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ABSTRACT As drilling of new oil and gas wells increase to meet energy demands, it is essential to
optimize processes to ensure the health and safety of the crew as well as the protection of the environment.
Drilling operations represent a dynamic and challenging environment with natural and mechanical factors
that need to be closely managed. Well control refers to the technique employed while drilling for balancing
the hydrostatic and formation pressures to prevent the influx of water, gas, or hydrocarbons that would
ultimately result in an uncontrolled flow to the surface. In the event of a well control incident, the crew must
take proper and prompt actions to mitigate the risks and shut-in the well. In this study, we introduce the
Well Control Space Out technology, an internet-of-things (IoT) environment that couples cameras and an
edge server to implement state-of-the-art deep-learning models for the real-time processing of video images
recording the drillstring. The computational models automatically perform object detection to keep track of
key drilling rig components. The results from the video analysis are displayed on a dashboard describing
the state and steps to follow in a well control incident without the need for any time-consuming, manual
calculations. The internet-of-things edge foundation laid in drilling can be seamlessly expanded to other
upstream sectors, where time-sensitive, critical decisions can be made in real-time, in the field, closer to
operations. Finally, this technology can be seamlessly integrated with the current technologies to develop an
automated closed-loop control system.

INDEX TERMS Automation, deep-learning, computer vision, edge computing, internet-of-things, oil and
gas drilling, well control.

LIST OF ABBREVIATIONS
AI Artificial Intelligence
AP Average Precision
AR Average Recall
BOP Blowout Preventer
CNN Convolutional Neural Networks
CPU Central Processing Unit
DL Deep-learning
FN False Negatives

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

FP False Positives
GPU Graphic Processing Unit
IoT Internet of Things
ML Machine-learning
NPT Non-productive-time
R-CNN Regional Convolutional Neural Network
ResNet Residual Networks
SDD Single-shot detector
SVM Support Vector Machine
TN True Negatives
TP True Positives
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V-sat Very small-aperture terminal satellite
VGG Visual Geometry Group
YOLO You Only Look Once

I. INTRODUCTION
As world energy consumption continues to increase world-
wide, the focus of the oil and gas sector has shifted towards,
not only drilling efficiency and cost optimization, but also
safety, since recent acquisitions and discoveries require
drilling in progressively more extreme and challenging envi-
ronments. However, the present challenges faced in the indus-
try have come at an appropriate time when new technologies
can be employed to evolve and revolutionize the industry.

Recently, the internet-of-things (IoT), along with artificial
intelligence (AI) algorithms, have been successfully
deployed to address diverse problems across different
domains and industries. These applications range from
genomics [1]–[5], chemistry [6]–[8], medicine [9]–[14],
and manufacturing [15]–[18], to wearable technolo-
gies [19]–[22]. Similarly, and inspired by the fourth indus-
trial revolution, IoT and AI have become valuable tools for
increasing safety while optimizing drilling efficiency and
costs [23]–[28].

Notably, the oil and gas industry has long relied on man-
ual processes and dated technologies to explore, drill, and
produce hydrocarbons. The drilling process, for example,
has been performed by experienced drillers who have an
in-depth knowledge of the local geology and the drilling
conditions. However, the reliance on human expertise may
lead to performance inconsistencies and increased risks in
drilling operations.

Consequently, drilling operations represent an enormous
opportunity to deploy new sensors and capitalize on the newly
generated data in real-time for the development of AI models,
including machine-learning (ML) and deep-learning (DL).
These data-driven models are essential for the computation
of key performance indicators and surveillance of critical
operations, which ultimately would enable the automation
of operations [29]–[34]. The IoT has the potential to bring
together standardization, automation, sensors and actuators,
smart devices, machines, advanced analytics, and people in
drilling on a common platform [35]–[43].

The deployment of IoT on drilling rigs complements the
legacy sensors already in use and, when combined with new
sensors, enables more sophisticated analyses and automation
workflows. For instance, while before cameras were sim-
ply devices to acquire videos for manual inspection, edge
computing makes it possible for these cameras to be ‘con-
scious’ and ‘intelligent’, facilitating automation and remote
management of operations. Camera-based IoT platforms can
be seamlessly expanded to other areas of drilling operations
as well as to other upstream sectors, such as geology, geo-
physics, production, and reservoir engineering, to increase
efficiency and optimize operations.

