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ABSTRACT On the premise of ensuring profits, how to give a relatively dispersed portfolio selection result
reasonably and rapidly is a challenging problem in both theory and practice. Although the use of optimization
models to make decision has been shown to be an essential approach towards portfolio selection, there still
has an acute need for developing a knowledge-based expert model for portfolio selection so that this model
can achieve better performance in reliability and real time, especially in leadingmore distributed investments.
In this paper, a knowledge-based expert model is proposed for portfolio selection with the aid of analytic
hierarchy process (AHP) and fuzzy sets. In the proposed model, the expert knowledge which can reflect
the investment attitude and experience of different investors is mainly integrated into the criterion layer
and represented by a reciprocal matrix, and the scheme layer is abstracted to a strictly consistent matrix
by comparing and analyzing the state characteristics of investment objects. In order to characterize the
state characteristics of investment objects under fuzzy environment, their corresponding time series data are
quantified as fuzzy variables in advance. Experiments involving synthetic and real-world data demonstrate
that the proposed model produces better performance than other typical portfolio selection models and gives
more distributed investments.

INDEX TERMS Decision-making, portfolio selection, analytic hierarchy process (AHP), consistency, expert
knowledge.

I. INTRODUCTION
With the increasing of the uncertainty of modern finan-
cial markets, portfolio selection analysis, whose aim is to
spread risk, has been acting as an important part of mod-
ern investment theory. Although investment managers and
economists have long recognized the need to consider both
returns and risks [1], they have ignored the contradiction
between the diversification of investment and the maxi-
mization of expected returns. In order to solve this con-
tradiction, Markowitz first puts forward the mean-variance
framework [2]. Under the mean-variance framework, it can
be known from a game between mean and variance that
the expected return of a portfolio is determined by its own
variance. However, with in-depth research of technical means
and social progress, scholars have found that variance [3]
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can be replaced by some more reliable and convincing
quantitative indicators, such as semi-variance [4], entropy
[5], [6], or semi-entropy [7]. On the basis of above facts,
Markowitz’s mean-variance framework has evolved rapidly
and been extended to the mean-risk framework.

Through the above analysis and the existed literatures
[8]–[10], it is clear that portfolio selection can be abstracted
as a multi-criteria decision-making (MCDM) problem in
essence, and the expected return and different types of risks
are two typical types of evaluation criteria of it. For MCDM
problems, in order to deal with the challenges of new factors
in the digital age, several novel approaches and techniques
have been presented and extended based on some underlying
theories, including fuzzy sets [11]–[14], interval theory [15],
[16], evidential reasoning [17], [18], multi-perspective frame-
work [19], and group decision-making strategy [20]–[22].
According to whether the decision space is continuous
or discrete, MCDM can be subdivided into two parallel
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contents: multi-objective decision-making (MODM) and
multi-attribute decision-making (MADM). The most repre-
sentative model in MODM is the optimization model [23].
Generally, after having characterized the return of each
investment object as a random or fuzzy variable, most of
the portfolio selection frameworks mentioned above are con-
structed by the optimization model. However, owing to the
nonlinearity of these moments, it is difficult to find the ana-
lytic solution of these optimization-based portfolio selection
models [7], [24]–[26]. Consequently, only some optimization
algorithms such as genetic algorithm (GA) [27], differential
evolution algorithm (DE) [28], or particle swarm optimiza-
tion algorithm (PSO) [29] can be used to solve these models,
but it leads to a slow speed in the model-solving process and
an unstable solving result [30]. Even if so, it is usually not
guaranteed to find the global optimal solution of an optimiza-
tion model, and in most cases, only a local optimal solution
can be found. In order to avoid the above disadvantages
brought by the optimization model, some models for MADM
should be taken into account to deal with the portfolio selec-
tion problem. In recent years, some MADM models such as
evidential correlation coefficient (ECC), balancing and rank-
ing method (BR), multi-perspective MADM (MPMADM),
and analytic hierarchy process (AHP) have made remark-
able progress in uncertainty analysis. Xiao [18] presented
a novel ECC method to optimally manage the conflicts of
multiple pieces of evidence in an uncertainty environment.
Gitinavard et al. [12] proposed the hesitant fuzzy balanc-
ing and ranking (HF-BR) method by integrating hesitant
fuzzy sets into BR, which links incompatible and uncer-
tain attributes with pair-wise comparisons of the possible
alternatives. Chen et al. [19] built a generalized MPMADM
framework to generating reliable weight vectors, which can
effectively manage the uncertainty and ambiguity in the deci-
sion process. Ebrahimnejad et al. [15] combined AHP tech-
nique with incomplete interval-valued information to assess
the risks, which decreases the judgment errors towards the
problem of group decision-making. Karaşan et al. [31] pro-
vided a novel Pythagorean fuzzy AHP method to weaken the
subjectivity from linguistic factors, which produces informa-
tive outcomes with better consistency. Nevertheless, MADM
models overemphasize the importance of historical data when
solving final results, so they usually ignore the preferences
and experiences from investors (known as the expert knowl-
edge [32]) in the calculation process. Affected by the inac-
curacy of historical data, this must make the investment
proportion of some alternatives too high and that of other
alternatives too low without the experience correction given
by investors, which means that the portfolio result cannot
spread risk effectively.

In order to attach the importance to both historical data
and expert knowledge, a new trail is blazed for portfolio
selection and a new model under the mean-risk framework
is proposed with the aid of AHP [33] and fuzzy sets [34].
Compared with the optimization-based portfolio selection
model, the proposed AHP-based portfolio selection model

can be solved analytically, which means that the portfolio
selection model no longer needs to be solved by numeri-
cal optimization algorithms. Therefore, the real-time perfor-
mance and result stability of the proposed model are much
better than that of the optimization model. Moreover, fol-
lowing the modeling approach given in this paper, not only
the expert knowledge but the objective judgment result given
by investors can be integrated into AHP directly and effec-
tively, so the proposed model can make decisions according
to both current investment situations and past investment
experiences. Just because of the expert knowledge and expe-
rience included in the proposed AHP-based portfolio selec-
tion model, the quantitative results given by the proposed
model are more consistent with those of qualitative analysis
and more in line with the objective decision-making law
of investors compared with the optimization-based portfo-
lio selection model. Most of all, by integrating investors’
preferences and experiences into the criteria layer of AHP,
the proposed model leads to more distributed investments
than other portfolio selection models, which perfectly prac-
tices the investment principle that ‘‘never put all your eggs in
one basket’’. In brief, the main contributions of this paper are
summarized as follows:

1) The proposed approach gives a simple and light way for
searching non-inferior alternatives, whose rationality
is guaranteed by Theorem 1. This means that a set of
Pareto non-inferior solutions can be rapidly constructed
by the weighted combination of these non-inferior
alternatives.

