encoder-decoder. The more detailed prediction, in c), is the result of the addition of high-level features from the encoder into the decoding layers; on the
other hand, the prediction presented in b) is blurry and less detailed since it is not capable of maintaining most of the input’s features.

TABLE 2. Comparison between multiple decoders. For a fair comparison
the ResNet18 was fixed as the encoder across every experiment. The MAC
operation count was obtained for a 4x192x1120 input (CxHxW) and
doesn’t take the encoder into account.

As stated in section III-A, depthwise separable convolu-
tions lead to lower computational complexity. The use of
these layers on the decoder of choice, the BLConv5, lowers
the total MAC operations to 0.755G, slightly improves the
RMSE (see table 1, where the ResNet18 is used along the
BLConv5 with depthwise convolutions) and leads to a 4.1ms
gain on inference time.

3) IMPACT OF THE SKIP CONNECTIONS
When the encoded features reach the decoder, these have lost
a lot of the original input’s detail. The use of skip additive
connections between encoder and decoder leads to a notice-
able increase in the quality and detail of the prediction.

To experiment the impact of these connections, the
ResNet18 is used as the encoder, the BLConv5 (with depth-
wise convolutions) as decoder and four additive connections
between both were implemented. By looking at table 3, one
can conclude that the network quantitatively benefits from
these connections. The RMSE slightly improves to 3.118m,
while the δ1 increases to 94.5%. Metrically, the highest
impact is reflected on the ability of the network in capturing
the global scale of the scene, achieving a SIlog of 4.89%.
However, the additional operations have the downside of
increasing the inference time to 6.4ms.

When it comes to the higher level of detail in the predic-
tion, visible differences can be seen in the highlighted areas
of Fig.4. Comparing both Fig.4b) and Fig.4c), the latter is
capable of retaining features extracted from both the RGB
and magnitude of motion inputs, by making use of the skip
connections. On the contrary, the depth map inferred by a

TABLE 3. The benefits of skip additive connections between encoder and
decoder.

TABLE 4. Comparison between different loss functions.

network that does not connect both the encoder and decoder
structures (Fig.4b) produces a blurry output which lacks most
of the original features and resolution.

4) LOSS FUNCTION
Once the architecture had been decided, the next logical
step was to optimize its learning process. To study the
most suitable loss function for the problem at hand, sev-
eral models were trained within the same conditions (refer
to section IV for implementation details), varying the loss
function.

The l2 function is more sensitive to outliers, due to having a
squared term, therefore larger distances are further penalized.
This fact leads to a worse performance when compared to
the remaining loss functions presented in table 4. Even if the
RMSE is very similar across the table, the models optimized
through an l2 function still perform the worst in terms of SIlog
(5.87%) and δ1 (93.9%).
On the other hand, the l1 and Huber loss functions perform

rather similarly, however, the former tends to over-smooth
boundaries [45]. The Huber loss behaves as a hybrid between
the l1 and l2 functions, leading to the best performing model,
both metrically (with an RMSE of 3.118m) and quantita-
tively (achieving a SIlog of 4.89% and a δ1 of 94.5%).
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TABLE 5. State-of-the-Art comparison on the KITTI dataset. All methods are evaluated on the test split by Eigen et al. [9].

B. ABLATION STUDY: THE IMPACT OF EXPLOITING
MOTION PERCEPTION
This section aims at studying the impact of different input
modalities on the performance of the network. The first exper-
iment consists in removing the magnitude of motion as input,
training and evaluating the network within a monocular depth
estimation context. The obtained results, see table 6, show
that the RMSE drastically increases to 4.930m. Similarly,
the SIlog percentage also increases (8.21%), indicating an
overall worse performance.

When the network receives the magnitude of motion as the
sole input, i.e. with no support from the texture provided by
an RGB image, it still achieves an RMSE of 3.608m and an
average of 90.5% of correctly predicted pixels.

From these experiments one is able to deduce that
the network gives more weight to the features computed
from the magnitude of motion than to the ones extracted
from the texture. However, the most accurate predictions

TABLE 6. The impact of different modalities on the performance of the
network.

(both quantitatively and qualitatively) are obtained when both
modalities are combined. This ablation study not only val-
idates the usefulness of introducing the magnitude of pixel
motion as an input to the network, but also proves that both
inputs provide valuable information, that leads to an accurate
and detailed depth map.

C. COMPARING NEON TO THE STATE-OF-THE-ART
The Eigen split of the KITTI dataset [9] has been widely
used as a benchmark for depth prediction tasks. To com-
pare the results obtained from the proposed approach to
current state-of-the-art, the most relevant works to date have
been compiled in table 5. The presented results are gath-
ered from the corresponding papers, with the exception of
Saxena et al. [11] which is obtained fromEigen’s comparison
in [9].

There have been considerable improvements in the state-
of-the-art since the first pioneer works have been published.
Both supervised and unsupervised techniques now present
themselves as viable options to infer accurate and detailed
depth maps, however, few of these are actually usable in real
scenarios where resources are constrained.

Jiang et al. [26] make use of optical flow information to
estimate relative depth, which is later used to pretrain the
network. This is themost comparable approach to the one pre-
sented in this article however, the NEON network is trained to
directly exploit the magnitude of movement in each pixel and
combine it with features extracted from an RGB image. The
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FIGURE 5. Visual comparison between the NEON and BTS [2] networks. A) NEON’s input data, an RGB image and the magnitude of motion, respectively;
B) NEON’s output prediction; C) BTS’ output prediction; D) Infilled ground truth. The proposed NEON network achieves an average RMSE of 3.118 m, being
marginally worse than the BTS network. In terms of efficiency, NEON is 12 times faster at inferring a prediction than the BTS network.

results of both networks can only be comparedwithin a global
picture, with NEON achieving a better performance across all
metrics, since Jiang’s work is self-supervised and it cannot be
directly compared to NEON’s supervised methodology.