In this study, we focus on the drilling operations, specifi-
cally on well control, which refers to the technique employed

for balancing the hydrostatic and formation pressures to
prevent the influx of water, gas, or hydrocarbons that may
escalate into an uncontrolled flow to the surface. To illus-
trate the importance of such an operation, consider the
Macondo incident in 2010, an oil blowout that resulted in
the loss of lives, and environmental damage, at the cost of
∼US$ 65 billion [44]. Moreover, the cost to repair the rep-
utation of the company and loss of productivity has been
estimated at US$ 150 billion, much more damaging to the
organization, not to count the negative consequences to fam-
ilies, societies, the global community, consequences that
in many ways cannot be weighed in financial terms [45].
Although the Macondo incident was the result of a series of
events and errors, the proper shut-in or kill of the well would
have controlled the situation to a large extent. However,
shutting-in a well requires a set of manual steps that may be
performed incorrectly in the heat of an emergency incident.

Here, we describe the Well Control Space Out technology,
an IoT edge-based platform for automatic space out of a drill-
string assembly while drilling hydrocarbon wells, a critical
step in well control. The platform consists of a waterproof,
high-resolution wireless camera, edge computing hardware,
and DL models for image/video processing and intelligent
analytics. Finally, this technology can be seamlessly inte-
grated with current sensors and lays the foundation for an
automated closed-loop process.

II. BACKGROUND KNOWLEDGE
In this section, we provide a brief description of drilling
operations with an emphasis on well control, followed by the
definition of an IoT edge environment required for isolated
environments, such as drilling rigs.

A. DRILLING
Drilling operations include a series of activities to ultimately
break rock formations in order to deepen a wellbore. For
this purpose, a drill bit and drillstring assembly are used to
create a hole vertically or at an angle (directional drilling)
targeting a hydrocarbon reservoir [46], [47]. During drilling,
a fluid, slurry, or mud (referred to as mud, hereafter) with
different properties is circulated into the hole (through the
drillstring) and back to the surface (through the annulus) for
various functions, including the removal of the rock forma-
tion cuttings and for maintaining both downhole temperatures
and rock formation pressures [48] (Fig. 1A). Once the hole
is at the desired depth, the well requires a cement casing
to prevent wellbore collapse and ensure wellbore integrity.
Fig. 1B shows a simple example of a casing design.

Wells are drilled for different purposes, such as explo-
ration, production, development or production, relief, among
others, and start after a thorough, well planning phase. Well
planning is complex and requires the integration of engineer-
ing principles, casing design, reservoir simulations, geology,
experience as well as corporate philosophies to formulate the
different variables for drilling a well. Although well plan-
ning methods and practices may differ significantly within
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FIGURE 1. Drilling and casing. A) Drilling representation of a vertical
wellbore. The drilling mud is pumped into the drillstring assembly,
circulated in to the hole and returns to the surface with the generated
rock cuttings. B) example of a casing plan with a production casing.

the industry, the common objective is to guarantee safety,
minimum cost, and usability for oil/gas production.

Thorough preplanning, best drilling practices, and
advanced tools are effective in reducing drilling hazards.
However, more complex horizontal and extended-reach wells
are being planned in order to reach reservoirs under the sea
from an onshore drilling rig, limit production of unwanted
fluids, maximize production and penetrate vertical frac-
tures [49]. Consequently, some planned wells are unfea-
sible due to different constraints based on the geology,
drilling equipment, downhole temperatures, and casing lim-
itations [50], [51]. Nonetheless, new sensors, IoT, and AI
models offer additional insights to enable the drilling of
such complex wells while also enhancing the productivity of
current operations (Fig. 2).

Drilling operations represent a challenging and dynamic
environment due to the combination of human, mechanical,
and geological factors. Moreover, despite the experience of
the industry, risk management is critical as no two wells are
the same. The three main causes of drilling non-productive-
time (NPT) are 1) stuck pipe incidents, 2) mud circula-
tion losses, and 3) well influx. Stuck pipe incidents occur
when downhole force(s) prevent the movement of the drill-
string [23]–[25], [52]. Mud circulation losses occur when the
drilling mud flows from the wellbore into the formations (due
to natural or induced factors) [26], [27], [53], [54]. Finally,
well influx refers to the flow of gas, water, or hydrocar-
bons from the geology into the wellbore [55], [56]. Notably,
these three drilling hazards are interlinked. For instance,
failing to maintain the formation pore pressure by having
a low mud weight would result in a possible wellbore col-
lapse and influx. Conversely, differential pipe sticking, mud

FIGURE 2. Relationship between the complexity of the drilling operations
and available technology.

losses, or even fractures may occur if the mud weight is
higher than the formation fracture gradient. The focus of this
study is on the well control technique to mitigate influxes.
An interested reader on other drilling processes may refer to
Gooneratne et al. [57] for more details.