2) On the premise of ensuring the acceptable consistency
of the pairwise comparisonmatrix in the criterion layer,
investors’ preferences and experiences are integrated
into the construction of criterion layer to better depict
and reflect the investment attitude of investors. Its gen-
erality is illustrated by Theorem 2.

3) In the construction of scheme layer, an analytic method
for building consistency matrix is given and elaborated
by Theorem 3, which overcomes the challenge of con-
structing a pairwise comparison matrix in the face of
a large number (N > 7) of alternatives. Moreover,
using analytic calculation to construct the matrix can
achieve absolute consistency in parallel with avoiding
the interference of subjective factors.

The main contents of this paper are organized as follows.
In Section II, some brief reviews of the credibility measure
and AHP, which are applied to the later modeling process,
are given. In Section III, some basic state characteristics of
portfolio to be used in modeling are analyzed. In Section IV,
the detailed modeling process is presented and the calcu-
lation method of corresponding parameters is determined.
Then three comparative experiments are given in Section V.
Finally, some conclusions are listed in Section VI.

II. PRELIMINARIES
In order to carry out portfolio analysis in fuzzy environment,
a quantitative description for each portfolio alternative is
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needed in advance. In this section, a brief review of the credi-
bilitymeasure, which is used to quantify the fuzzy uncertainty
of an investment market, is given. After that, some key points
of AHP are introduced.

A. CREDIBILITY MEASURE
Since the pioneering work done by Zadeh on fuzzy sets and
possibility theory, the research on credibility measure, which
is the basis of quantitative description for portfolio alterna-
tives, has been constantly improved and become a powerful
tool for dealing with incomplete and uncertain situations.

Consider a nonempty set2 having finite elements, and let
0 denote a σ -algebra over2. In general, each element from0
can be treated as a basic event. For a specific event A ∈ 0, its
corresponding credibility measure, which can be denoted as
Cr{A} ∈ [0, 1], is used to reflect the semantic fuzziness of A.
Li and Liu [35] have pointed out that the credibility measure
should satisfy the following four axioms:

Axiom 1: Normalization, i.e., Cr{2} = 1.
Axiom 2: Monotonicity, i.e., Cr{A1} ≤ Cr{A2} whenever

A1 ⊆ A2.
Axiom 3: Duality, i.e., Cr{A}+Cr{{0A} = 1 for any basic

event A.
Axiom 4: Generalized countable additivity, i.e., for any

combination of events {Ai} with supi Cr{Ai} ≤ 0.5, there has
Cr{
⋃

i Ai} = supi Cr{Ai}.
Suppose that there is a fuzzy variable ξ with the member-

ship function µ. Let B ⊂ R, then the credibility measure [36]
of ξ ∈ B can be calculated as follows

Cr{ξ ∈ B} =
1
2

(
Pos{ξ ∈ B} − Nec{ξ ∈ B}

)
, (1)

where Pos{ξ ∈ B} and Nec{ξ ∈ B} represent the possibility
degree and necessity degree of ξ ∈ B respectively, and they
are defined by the following mathematical expressions

Pos{ξ ∈ B} = sup
x∈B

µ (x) , (2a)

Nec{ξ ∈ B} = 1− sup
x∈{0B

µ (x) . (2b)

B. ANALYTIC HIERARCHY PROCESS (AHP)
Consider a financial market having several investment alter-
natives waiting to be selected, say p1, p2, . . . , pn. In order
to maximize returns in a dynamic risk environment, these
alternatives need to be analyzed and processed under an
evaluation paradigm.

The core idea of AHP is to decompose a MCDM prob-
lem into multiple objectives or criteria, and then obtain the
decision-making results by the pairwise comparison between
two alternatives. Evidently, the core of AHP is the construc-
tion of pairwise comparison matrix. Saaty has indicated that
the pairwise comparison matrix R =

(
rij
)
n×n should be a

reciprocal matrix [37], so the elements in the matrix R must
satisfy the following relationship

rij =

{
1, if i = j
r−1ji , if i 6= j,

(3)

TABLE 1. Relationship Between Random Consistency Index and
Reciprocal Matrix Order.

where rij denotes the pairwise comparison result of pi
to pj.
In pairwise comparison, the relative scale is used to quan-

tify the comparison results, which can simplify the compar-
ison process between different alternatives and enhance the
rationality of a pairwise comparison result. However, due
to the conflict between decision preferences, the pairwise
comparison matrix constructed in a certain decision-making
process may lack consistency. In general, the consistency
ratio CR(R) is encountered in various decision scenarios to
judge whether the matrix R is consistent or not. The consis-
tency ratio CR(R) is defined as follows

CR(R) =
CI (R)
RI (n)

, (4)

where CI (R) represents the consistency index and RI (n) rep-
resents the random consistency index. Here, the definition of
the consistency index is given as follows

CI (R) =
λmax − n
n− 1

, (5)

and the detailed values of the random consistency index with
different reciprocal matrix orders are given in Table 1.

Classically, if the pairwise comparison matrix R meets the
requirement such that CR(R) < 0.10, it can be considered to
pass the consistency test. Otherwise, the pairwise comparison
matrixR needs to be rebuilt until it has gratifying consistency.
Once an acceptable pairwise comparison matrix R̂ is found,
its normalized eigenvector ωλmax , which is corresponding to
the largest eigenvalue λmax, can be selected as a weight vector
and applied in the subsequent calculations.

III. STATE CHARACTERISTICS OF PORTFOLIO
Considering a given investment market having N securities.
Let ξi denote the fuzzy return of the i-th security, and xi stand
for the investment proportion of the corresponding security
ξi for i = 1, 2, . . . ,N . In order to evaluate the acceptability
of a portfolio investment X = (x1, x2, . . . , xN )T to these
N alternatives such that ξ = (ξ1, ξ2, . . . , ξN )

T , some state
characteristics of a specific portfolio project can be selected
as evaluation criteria.

In the early portfolio analysis, the expected value and
variance are considered to be the two most important state
characteristics. On the basis of expected value and variance,
the alternatives available for investment and their correspond-
ing optimal allocation proportion of finite investment capital
can be determined by the mean-variance framework [38].
Subsequently, some new state characteristics such as entropy
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and other higher-order moments have been noticed with
going deep into the research. In this paper, five state
characteristics are taken into account under fuzzy environ-
ment, including fuzzy expected value, fuzzy variance, fuzzy
entropy, and two higher-order fuzzy moments. And they are
elaborated in more detail in the following part.