The current state-of-the-art performance is achieved by the
BTS network proposed by Lee et al. [2]. The core of this
network is based on a ResNext101 [48], which has 112.8M
learnable parameters, 10 times more than NEON’s encoder,
the ResNet18. This huge complexity difference reflects itself,
not only in the quality of the predictions, but also in inference

times. Fig.5 presents a visual comparison for the output pre-
dictions of both networks, NEON (row b) and BTS (row c).
The latter does infer a more visually pleasing depth map, less
blurry and with sharper edges, achieving an average RMSE
of 2.756m and 95.6% of correctly predicted pixels. On the
other hand, NEON, achieves a lower δ1 value of 94.5%; while
also being marginally worse metrically (with a difference of
0.362m), averaging an RMSE of 3.118m.

In terms of efficiency, NEON is capable of making predic-
tions approximately 12 times faster than BTS. For the sake
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FIGURE 6. Exploring NEON’s behavior in unsupervised regions. By referring to the highlighted regions, the prediction estimated by the BTS network
indicates that the sky region is rather close to the observer. On the other hand, NEON depicts a much more logical depth map on the unsupervised
regions. The reason behind this can be attributed to the fundamental learning task, where NEON not only learns from texture-based data, but also from
magnitude of pixel motion.

of a fair comparison, both networks were benchmarked on
the same hardware (refer to section IV for specifications),
and the input size of the BTS network has been adjusted
to 192 × 1120, matching NEON’s input size. While NEON
takes just 6.4ms to infer a depth map, the BTS network
takes 76.69ms. Unlike previous state-of-the-art approaches,
the methodology presented in this article is capable of main-
taining high levels of accuracy and detail within its depth
maps, while significantly reducing inference times.

Transparent surfaces, e.g. a car’s glass window, are a clas-
sic problem in depth prediction tasks - in addition to being see
through, these are also not detected by IR-based technologies.
Since the BTS network is fully dependent on visual features
such as texture and shadows, it is prone tomaking errors when
it comes to these materials. The proposed NEON network has
a better response to these scenarios, since it is not limited to
a single type of input data. A clear example of the described
behavior can be seen on the highlighted regions, in the bottom
row, of Fig.5. On the other hand, since the magnitude of
motion, that serves as additional input, is obtained from an
optical flow field, it is also susceptible to erroneous situa-
tions: lack of texture, shadows and light flares (refer to the
top row of Fig.5) are classical conditions that can misguide
the optical flow algorithm [8].

A final comparison can be drawn between NEON and
BTS. The lack of a complete ground-truth is fruit of the
LiDAR’s projection onto the 2D space, as well as the natural
sparseness of the sensor. To avoid this issue, NEON’s input is
cropped so that the portions of the input with no correspon-
dent ground-truth are not used. On the other hand, the BTS

FIGURE 7. The RMSE maps relative to NEON’s depth map predictions for
the scenarios presented in Fig.5.

network is trainedwith the original sized input. This fact leads
to the training of several unsupervised regions, that translate
into non logical portions of the output depth map. To explore
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NEON’s behavior on the same unsupervised regions, the orig-
inal data (i.e., with no crops) was fed to the network. Fig.6
depicts the results of this experiment. The regions highlighted
in this figure correspond mostly to the sky. The depth map
inferred by the BTS network predicts this area as being very
close to the observer, which is obviously not correct. On the
other hand, the output estimated by NEON depicts a much
more logical depthmap. Thus, shaping the learning task to not
only learn how to predict depth from texture-based features,
but also from the magnitude of pixel movement leads to
models with better generalization capabilities, that produce
logical predictions even in unsupervised regions.

Larger distances tend to be increasingly harder to estimate,
regardless of the applied technique. By observing the RMSE
maps presented in Fig.7, the majority of NEON’s prediction
error is present over long distances. This fact can be further
explored by looking at the results in table 5, when the network
is capped at 50m, the average RMSE decreases by approxi-
mately 28%.

V. CONCLUSION
This article proposes a lightweight convolutional neural net-
work - NEON - that exploits motion perception, taking advan-
tage of the parallax effect to infer about the apparent motion
of a scene. This relative sense of depth is combined with
texture-based information provided by an RGB image. Abla-
tion studies conducted to study the impact of the different
input modalities prove that the features captured from this
additional input have great weight on the final prediction,
vastly improving the network’s performance.

Research is vast in relevant works that resort to com-
plex encoder structures such as the ResNext101 (∼ 113M
parameters) or VGG19 (∼ 144M parameters). The proposed
encoder-decoder architecture makes use of 29M learnable
parameters in total, and approximately 22G MAC oper-
ations, being capable of outputting predictions in 6.4ms
(∼ 156Hz). Contrary to approaches that sacrifice accuracy
for low-latency, NEON achieves near state-of-the-art accu-
racy on the KITTI dataset, with an average RMSE of 3.118m
and 94.5% of correctly predicted pixels. NEON provides
the best accuracy-complexity trade-off, performing approx-
imately 12 times faster than the current State-of-the-Art net-
work, while having minimal cost on performance.

The methodology presented in this article can thus be
integrated in time-constrained tasks that require fast and accu-
rate 3D information to function, such as robotic grasping
or even autonomous driving. Additionally, NEON’s gener-
alization capabilities allow the network to provide relevant
information within completely distinct contexts. A repos-
itory containing the code basis for this work, as well as
instructions on how to reproduce its results, can be found in
https://github.com/pedronunoleite/NEON.
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