B. WELL CONTROL
The most significant potential hazard while drilling a well is
the risk of an uncontrolled release and flow of hydrocarbons,
drilling fluids, formation fluids, or any other combination of
the three, from a well to the surface due to complications
arising from pressure management. The rheology properties
of the drilling mud (plastic viscosity, yield point, density,
among others) are critical to ensure proper hole cleaning
(removal of rock formation cuttings) and maintaining forma-
tion pore pressures. However, since the geological formations
are not homogenous, drilling muds with different properties
are needed. For instance, the example in Fig. 1B shows awell-
bore with four casings as it would be unfeasible to drill from
surface to bottom while satisfying all geological conditions
with the same mud properties. A well control incident may
occur due to the reasons listed in Table 1. A blowout preventer
(BOP), a specialized valve/mechanical device located at the
surface, is used to seal, control, and monitor the well in case
of an influx (Fig. 3). When experiencing a well control event,
the decision to either function the shear and seal the BOP
with the pipe in the hole or evacuate the rig before shutting
in the well is a complex one. A case in point is the Macondo
incident. Different human and technical influences come into
play in a highly time-dependent, often escalating situation.

However, before sealing or shutting-in a well, a well-
established set of manual instructions must be promptly exe-
cuted by the crew: 1) stop drillstring rotation, 2) pick the
drillstring off bottom and space out, 3) stop the mud pumps
and check for mud returns, 4) if mud returns continue, shut-in
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TABLE 1. Causes of well control incidents.

the well with the BOP, 5) increase mud weight by adding
additives to control the pore pressure (kill mud). Although
all steps are critical, spacing out the drillstring ensures both
the proper sealing of the well and the integrity of the BOP.
Closing a BOP ram on the thickest part of the drillstring,
containing the threads/pipe connections (referred to as tool
joint, hereafter) does not guarantee proper sealing and dam-
ages the ram aswell as the drillstring assembly. Fig. 3A shows
a simplified side view of a BOP when the tool joint is at
the shear ram. Drillstring space out refers to pulling out the
drillstring out of the wellbore until a tool joint is observed a
few feet above the drill floor to ensure the smallest diameter
of the drillstring is inside the BOP (Fig. 3B).

FIGURE 3. Blowout preventer side view. A) Drillstring not spaced out, tool
joint at the shear ram. B) Drillstring is spaced out, tool joint just above
the drill floor.

As discussed, shutting-in a well is a lengthy process that
includes several manual steps and has critical safety implica-
tions. Currently, most of the drilling rigs use dated sensors at
the surface to control and inspect certain operational aspects
and to detect drilling hazards. However, digital transforma-
tion technologies, such as IoT and AI, enable the prevention
of drilling hazards as well as the optimization of operations.
Next, we discuss the impact of IoT and AI in the drilling
industry.

C. INTERNET OF THINGS IN THE DRILLING ECOSYSTEM
The IoT refers to amultitude of heterogeneous interconnected
sensors that collect and analyze data to accomplish different
tasks without manual intervention [58], [59]. To achieve this
level of automation, digital technologies have to be embedded
in the majority of machines and devices to enable seam-
less cross-device communication and data analysis to detect
events or conditions required to optimize operations and
safety [60].

Recently, the IoT has been successfully deployed to
address fundamental applications and challenges related to
our environment, industries, and society. Similarly, the new
sensors, communication protocols, and data analytics have
the potential to transform current drilling operations and
enable automation. The implementation of IoT has been esti-
mated to increase operational drilling efficiency by at least
5% and reduce upstream operating expenditures by 20-30%,
both significant values in a multibillion-dollar industry [61].
A drilling rig represents a dynamic and challenging environ-
ment due to all factors involved during operations: 1) isolated
places with extreme weather conditions, 2) management of
large and heavy mechanical devices, and 3) engineering and
best practices required for maintaining safe and efficient
operations. Clearly, additional sensors and data analytics
models can be used to reduce manual work, increase safety,
and standardize operations.