A. FUZZY EXPECTED VALUE
In a specific portfolio selection, its future return can be
quantified by the fuzzy expected value. Fuzzy expected value
is a weighted sum of all available values of a fuzzy return
in accordance with the corresponding membership degree,
so it can reflect the average value of fuzzy returns. Therefore,
when the historical portfolio data of a specific security is
converted to a fuzzy return, its fuzzy expected value best
represents the return of this security in the future.

The fuzzy expected value E[ξ ] of a fuzzy return ξ can be
defined as follows [36]

E[ξ ] =
∫
∞

0
Cr{ξ ≥ x} dx −

∫ 0

−∞

Cr{ξ ≤ x} dx, (6)

where Cr{·} is the credibilitymeasurementioned in Section II.
In particular, for a triangular fuzzy return ξt = (a, b, c), its
fuzzy expected value is given by the following expression

E[ξt ] =
a+ 2b+ c

4
. (7)

Consider an arbitrary portfolio selection X . Since

E
[ N∑
i=1

xiξt,i
]
=

N∑
i=1

xiE[ξt,i],

let

E
[
X; ξ t

]
=

N∑
i=1

xiE[ξt,i], (8)

then E
[
X; ξ t

]
reflects the overall profitability of a portfolio

selection in a dynamic and uncertainty environment.

B. FUZZY VARIANCE AND ENTROPY
In a specific portfolio selection, both fuzzy variance and
entropy can be used to quantify the investment risk.

1) FUZZY VARIANCE
The essence of fuzzy variance is a second-order central
moment of the fuzzy return, which can reflect its disper-
sion. The more dispersive the distribution of a fuzzy return
(i.e., available values fluctuate violently around its fuzzy
expected value), the greater is the square sum of the difference
between each value and its fuzzy expected value, the greater
is the fuzzy variance. On the contrary, when the distribution
of a fuzzy return is relatively concentrated, its corresponding
fuzzy variance is relatively small. It can be seen that fuzzy
variance objectively quantifies the volatility of original return
series. Therefore, in most hedging models, fuzzy variance is
taken to measure risk.

For a specific fuzzy return ξ , the detailed definition of its
fuzzy variance [36] is given as follows

V [ξ ] =
∫
∞

0
Cr{(x − e)2 ≥ x} dx. (9)

And for a triangular fuzzy return, its corresponding fuzzy
variance can be calculated directly with

V [ξt ] =
5b2− + 5b2+ + 6b−b+

48
, (10)

where b− = b− a and b+ = c− b.
It is easy to verify that V [ξt ] is a multivariate convex

function. Hence the following inequality can be obtained by
using Jensen’s inequality on multivariate function

V
[ N∑
i=1

xiξt,i
]
= V

( N∑
i=1

xib−,i,
N∑
i=1

xib+,i
)

≤

N∑
i=1

xiV
(
b−,i, b+,i

)
=

N∑
i=1

xiV [ξt,i].

Let

V
[
X; ξ t

]
=

N∑
i=1

xiV [ξt,i], (11)

then V
[
X; ξ t

]
can be utilized to quantify the risk ceiling of a

portfolio selection.

2) FUZZY ENTROPY
Aimed at the mean-variance framework, Maasoumi and
Racine [5] have indicated that entropy is more suitable than
variance to measure the uncertainty of wealth allocation strat-
egy when a clear understanding of the specific distribution
of financial markets is not available. Moreover, by extending
the concept of entropy, Xiao [39] has confirmed that the
entropy-based model has great potential in knowledge repre-
sentation and uncertainty measure, even if in complex-valued
distributions. Consequently, as another risk measure, entropy
can describe the average uncertainty of probability distribu-
tion in thewhole value space, and reflect the size of loss distri-
bution. That is, entropy expresses the disorder and uncertainty
of both low and high extreme returns, so it can sacrifice higher
extreme returns to avoid risks.

Within the framework of credibility theory, Li and Liu [40]
provide an original definition of entropy for both discrete and
continuous fuzzy variables, which is shown as follows

H [ξ ] =
∫
∞

−∞

S
(
Cr {ξ = x}

)
dx, (12)

where S (t) represents the Shannon-like entropy such that
S (t) = −t ln t − (1− t) ln (1− t). For a triangular fuzzy
return ξt , its corresponding fuzzy entropy can be calculated
as follows

H [ξt ] =
b− + b+

2
, (13)

where b− = b− a and b+ = c− b.
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For an arbitrary portfolio selection X , from (13) it can be
readily verified that

H
[ N∑
i=1

xiξt,i
]
=

N∑
i=1

xiH [ξt,i].

Let

H
[
X; ξ t

]
=

N∑
i=1

xiH [ξt,i], (14)

then H
[
X; ξ t

]
can be used to quantify the risk ceiling of a

portfolio selection from the aspect of entropy.

C. HIGHER-ORDER FUZZY MOMENTS
In portfolio selection, higher-order fuzzy moments (e.g.
fuzzy skewness, fuzzy kurtosis) are closely related to the
decision-making result given by investors. The variance or
entropy-based portfolio selection model depends only on
the first- and second-order moments of return distributions.
Many researchers (see [24], [41]–[44]) have argued that
higher-order moments cannot be ignored unless there has
enough evidence to prove that the return of each alternative is
symmetrically distributed (e.g. normal) or that the investors’
decision is independent to higher-order moments (e.g. skew-
ness [24], [42]–[44], kurtosis [41], [44]). Especially when
the first- and second-order moments of investment alter-
natives are the same, the higher-order moments are bound
to become the decisive index, and almost all the investors
will choose the portfolio with larger third-order moment or
smaller fourth-order moment. Consequently, it is necessary
to utilize higher-order fuzzy moments to evaluate the supple-
mentary risk of a portfolio selection result.

1) FUZZY SKEWNESS
When the distributions of security returns are asymmetric,
both fuzzy variance and entropy become insufficient indexes
to measure the investment risk. This is because a portfolio
based on variance or entropymay sacrifice toomuch expected
return when eliminating low and high return extremes [42].
In order to overcome this limitation, the third-order moment
named fuzzy skewness needs to be taken into account.
Definition 1 (Li-Qin-Kar [42], [43]): Suppose that there

is a continuous fuzzy return ξ with a differentiable member-
ship function µ (x) and a finite fuzzy expected value E[ξ ].
Then its fuzzy skewness S[ξ ] is defined as

S[ξ ] = E
[(
ξ − E[ξ ]

)3]
. (15)

In general, the bigger the absolute value of the fuzzy
skewness S[ξ ] means the bigger the deviation of the fuzzy
return ξ . And the fuzzy return is in positive skew distribution
in the case of S[ξ ] > 0, while the fuzzy return is in negative
skew distribution in the condition of S[ξ ] < 0.
Proposition 1: Let ξt = (a, b, c) be a triangular fuzzy

return. Then its fuzzy skewness S[ξt ] can be calculated as

follows

S[ξt ] =
(c− a)2

8

(
E[ξt ]− b

)
. (16)

Remark 1: It can be readily checked from (16) that a tri-
angular fuzzy return ξ is in positive skew distribution when
its fuzzy expected value E[ξt ] is greater than its peak value b,
i.e., E[ξt ] > b. And a triangular fuzzy return ξ is in negative
skew distribution if E[ξt ] < b. In addition, a triangular
fuzzy return ξ presents symmetrical distribution if and only
if E[ξt ] = b.