Fig. 4A shows the general structure and communication of
the rig location and the remote headquarters. In the legacy
drilling rig architecture, the data are initially collected by
surface sensors (weight on bit, hook load, standpipe pressure,
among others) as well as downhole sensors and are aggre-
gated and displayed at the rig for manual interpretation by
highly skilled personnel. These aggregated data are also sent
through a very-small-aperture terminal (V-sat) for storage and
further analyses at the headquarters.

The oil and gas industry is currently aiming to capitalize on
the vast amounts of collected data over the years. Historical
data are used to derive novel ML/DL models to recognize
drilling hazards or optimization opportunities for real-time
operations. However, the deployed models remain at the
headquarter servers, with limited applications for real-time
operations due to the V-sat restrictions, i.e., high latency and
data down-sampling. Moreover, the down-sampling of the
data collected at the rigs represents a substantial loss of infor-
mation available for the models, as the trends may be wholly
lost due to the low transmission frequency of ∼0.2-1 Hz.
For instance, erratic torque is an important sign for detecting
stuck drillstring events, however, with a frequency of 0.2Hz,
it may be difficult to detect it even by sophisticated non-linear
ML models [23], [24], [62].

An alternative communication and processing structure
consist of allocating an edge server (located close to the
data sources) that processes and consumes the high-frequency
data for the generation of actionable items or having results
available to the crew in real-time. An edge server not only
enables the processing of high-frequency data for real-time
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FIGURE 4. Drilling rig and headquarters communication structure. A) Traditional communication structure where the data storage and data processing are
performed at the remote headquarters. B) An IoT structure that enables the synchronization of multiple sensors and processing of the data directly at
the rig.

applications but also reduces both privacy risks and band-
width required to transfer all data through the V-sat. This
is because, instead of sending all the aggregated data to the
headquarters, the edge server will only transmit actionable
insights or results through the V-sat. Finally, the implemented
models at the edge server may directly communicate to the
control system and actuators to enable the automation of
different processes.

Fig. 4B shows an IoT structure of a drilling rig that enables
the processing of heterogeneous data at the rig. Having mul-
tiple sensors require the implementation of communication
protocols, such as Bluetooth, Wi-Fi, 6Lo, ZigBee, among
others, as well as synchronization protocols to time stamp the
data before storing them in a database for further analyses.
The processed data is then fed into the ML/DLmodels (data-,
physics-based, or hybrid) to identify hidden patterns in the
data and predict anomalies associated with drilling before
they occur [63].

In this study, we describe an IoT environment that consists
of high-resolution cameras, edge servers, and DL models for
the automatic recognition of tool joints to enable quick and
safe BOP activation in case of well control incidents.

III. CAMERA-BASED IOT AND DEEP LEARNING MODELS
FOR AUTOMATIC WELL SPACE OUT
Cameras and recording devices have naturally been used
for the surveillance of different industrial processes. While
before cameras were simply devices to acquire videos
for manual inspection, current computational advances
have enabled the development of sophisticated DL models

for image processing and recognition with remarkable
results [64].

As discussed earlier, the driller is unable to easily deter-
mine which BOP ram to close in case of an imminent well
control incident. However, cameras and DL models can be
used to automatically detect and track the tool joints above
the drill floor to accurately estimate the position of tool
joints below the drill floor and inside the BOP. The automatic
estimation of the tool joint inside the BOP is performed at the
rig site in real-time and provides enough details to the crew
to ensure immediate reaction and proper shut-in of the well.

Fig. 5 shows a simplified schematic of a drilling rig,
camera, edge server, and required operational (static) data to
implement the well space out system. The images obtained
by the camera recording the drillstring above the drill floor
are fed into a DL model for the recognition of the tool joints
in real-time. The predicted positions of the tool joints in the
images are then mapped to the height of the tool joint in
feet relative to the drill floor. With the calculated tool joint
height, along with the distance of the BOP to the drill floor
and spaces between the annular preventer and rams, themodel
displays the exact location of the tool joint inside the BOP.
Because there are different types of BOP and drilling rig
configurations, the distances of both the BOP to the drill floor
and the annular and rams in the BOP differ. Consequently,
these distances are a critical input for the accurate mapping of
the detected tool joints above the drill floor and the tool joints
inside the BOP. The dashboard developed and described in
this paper allows the crew to immediately identify the ram
to close in case of an influx. Moreover, with the information
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FIGURE 5. Simplified schematic representation of a drilling rig and the implemented IoT structure for the Well Space Out
dashboard.

from other models (such as influx detection), the edge server
can take control and automatically activate the annular pre-
venter or ram, depending on the calculated severity of the
influx.