2) FUZZY KURTOSIS
The current hype over hedge funds provides a compelling
evidence [41], [45] of how dangerous it can be to ignore
the fourth-order central moment, i.e., kurtosis. Therefore,
kurtosis risk should be integrated into the decision-making
approach. To achieve this, this paper gives a definition of
kurtosis to fuzzy returns as follows.
Definition 2: Suppose that there is a continuous fuzzy

return ξ with a differentiable membership function µ (x) and
a finite fuzzy expected value E[ξ ]. Then its fuzzy kurtosis K [ξ ]
is defined as

K [ξ ] = E
[(
ξ − E[ξ ]

)4]
. (17)

Fuzzy kurtosis, which is similar to fuzzy skewness,
is another higher-order fuzzy moment used to describe the
shape and structure of fuzzy returns. The difference is that
fuzzy kurtosis reflects the steepness and slowness of all the
distribution values stored in fuzzy returns. From an invest-
ment portfolio perspective, fuzzy kurtosis can be considered
as a measure of the gambling ingredient of an investment, and
the higher the membership of extreme results, the more likely
this investment is to be a pure gambling game.
Proposition 2: Let ξt = (a, b, c) be a triangular fuzzy

return. Then its fuzzy kurtosis K [ξt ] can be calculated as
follows

K [ξt ] =
16(b2− + 3b2+)(3b

2
− + b

2
+)− 15(b+ − b−)4

1280
, (18)

where b− = b− a and b+ = c− b.
Remark 2: Based on the above proposition, it can be con-

cluded that for a triangular fuzzy return ξt , its fuzzy kurtosis
has nonnegativity, i.e., K [ξt ] ≥ 0 and symmetry, i.e., K [ξt ] =
K [−ξt ]. In fact, it can be proved that the nonnegativity
and symmetry of fuzzy kurtosis holds for all fuzzy returns,
even those variables that have no symmetry of their own.
In addition, for a symmetric triangular fuzzy return, it is
easy to verify that the calculation of its fuzzy kurtosis can be
simplified as K [ξt ] = b4−/5 = b4+/5.

IV. PORTFOLIO SELECTION MODEL USING ANALYTIC
HIERARCHY PROCESS WITH EXPERT KNOWLEDGE
Under general financial rules, in order to maximize their
profits, investors face a decision-making problem of choosing
and optimizing projects by means of state characteristics
indicated in Section III. Next, the detailed modeling process
is presented and elaborated step by step to solve this problem.
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FIGURE 1. Decision-making model to portfolio selection using AHP with
expert knowledge: an overview.

A. BUILD SECURITY POOL
Before making investment decisions, investors should first
determine their investment object based on their own condi-
tions and changes from inventory. The security pool refers to a
selection of some investment objects with a broad investment
prospect from all the alternative objects ξ . In order to build the
security pool within all the securities, the following theorem
is give first.
Theorem 1: Let SC1 and SC2 be two state characteristics

such that (SC1, SC2) ∈ {(E,V ) , (E,H) , (V ,E) , (H ,E)}.
For a specific security p, if there exists a security q (p 6= q) in
the security pool, and both SC1[ξt,q] and SC2[ξt,q] are better
than those of ξt,p, then the security p does not belong to the
security pool.

Proof: There are four cases should be discussed.
Let us consider the first case of (SC1, SC2) = (E,V ).

In this case, without loss of generality, suppose that X̂ =(
x̂1, x̂2, . . . , x̂N

)
is the optimal allocation such that x̂i > 0

for all i = 1, 2, . . . ,N .
For a specific security p, let ξt,p denote its corresponding

fuzzy return. If there exists a security q such that

SC1[ξt,p] < SC1[ξt,q], SC2[ξt,p] > SC2[ξt,q],

then based on X̂ , another investment allocation denoted as
X̃ = (x̃1, x̃2, . . . , x̃N ) can be constructed as follows

x̃i =


0, if i = p
x̂p + x̂q, if i = q
x̂i, otherwise

.

Based on the work in Section III, since

SC1[X̃; ξ t ] =
(
x̂p + x̂q

)
SC1[ξt,q]+

N∑
i=1,i6=q

x̃iSC1[ξt,i]

>

N∑
i=1

x̂iSC1[ξt,i] = SC1[X̂; ξ t ],

and

SC2[X̃; ξ t ] =
(
x̂p + x̂q

)
SC2[ξt,q]+

N∑
i=1,i6=q

x̃iSC2[ξt,i]

<

N∑
i=1

x̂iSC2[ξt,i] = SC2[X̂; ξ t ],

it can be known that X̃ is better than X̂ , which is contradict to
the above assumption. Hence, if X̂ is the optimal allocation,
there must have x̂p = 0.

Similarly, the other three cases can be proved through the
above processes. The proof is complete. �
Remark 3: The above theorem reflects a portfolio strat-

egy that is to diversify the capital into several high-return,
high-risk and low-return, low-risk securities during the secu-
rity pool construction. Further more, after having com-
bined the return preference with risk preference for analysis,
Theorem 3 presents an efficient method to remove those secu-
rities with low-return, high-risk from the investment market.

For the given N securities ξ1, ξ2, . . . , ξN , suppose that
n securities ξi1 , ξi2 , . . . , ξin among them are selected in the
security pool, and then define the optimal solution vector
x =

(
xi1 , xi2 , . . . , xin

)T such that xik 6= 0 for all k =
1, 2, . . . , n. Once the optimal solution vector x is solved,
the portfolio selectionX = (x1, x2, . . . , xN )T can be obtained
as an augmented solution vector of x, where xi is determined
by

xi =

{
xik , if i = ik , k = 1, 2, . . . , n
0, otherwise.

(19)

Next, the detailed modeling method which uses AHP asso-
ciate with expert knowledge to solve the optimal solution
vector x is elaborated.

B. CONSTRUCT CRITERION LAYER
As an integral part in AHP, the criterion layer can system-
atically help decision makers to balance priorities between
different criteria, which can represent their preferences in a
specific situation. According to Section III, there are five
state characteristics that can directly or potentially reflect
the quality of a portfolio when investors make decision in
their own portfolio selection. Consequently, the construction
of the criterion layer should use all or part of these state
characteristics as the evaluation criteria.

Let D̄ denote the set of these state characteristics such
that D̄ = {E,V , H , S,K }, then, the process of pairwise
comparisons between these evaluation criteria with different
preferences can be summarized in the following matrix

R̄ =


SCσ1 SCσ2 SCσ3 SCσ4 SCσ5

SCσ1 rσ1σ1 rσ1σ2 rσ1σ3 rσ1σ4 rσ1σ5
SCσ2 rσ2σ1 rσ2σ2 rσ2σ3 rσ2σ4 rσ2σ5
SCσ3 rσ3σ1 rσ3σ2 rσ3σ3 rσ3σ4 rσ3σ5
SCσ4 rσ4σ1 rσ4σ2 rσ4σ3 rσ4σ4 rσ4σ5
SCσ5 rσ5σ1 rσ5σ2 rσ5σ3 rσ5σ4 rσ5σ5

 , (20)
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where SCσi ∈ D̄ for all i = 1, 2, . . . , 5, and σ denotes a
certain permutation about the elements in D̄. Here, each rσiσj
is filled with a positive number to represent the importance of
the σi-th state characteristic to the σj-th. And once rσiσj (σi 6=
σj) is determined, rσjσi can be calculated according to the
principle of pairwise comparison such that rσiσjrσjσi = 1. Let
D ∈ P

(
D̄
)
denote the state characteristics that an investor

selects to make decision, then those rσiσj (i = j) can be defined
as follows

rσiσi =

{
+1, if SCσi ∈ D
−1, if SCσi /∈ D.

(21)

It can be seen from (21) that the value of rσiσi depends on
whether its corresponding state characteristic SCσi should be
considered in the decision-making process or not. Moreover,
it is worth mentioning that in these five state characteris-
tics, only the fuzzy expected value E can be employed to
estimate the future return of a portfolio selection, while the
other four are all utilized to quantify risks. Consequently,
according to the mean-risk rule [2] proposed by Markowitz,
E should always be considered in the decision-making pro-
cess, i.e., E ∈ D for any D ∈ P

(
D̄
)
. It can be verified that

(21) is still suitable even in the condition of SCσi = E . Then
the criterion layer can be described by a reciprocal matrix R
such that

R = QT R̄Q, (22)

where Q =
(
q1, q2, . . . , q5

)T is a matrix used to distinguish
different portfolio frameworks. And each column vector qi of
the matrix Q is accomplished by letting

qi =

{
ek , if rσi(k)σi(k) = 1, k = 1, 2, . . . , d
0, otherwise,

(23)

where ek is the k-th column of the identity matrix Ed . Here,
the parameter d , which denotes the rank of Ed , is determined
by the number of elements in the set D, so it can be rep-
resented as d = Card(D), where Card(·) is the function of
cardinality.

As mentioned above, the matrix R̄ is directly related to the
order of these five state characteristics, hence, the criterion
layer described by the reciprocal matrix R encounters the
same condition according to (22). In order to illustrate the
generality of the modeling process in the criterion layer,
the following theorem is formulated.
Theorem 2: The weight distribution p of each state char-

acteristic SCσi ∈ D̄, i = 1, 2, . . . , 5 in the criterion layer is
independent from the permutation σ .

Proof: Without loss of generality, let SCσ ′j ∈ D̄,
j = 1, 2, . . . , 5 be a new arrangement order of the state char-
acteristics and different from that SCσi ∈ D̄, i = 1, 2, . . . , 5.
Then performing the above process yields R̄

′
=
{
rσ ′i σ ′j

}
5×5.

For the new permutation σ ′, there must exist an integral
number σ ′j such that SCσi = SCσ ′j ∈ D̄ for all i = 1, 2, . . . , 5,
and hence it can be readily established that

R̄
′
= PT5×5R̄P5×5, Q′ = PT5×5QPd×d ,

where P5×5 and Pd×d are two orthogonal matrices such that

P5×5 =

5∏
i=1

P5×5(σi, ·), Pd×d =
d∏
k=1

Pd×d (k, ·),

and Pm×m(u, v) denotes a m-order elementary matrix used to
interchange the u-th row (column) and the v-th row (column).
In addition, the uniqueness of P5×5, Pd×d , and their factor-
izations mention above can be easily proved.

For this new permutation σ ′, it can be got from (22) that

R′ = Q′T R̄
′
Q′,

then substituting the above R̄
′
and Q′ with R̄ and Q yields

R′ = PTd×dQ
T R̄QPd×d = PTd×dRPd×d .

Suppose that λmax and λ′max are the largest eigenvalues
of R and R′ respectively, and their corresponding weight
eigenvectors are α(‖α‖1 = 1) and α′(‖α′‖1 = 1), then

Rα = λmaxα, R′α′ = λ′maxα
′.

Since λmax = λ
′
max and

PTd×dRPd×dα
′
= λ′maxα

′
⇔ RPd×dα′ = λ′maxPd×dα

′,

there has

α = Pd×dα′.

On noting that p(SCσ ) is the determined weight of a state
characteristic SCσ , it can be established that

p′ = PTd×dp,

where p =
(
p(SCσi(1)), p(SCσi(2)), . . . , p(SCσi(d))

)T and
p′ =

(
p(SCσ ′j (1)), p(SCσ ′j (2)), . . . , p(SCσ ′j (d))

)T .
From α = Pd×dα′ and p′ = PTd×dp it can be obtained that

p = Pd×dp′ = Pd×dPTd×dα = α.

That is, the weight distribution p is independent from the
permutation σ . The proof is complete. �
Remark 4: The above theorem reveals that the weight dis-

tribution calculated from the criterion layer has no relation-
ship with the order of these five state characteristics arranged
in (20), which shows the general applicability of the modeling
process for the criterion layer. In fact, it can be obtained
that the weight distribution only depends on the importance
comparison results between two state characteristics.