In the following subsections, we describe in detail the tech-
nical aspects for deploying robust and efficient DL models at
the edge servers.

A. DEEP-LEARNING MODELS FOR IMAGE PROCESSING
Conventional shallow learning ML models (such as random
forest, support vector machines, among others) require a fea-
ture generation phase that consists of encoding the samples
of a classification problem into a feature set. For instance,
a fruit may be defined by a feature vector that describes the
color, shape, size, flavor, among others. However, a portion
of the manually defined features may not be discriminative
and would only require an unnecessarily more complex ML
model. Consequently, feature selection is a common phase
that follows feature extraction and aims to provide the optimal
subset of features to describe the classes [65]–[67].

Although shallow ML models have achieved outstanding
results, the extraction and selection of discriminative features
from the raw data remain a major challenge for deriving accu-
rate and generalizable ML models. The feature engineering
process becomes more challenging when designing features
to describe images. For example, consider the different image
processing techniques required to design relevant features

(edges, curves, etc.) to discriminate between different objects
in a picture.

The recent increase in computational power enables the
development of DL models that perform more complex oper-
ations on larger volumes of data. Although the origins of DL
can be traced back to 1943 [68], it was not until themid-2010s
that DL models demonstrated outstanding results in different
applications. DL models implement a multi-layered architec-
ture that transforms the data representation at one level to a
higher and more abstract level (where features are learned
from the data itself without manual feature engineering) [69].

A convolutional neural network (CNN) is a suitable DL
model for image classification as it exploits spatial correla-
tion and dependencies in the data. As such, a CNN model
is capable of determining the presence of an object in an
image but is unable to detect the number of objects occur-
rence and their position. These limitations are mainly because
CNNs are unable to cope with variable outputs layers as
the number of objects occurrences in an image is variable.
To overcome the CNN limitations for object detection prob-
lems, Girshick et al. [70] proposed a regional CNN (R-CNN)
method that uses a selective search algorithm to extract
2,000 regions from the image, referred to as proposed regions.
The proposed regions of interest are later fed into a traditional
CNN that produces a 4,096-dimensional feature vector as
output. As such, the CNN acts as a feature extractor for
each proposed region. The extracted set of features for each
proposed region is then fed into a traditional support vector
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FIGURE 6. Methodology for the training and testing phases for the identification of drillstring tool joints.

machine (SVM) model to classify the presence of the object
within the proposed regions. Notably, a large number of
proposed regions and required SVMmodels imply enormous
computational demands, limiting their applicability for real-
time operations. To address the computational requirements,
fast R-CNN [71], faster R-CNN [72], You Only Look Once
(YOLO) [73], Single-shot Detector (SSD) [74], or other vari-
ations, were developed to simplify and enhance the model
structure and complexity.

Designing the architecture of a DL model (i.e., number of
convolutional layers, number and size of filters, initialization
modes, among others) is an extremely challenging problem
due to the vast number of variables. However, an already
proven DL backbone may be re-trained for a specific image
object identification problem (transfer learning). Residual
networks (ResNet) [75], Visual GeometryGroup (VGG) [76],
YOLO darknet [77], and Inception-SSD [78], are among the
most popular deep CNN backbones.

Fig. 6 shows the methodology for training (shaded in
blue) and testing (shaded in green) phases of the DL model
for the detection of the drillstring tool joints. The first step
of the training phase consists of storing sufficient video
recordings capturing the drillstring above the drill floor (as
shown in Fig. 5). The recordings must provide a complete
set of images capturing the different drilling conditions (i.e.,
weather, lighting, different drillstring diameters, movement
speeds/directions, and color due to coating by different fluids,
among others). The second step consists of simple image
processing to crop and enhance the captured frames, followed
by assigning labels (drillstring tool joints coordinates in the

image). The third step refers to the training and testing of the
pre-trained DL architecture. Finally, the trained and validated
model is deployed for the identification of the tool joints
(step 4).