As is known to all, investors can be divided into two
different groups having the completely opposite investment
attitude: aggressive and conservative. Aimed at these two
different investment attitudes, two specific forms, which cor-
respond to the aggressive and conservative investors respec-
tively, are given to describe the criterion layer by analyzing
the parameter constraints. In order to make the following
analysis more focused, the following matrix (24) is utilized
as a canonical form instead of (20) to elaborate the parameter
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calculating of the criterion layer when facing the investors
having an aggressive or conservative attitude, i.e.,

R̄
?
=



E V H S K
E ree rev reh res rek
V rve rvv rvh rvs rvk
H rhe rhv rhh rhs rhk
S rse rsv rsh rss rsk
K rke rkv rkh rks rkk


, (24)

and its generality is guaranteed by Theorem 2.
All the parameters listed in (24) can be divided into two

parts: one can be denoted as S0 =
{
rxy|X ,Y ∈ D̄,X = Y

}
and another is S =

{
rxy|X ,Y ∈ D̄,X 6= Y

}
. For the param-

eter rxy ∈ S0 (framed in (24)), its value is given by the
expression (21). And for another set S, it can be known
that only half of the parameters in S are independent from
the restrictive relationship of rxyryx = 1. For the sake of
convenience, let SA denote a typical set of the independent
parameters

SA = S(e)A ∪ S
(v)
A ∪ S

(h)
A ∪ S

(s)
A , (25)

where S(e)A = {rev, reh, res, rek}, S
(v)
A = {rvh, rvs, rvk}, S

(h)
A =

{rhs, rhk}, and S
(s)
A = {rsk}. Similarly, another typical set of

the rest independent parameters can be denoted as SC such
that

SC = S(e)C ∪ S
(v)
C ∪ S

(h)
C ∪ S

(s)
C , (26)

where S(e)C = {rve, rhe, rse, rke}, S
(v)
C = {rhv, rsv, rkv}, S

(h)
C =

{rsh, rkh}, and S
(S)
C = {rks}. It can be readily verified that the

above two sets satisfy the following relationship

SA ∪ SC = S. (27)

Let us recall the fuzzy variance, entropy, skewness, and
kurtosis introduced in Section III. As the aforementioned
studies, these four state characteristics can be used tomeasure
both detectable and latent risk. For aggressive investors, they
are more inclined to control risks within a higher range of
profits and keep the risks as small as possible. So compared
to the risk, aggressive investors think the investment return
is more important. For the above-mentioned reason, each rex
should satisfy the following constraint

rex ≥ 1 (or rxe ≤ 1), ∀ X ∈ {V ,H , S,K } . (28)

Afterwards, compared to the fuzzy variance and entropy,
the meaning of higher-order fuzzy moments is drawing into
a new supplement on the basis of detectable risk, especially
when the values of the fuzzy variance or entropy to several
portfolio alternatives are almost the same [7], [24], [41]–[44].
It is then enough to show that the fuzzy variance and
entropy are two more important impact factors than those
higher-order fuzzy moments. Therefore, the results of pair-
wise comparison in SA should come in the following relation-
ship

rey ≤ rez, ∀ Y ∈ {V ,H} ,Z ∈ {S,K } . (29)

TABLE 2. Semantic interpretation of Different Aggressive Levels.

Next, the importance orders between not only fuzzy vari-
ance and entropy, but also the mentioned two higher-order
fuzzy moments should be refined. Consider that fuzzy vari-
ance is better than fuzzy entropy in reflecting market risk
[46], and the fourth-order moment is generally a supplement
to the third-order moment [47], the fuzzy variance V is more
important than the fuzzy entropy H and the fuzzy skewness
S is more important than the fuzzy kurtosis K , which can be
represented as follows

rev ≤ reh, res ≤ rek . (30)

Prior to making any assessment of importance, since the
scale given by AHP is finite with its maximum value 9,
the following constraint can be obtained by integrating (28),
(29), and (30)

1 ≤ rev (β) ≤ reh (β) ≤ res (β) ≤ rek (β) ≤ 9, (31)

where β denotes the aggressive level of aggressive investors.
Here, the aggressive level β is used to quantify the invest-
ment attitude of aggressive investors. Generally speaking,
the bigger the value of β, the more aggressive attitude the
investor has. In order to be consistent with the scale in (31),
β should be limited to the positive integers in-between 1
and 9 [33], which is the most frequently used scale in AHP.
In addition, the detailed semantic interpretation of different
aggressive levels and the corresponding abbreviations are
shown in Table 2.
Through the above analyses, it is clear that the properties

and rules of the criterion layer are mainly determined by the
four parameters rev, reh, res, and rek in an aggressive invest-
ment. For convenience of calculations, these four parameters
can be rewritten into a vector form denoted as IA(β) and
express it as the coming formula

IA(β) =
(
rev (β) , reh (β) , res (β) , rek (β)

)
=
(
dk1βe , dk2βe , dk3βe , d1βe

)
, (32)

where k1, k2, k3 ∈ (0, 1], k1 ≤ k2 ≤ k3, and d·e represents the
ceiling function. For those ryz ∈ SA \ S

(e)
A , in order to make

the aggressive reciprocal matrix RA(β; k1, k2, k3) have better
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TABLE 3. Semantic interpretation of Different Conservative Levels.

consistency, the consistency conditions, i.e. rxz = rxyryz, can
be used here as a basis for development. Then the following
computation rules are given as follows

ryz =


κ
( rez
rey

)
, if ryz ∈ S

(v)
A

κ
( rvz
rvy

)
, if ryz ∈ S

(h)
A

κ
( rhz
rhy

)
, if ryz ∈ S

(s)
A ,

(33)

where κ (x) denotes an integral function having the following
expression

κ (x) =

{
bxc , if x ≤

(
bxc + dxe

)
/2

dxe , if x >
(
bxc + dxe

)
/2.

(34)

In the same way, let us consider the conservative invest-
ment behavior. Different from the aggressive investors, con-
servative investors tend to pursue the maximization of profits
within the controllable risk range, which means that risk is
their first consideration. Therefore, each rxe should meet the
following requirement

rxe ≥ 1 (or rex ≤ 1), ∀ X ∈ {V ,H , S,K } . (35)

In other hand, it should be indicated that whether the
investment attitude is aggressive or conservative would not
change the importance relationship among these four state
characteristics. Consequently, on noting that γ is the con-
servative level of conservative investors, from the foregoing
analysis it follows

1 ≤ rke (γ ) ≤ rse (γ ) ≤ rhe (γ ) ≤ rve (γ ) ≤ 9, (36)

where the value of γ is limited to positive integers in-between
1 and 9. The detailed semantic interpretation of different
conservative levels is shown in Table 3. Similarly, on noting
that IC (γ ) is a column vector of rve, rhe, rse, and rke, then it
can be calculated by

IC (γ ) =
(
rve (γ ) , rhe (γ ) , rse (γ ) , rke (γ )

)T
=
(
d1γ e , dk3γ e , dk2γ e , dk1γ e

)T
. (37)

And for those ryz ∈ SC \ S
(e)
C , in order to make the

aggressive reciprocal matrix RC (γ ; k1, k2, k3) have better
consistency, the specific computation rules are designed as
follows

ryz =


κ
( rze
rye

)
, if ryz ∈ S

(v)
C

κ
( rzv
ryv

)
, if ryz ∈ S

(h)
C

κ
( rzh
ryh

)
, if ryz ∈ S

(s)
C

. (38)

C. CONSTRUCT SCHEME LAYER
Under a certain evaluation criteria employed by the criterion
layer, scheme layer is used to weigh and describe the basic
parameters of the given securities (alternatives). Here, sup-
pose that there are no interaction and coupling between any
two different alternatives.

As stated earlier, consider that there are n securities
ξi1 , ξi2 , . . . , ξin selected in the security pool, and their qual-
ities can be judged by the state characteristics listed in the
criterion layer each by each. For a specific evaluation crite-
rion Z ∈ {E,V , H , S,K } employed in the criterion layer,
the quality of each alternative is quantified as a number (i.e.,
the evaluation value Z [ξik ], k = 1, 2, . . . , n) objectively.
Here, in order to avoid the interference from subjective fac-
tors, the construction of the reciprocal matrix R(Z ) corre-
sponding to these n alternatives should follow the objective
evaluation values Z [ξi1 ], Z [ξi2 ], . . . , and Z [ξin ] strictly, i.e.,

R(Z ) =


Z ξi1 ξi2 · · · ξin
ξi1 ri1i1 ri1i2 · · · ri1in
ξi2 ri2i1 ri2i2 · · · ri2in
...

...
...
. . .

...

ξin rini1 rini2 · · · rinin

 , (39)

where the element ripiq is determined by a bivariate function

ripiq = GZ
(
Z [ξip ],Z [ξiq ]

)
. (40)

In our proposed model, it can be seen from (40) that the
pairwise comparison result between any two alternatives only
depends on the quantitative values evaluated by the crite-
ria Z . With this, the construction of the scheme layer can be
formed into searching a proper pairwise comparison function
GZ (x, y). Next, by analyzing the properties that the function
GZ (x, y) should satisfy, the detailed derivation process of
this function is elaborated, and its specific expressions with
necessary proofs are given.

First, notice that R(Z ) is a reciprocal matrix, hence accord-
ing to the definition of the reciprocal matrix there has

ripiq =

{
1, if p = q
r−1iqip , if p 6= q.

(41)

Substituting (40) into (41) yields{
GZ (x, x) = 1
GZ (x, y) = G−1Z (y, x) .

(42)
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Then, let us take focus on the consistency of the reciprocal
matrix R(Z ). Generally, since there is no fixed reference to
quantify the quality of alternatives, human beings may make
some inconsistent judgments in their subjective comparison
process. This means that the reciprocal matrix R(Z ) con-
structed by human beings subjectively is difficult to satisfy
the consistency condition such that rir it = rir isrisit . But
fortunately, different from the general situation, the alterna-
tives here are securities, and their quality evaluations in any
evaluation criteria are all the specific values, which can be
regard as a fixed reference. Hence it is possible to make R(Z )
a consistent matrix. In order to achieve the above purpose,
it should break with the limitation of the original scale which
has seventeen fixed values only (i.e., 1±1, 2±1, . . . , 9±1 [33]),
and use the interval [9−1, 91] instead. Then, by taking the
consistency condition into account, there has

GZ (x, z) = GZ (x, y)GZ (y, z) . (43)

In what follows, the specific expression of the pairwise
comparison function GZ (x, y) is given by the following the-
orem.
Theorem 3: Let G (x, y) : D ⊆ R2

→ [9−1, 91] be a
bivariate function which satisfies the following properties

1) G-normality: G (x, x) = 1,
2) G-reciprocity: G (x, y) = G−1 (y, x),
3) G-consistency: G (x, z) = G (x, y)G (y, z).
Then G (x, y) has only two expressions such that

G (x, y) =
φ(x)+ c
φ(y)+ c

, (44)

G (x, y) =
φ(y)+ c
φ(x)+ c

, (45)

where φ(·) called the kernel of G (x, y) can be any unary
function and c is a constant determined by the domain D.

Proof: Without loss of generality, let a ∈ R be a real
number, from the property of G-consistency there has

G (x, y) = G (x, a)G (a, y) .

With the above equation, two first-order partial derivatives
ofG (x, y)with respect to x and y can be calculated as follows

∂G (x, y)
∂x

=
dG (x, a)

dx
G (a, y) ,

∂G (x, y)
∂y

= G (x, a)
dG (a, y)

dy
,

and from which the second-order mixed derivative follows
such that

∂G (x, y)
∂x∂y

=
dG (x, a)

dx
dG (a, y)

dy
.

Consider the calculation results of these partial derivatives
and further the condition of G (x, y) = G (x, a)G (a, y), then
it can be readily checked that

∂G (x, y)
∂x

∂G (x, y)
∂y

=
∂G (x, y)
∂x∂y

G (x, y) . (46)

With the aid of the theorem given by Scott [48], (46) reveals
that the bivariate function G (x, y) is separable-variable.
Hence, there must exist g1 (·) and g2 (·) such that

G (x, y) = g1 (x) g2 (y) . (47)

From (47) it should be clear that the property of
G-reciprocity to the function G (x, y) can be equally repre-
sented as

g1 (x) g2 (y) =
(
g1 (y) g2 (x)

)−1
.

If we however let y = x, then there has

g1 (x) g2 (x) =
(
g1 (x) g2 (x)

)−1
⇔
(
g1 (x) g2 (x)

)2
= 1⇔ g1 (x) g2 (x) = ±1.

According to the property of G-normality, it can be known
that only one of the last two equations is correct, i.e.,

g1 (·) g2 (·) = 1. (48)

Eventually, the only two expressions of G (x, y) can be
obtained by substituting (48) into (47), which is shown as
follows

G (x, y) =
g1(x)
g1(y)

or G (x, y) =
g2(y)
g2(x)

.

For the convenience of analysis and application, separate
the constant term from g1 (·) and g2 (·), then yield

G (x, y) =
φ(x)+ c
φ(y)+ c

or G (x, y) =
φ(y)+ c
φ(x)+ c

.

The proof is complete. �
Remark 5: The above theorem gives a general form to the

pairwise comparison function, which can be directly used to
construct the consistent matrix. And it can be seen from (44)
and (45) that the selection of φ(x) has a considerable degree
of freedom. However, in practical applications, there is a
monotonic relationship between the quality of alternatives
and the quantitative value given by most evaluation criteria.
Hence, a monotone function should be first considered to be
chosen as the kernel function φ(x).