Steps 5-7 relate to the testing phase once the model is
trained, validated, and deployed. In more detail, steps 5-6 are
the video recording of the drillstring tool joints at the rig floor
and the image processing of the captured data. As opposed
to step 2, step 6 does not require the identification of the
coordinates surrounding the tool joints, as this is the objective
of the model. The processed images containing the drill floor
photo for a new drilling operation are then the input for the
deployed model, which outputs the coordinates of the slips
(step 7). Finally, step 8 implements a post prediction process
to increase the accuracy of detection and the final dashboard
for the crew. In the next subsections, we describe in more
detail the critical methods for deriving robust DL models,
such as data collection and labeling, data augmentation, and
model training.

B. DATA COLLECTION AND LABELING
Approximately four hours of video data with a resolution
of 1920 × 1080 were carefully selected to account for
the different lighting, weather, and operational conditions.
We reduced the dimensions of the images to only focus on the
200 pixels containing the drillstring, resulting in images with
a resolution of 1920 × 200 Although we tried reducing the
image size further 1920× 30, focusing only on the drillstring,
the best results were achieved when using a width of 200.
The underlying reason for this may be that the pre-trained DL
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architectures used for transfer learning had images with sim-
ilar resolution [79]. We used OpenCV-python library [80] to
randomly extract 1,100 individual frames from the complete
dataset. The data was labeled using VGG-Annotator [81].
Bounding boxes surrounding the tool joint were drawn, and
the corresponding coordinates were later used for training the
model. For each of the bounding box coordinates, a map of
all pixels was derived and used for training the models.

Although we tried to include the bounding boxes contain-
ing the full drillstring (as a separation region of interest),
the accuracy of the DLmodels remained the same. Therefore,
we only provided the bounding boxes surrounding the tool
joints.

C. DATA AUGMENTATION
As discussed previously, the selection of the images used
for training is critical to ensure the DL model will perform
as expected during different scenarios. To achieve this, data
augmentation, a technique that performs a series of trans-
formations on the images to increase the diversity of data
available for training themodels, was utilized [82]. Therefore,
the additional data generated by using the data augmentation
techniques increased the generalization of the models by
decreasing the overfitting in the models [83].

Table 2 describes the data augmentation techniques used
in our model. Although we tested other augmentation

TABLE 2. Considered data augmentation techniques.

TABLE 3. DL backbones parameters.

techniques, such as blurring and deblurring, experimental
results showed that the performance of the DL models
reduced. A possible reason for these findings is that the
appearance of the background and the drill string was similar
and, hence, blurring/deblurring made it more difficult for the
model to detect the tool joint.

D. PRE-TRAINED DEEP-LEARNING ARCHITECTURES
FOR TRANSFER LEARNING
As mentioned above, designing the DL architecture is a
challenging task due to the vast number of parameters and
possible configurations. Nevertheless, it is possible to use a
pre-trained DL backbone and re-train it for a similar object
identification problem. As such, transfer learning refers to
the re-training of a model to optimize the connection weights
while the DL structure (number of convolutional layers,
activation functions, among others) remains the same [84].
ResNet, Inception, and DarkNet are DL architectures that
have achieved outstanding results while focusing on the pro-
cessing speed, which is essential for real-time applications.

We used the DL backbones in TensorFlow [85] for Python
with a data split scheme for training, validation, and testing
of the models. As such, 80% of the images were used for
training and 20% for testing and validation of the final model.
The training phase continued until a maximum limit of model
parameter updates was reached, or the validation loss did
not change for x consecutive parameter updates, where x
is a hyperparameter. With these training constraints, it took
approximately 14 hours to train the ResNet and DarkNet
backbones using a Faster-R-CNN.

We used a random search algorithm for selecting the opti-
mized hyperparameters. Table 3 shows the hyperparameters
search space and the selected optimal values in bold. Note
that the maximum detections per class are set to two as the
maximum number of tool joints observable in an image is
two (each tool joint is usually 31 feet apart). The fact that
we can only observe two tool joints inspired a post predic-
tion processing to further increase the performance of the
models.
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E. TOOL JOINT POST-PREDICTION PROCESSING
Usually, post-processing logic can further improve the accu-
racy of an object detection model. The post-processing algo-
rithm exploits the fact that there can be a maximum of two
tool joints at a given time and that they are 31 feet apart
(standard drill pipe dimensions).

We derived two different heuristics for reducing false
positive and false negative predictions. For the reduction
of false positive predictions, if more than two joints were
detected, then the pair of joints having a predetermined dis-
tance of 31 feet among them were considered to be ideal
and used as final detected joints. Moreover, if two tool joints
were detected by the model and had a distance of 31 feet
between them, then the two tool joints were considered as
final detected joints, otherwise, the tool joint with higher
confidence was considered as the predicted tool joint. In rare
scenarios (not encountered in our tests), when both tool joints
had the same confidence, then the joint having Euclidean dis-
tance closer to the previously detected joints was considered
as the final detected joint.

To reduce false negative predictions, we created a queue
(last_detected) of the last ten detections. If no tool joint
was detected and last_detected had elements, then the next
tool joint was approximated based on the distance between
the first two joints present in the last_detected. Whenever a
tool joint was not detected, an element was removed from
last_detected, and whenever a tool joint was detected, it was
inserted in last_detected, keeping the maximum length of
last_detected to 10. Fig. 7 shows the diagrammatic represen-
tation of the implemented logic.

FIGURE 7. Post prediction processing to reduce false positive and false
negative predictions.

F. SPEED OPTIMIZATION FOR REAL-TIME OPERATIONS
DL models perform different convolutions and data transfor-
mations that require considerable computational demands for
both training and testing phases. Lately, graphic processing
units (GPUs) have been used to considerably reduce the time
required during training and testing [86].

Because the DL model for the detection of tool joints is
used for a critical operation (deciding which ram of the BOP
to close), the deployed model is required to process the image
and predict the location of the tool joint as fast and efficient as
possible. However, because the video frames cannot be sent
to the headquarters (Fig. 4A), the processing and prediction
need to be performed at the drilling site, a remote location
with limited hardware capabilities (no GPUs available).

The minimum requirement for a successful deployed DL
model for the tool joint detection must process at least two
frames per second (fps) on a computer with an Intel i7 cen-
tral processing unit (CPU). However, Vanilla Faster R-CNN
and Mask RCNN algorithms are usually slower to infer on
the CPU. To optimize the execution time for the deployed
models, we used FogHorn’s edgification process to compile
the trained model coupled with OpenVino toolkit [87] for fast
scoring on Intel hardware edge computer. The implemented
optimization technologies enabled the model to process two
fps using Faster R-CNN ResNet 50 and up to 10 fps using
SSD Inception backbone on a four-core Intel CPU with 6 GB
of RAM.

G. DEEP-LEARNING MODELS PERFORMANCE
AND VALIDATION
As mentioned in the sections above, we tested the perfor-
mance of different DL models and backbones for the detec-
tion of tool joints. In object detection problems, different
criteria are defined for determining true positives (TP), true
negatives (TN), false negatives (FN), and false positives (FP),
which are required to compute the statistical measures to
assess model performance. A detected object is considered
a TP if 1) prediction score is greater than a threshold (0.6 in
this study), 2) the predicted class matches the real class (tool
joint class), and if intersection over the union of the predicted
box coordinates is greater than a threshold (0.5 in this study).
An FP is determined when the predicted score is higher than
the threshold, but the intersection over the union is less than
a threshold (0.5) and/or the predicted class does not match
the real class. An FN occurs when the prediction score that
is supposed to capture the real object (tool joint) is less than
the threshold. Finally, TN refers to the cases where the confi-
dence score for other irrelevant objects is less than the thresh-
old. Notably, statistical metrics that rely on TN are irrelevant
for most object detection problems. Therefore, we considered
average precision (AP) and average recall (AR) to measure
the performance of the implemented models. AP and AR
are defined as the area under the interpolated precision-recall
curve, and the recall averaged over all intersection over union,
respectively [88], [89].
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FIGURE 8. Well Control Space Out schematic. The implemented DL model for tool joint detection along with the BOP dimensions are used compute the
location of the tool joint below the drill floor. In the case of an uncontrolled flow, the Well Control Space Out determines the appropriate measures to
take (close blind ram in the example on the right).

TABLE 4. Comparison of the results obtained by different.

Table 4 shows the results obtained by using the consid-
ered models and backbones. Notably, Faster R-CNN with
ResNet 100 backbone achieved the best AP and AR. ResNet
50 backbone achieved the second-best results. Because of
the lower latency, we considered ResNet 50 as the final
model for the production environment. Using the described
augmentation techniques and the post prediction processing
(described in Fig. 7), we were able to further increase the AP
by 4.52%.

IV. RESULTS
The key contributions of our study are the integration of
multiple technologies (from sensors to computational mod-
els) to form a fully functional IoT technology to ensure safe
drilling operations. The technology has been fully installed
on a drilling rig and is currently in the testing phase.

Current practices in the event of an influx involve the driller
using a remote control system to provide hydraulic power to
the rams to sever the drillstring. A critical responsibility of the
driller during this process is to ensure the drillstring assembly
connections are spaced out for the BOP to successfully seal
or shear the drillstring.

In this study, we focus on the application of an IoT platform
to ensure well control since such an incident has a significant
impact on the health and safety, profitability, and reputation

of an organization, which is self-evident frommany historical
examples like the Macondo incident. TheWell Control Space
Out technology records the drillstring above the drill floor
and implements a DL model to automatically detect the tool
joints. With the detected tool joints and known BOP dimen-
sions, the system calculates the position of the tool joint inside
the BOP (below the drill floor), as shown in Fig. 8. Moreover,
the system implements a dashboard that displays the correct
ram to close in awell control incident without the need for any
other manual steps. Fig. 8 shows an underbalanced example,
where the formation pressure P2 is greater than P1 from
the drilling mud. The benefits of this technology have been
measured by 1) elimination of well control space out errors by
improving well shut-in probability and 2) elimination of extra
time to space out and equipment damage through incorrect
BOP closure. Moreover, the edge server combines different
physics-based and data-driven models to display actionable
insights, recommendations, alarms, among others, that may
be directly connected to the actuators at the drilling rig to
close the automation loop.

Although in this study we focused on the well control,
the system can be seamlessly expanded to other upstream
sectors such as production, reservoir, and geophysics, where
sensor data can be collected, validated, and enriched at the
edge to identify patterns and create models to predict and mit-
igate problems associated with operations. The Well Space
Out technology creates an ideal framework for an IoT plat-
formwith cameras, additional sensors, machine learning, data
analytics, and edge computing.

V. FUTURE WORK
This same knowledge and know-how can then also be
extended to other upstream sectors, such as geology, geo-
physics, production, and reservoir engineering, to increase
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efficiency and optimize operations. In future work, we plan
to expand the applications to cover the following oil and gas
sectors:

1. Production. Sensory enhanced intelligent systems that
have the capability to interact with their environment, i.e.,
sensors and other ESPs, in order to autonomously accomplish
specific missions that allow reliable and optimal oil produc-
tion in a given field.

2. Reservoir. Better prediction to obtain more accurate
reservoir models based on real-time updates from production
as well as an automatic calculation of injection pressures
for water/CO2 enhanced oil recovery. Integration of surface
and downhole data obtained by technologies such as smart
mapping materials in reservoirs.

3. Drilling. Real-time updates on wells with predictive data
analytics (stuck-pipe, early kick detection, lost circulation
prediction). Engineers can use virtual modules on tablets and
augmented reality data on smart glasses to perform remote
assistance, control, monitoring, and supervision.

4. Geophysics/Geology. Faster processing of seismic data
and surface modeling. Autonomous vehicles with IoT inte-
gration in harsh environments. Integration of real-time seis-
mic data with real-time drilling data for predictive analytics.

5. Upstream Asset Management. Intelligent transportation
and logistics, effective management, and timely maintenance
of equipment and machinery, workflow automation, asset
tracking.

VI. CONCLUSION
Drilling operations represent a challenging environment
where the expertise of the crew is essential to maintain opti-
mal and safe operations. Although existing sensors are cur-
rently deployed at the drilling rigs, most of the analysis of the
captured data remains manual. In this study, we describe the
deployed IoT technology that processes data from cameras
and provides an advisory system for a particular operation
in drilling. However, a similar technology using cameras,
additional sensors, and ML/DL models may be deployed at
a broader scale across different industries.

The process of understanding how the vast amounts of
sensor data can be enriched and converted to useful infor-
mation to increase operational efficiency and link to clear
business objectives requires transformation. Implementation
of the IoT for business and industrial applications has the
potential to increase business opportunities, enhance asset
utilization, improve safety and security, increase productivity,
enhance the efficiency of processes, and reduce costs, among
others.
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