In what follows, the calculation method of the constant c
in (44) or (45) is elaborated in detail. It is noteworthy that
for a specific criterion layer, the state characteristics included
in it can be divided into two different types from the aspect
of being an evaluation index. More concretely, the fuzzy
expected value and skewness are the same type, because both
of them are positive indicators. On the contrary, the fuzzy
entropy, variance, and kurtosis are negative indicators. For a
positive evaluation criterion Zp, if ξu is better than ξv, i.e.,
Zp[ξu]>Zp[ξv], there should be GZp

(
Zp[ξu],Zp[ξv]

)
>1. And

in order to make the difference between different alternatives
as large as possible, the pairwise comparison result between
the best one ξb and the worst one ξw should reach the highest
scaleGZp

(
Zp[ξb],Zp[ξw]

)
= 9. To achieve the above require-

ments, if (44) is selected to construct the reciprocal matrix
R(Zp), then the kernel function φp(x) must be a monotonic
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TABLE 4. Fuzzy Returns of Ten Securities and Their Corresponding State Characteristics.

increasing function, and the constant cp can be calculated as
follows

cp =
1
8

(
φp(Zp)− 9φp(Zp)

)
, (49)

where Zp = max
k=1,2,...,n

Zp[ξik ] and Zp = min
k=1,2,...,n

Zp[ξik ].

If (45) is selected to construct the reciprocal matrix R(Zn),
then the kernel function φn(x) must be a monotonic decreas-
ing function, and the constant cn can be calculated as follows

cn =
1
8

(
φn(Zn)− 9φn(Zn)

)
, (50)

where Zn = max
k=1,2,...,n

Zn[ξik ] and Zn = min
k=1,2,...,n

Zn[ξik ].

D. OVERALL PROCEDURE OF AHP-BASED PORTFOLIO
SELECTION
In order to express the method more concisely and clearly,
the overall procedure of the proposed method is summarized
in the form of Algorithm 1. In the process of building the
security pool, Algorithm 1 utilizes fuzzy expected value and
fuzzy variance to measure the return and risk of portfolio. It is
noteworthy that according to Theorem 1, the fuzzy varianceV
can be replaced by the fuzzy entropy H in the process of
building a security pool.

V. ILLUSTRATIVE EXAMPLES
In this section, three examples are presented to illustrate the
validity and advantages of the proposed AHP-based portfolio
selection model. In order to make comparisons with those
optimization models (see [6], [42], [49]) and other typical
MCDMmodels, the securities given by Huang’s work [6] are
cited as available investment alternatives to the first and sec-
ond examples. These securities are shown in Table 4. Besides,
the value of the five state characteristics associated with each
security is also reported in the same table. In the last example,
the time series data of 280 securities are randomly chosen
from the China Shanghai Stock Exchange to further illustrate
the effectiveness of the proposed model. Here, the returns of

Algorithm 1 Overall Procedure for Portfolio Selection

Input: The N investment objects, ξ = (ξ1, ξ2, . . . , ξN )T .
Output: The investment result, X = (x1, x2, . . . , xN )T .
1: Put ξ1, ξ2, . . . , ξN into the security pool;
2: for i = 1 : N do
3: for j = i : N do
4: if E[ξt,i] < E[ξt,j] && V [ξt,i] > V [ξt,j] then
5: Remove ξi from the security pool;
6: Break the loop;
7: end if
8: end for
9: end for
10: Select the needed state characteristics into the set D;
11: Construct the criterion layer with the aid of (22);
12: Calculate the weight vector of the criterion layer;
13: for k = 1 : Card(D) do
14: Construct the k-th scheme layer with the aid of (39);
15: Calculate the weight vector of the k-th scheme layer;
16: end for
17: Calculate the total sort weight vector of the overall hier-

archical structure;
18: Determine the investment result with (19).
19: return Outputs

all the securities are modeled by triangular fuzzy variables
ξt,i = (ai, bi, ci) with i = 1, 2, . . . ,N .

A. EXAMPLE 1
In this example, the mean-variance framework and
mean-entropy framework, which are the two most basic and
simple portfolio frameworks, are adopted here to verify the
practicability and validity of the proposed model. Under
these two frameworks, it is easy to check that the reciprocal
matrix in the criterion layer must be a consistent matrix.
Accordingly, there is no need to check the consistency of
them. Moreover, the consistency of the reciprocal matrix in
the scheme layer is guaranteed by Theorem 3.

VOLUME 9, 2021 76885



K. Zhao et al.: Decision-Making Model to Portfolio Selection

FIGURE 2. Comparisons of aggressive portfolio decision-making results between optimization model and proposed model under different frameworks.

FIGURE 3. Comparisons of conservative portfolio decision-making results between optimization model and proposed model under different
frameworks.

Since the optimization model is the most commonly used
model in portfolio selection under an established framework,
the portfolio selection results given by the optimizationmodel
and the proposed model are compared and discussed firstly.
It can be obtained from Theorem 1 that there are 7 secu-
rities (alternatives) in the security pool. For aggressive and
conservative investors, the detailed portfolio selection results
using the optimization model and the proposed model under
the mean-variance and mean-entropy framework are shown
in Fig. 2 and Fig. 3 respectively, where each color repre-
sents one alternative and the length of the visible color bar
represents the allocation proportion of different alternatives.
It can be seen from Fig. 2 or Fig. 3 that the proposed model
gives stabler portfolio decision results than that given by
the optimization model, and the decision results given by
the proposed model show obvious gradual change with the
change of aggressive or conservative level, which primarily
demonstrates the stability and validity of the proposed model.

Furthermore, in order to further examine the effectiveness
of the proposed model, not only the optimization model, but
also the other three typical MCDM models, which are the
standard AHP [33], fuzzy comprehensive evaluation (fuzzy
CE) [50], and fuzzy AHP [31], are employed as the objects of
comparison. An acceptable portfolio selection result should
be relatively more diversified and balanced to disperse risk,
which means that the allocation proportion of each invest-
ment object should not be too much or too little. Conse-
quently, the dispersion degree of portfolio selection results
can be reflected by its corresponding standard deviation.

After getting different optimal results given by the MCDM
models mentioned above, the standard deviations of these
portfolio selection results in different conditions are shown
in Table 5 and Table 6. Since the expert practical experience
are incorporated into the reciprocal matrix in the criterion
layer, it can be seen that the standard deviations of the results
given by the proposed model are smaller than those given
by the optimization model and other three MCDM models,
which means the proposed model leads to more distributed
investments. In addition, from the aspect of calculation speed,
the detailed comparison results of running time for the above
models are shown in Fig. 4. It can be known from Fig. 4 that
the running time of the optimization model changes signifi-
cantly with the investment attitude, while that of the proposed
model and other three MCDMmodels has little to do with the
investment attitude. This is because the decision-making pro-
cesses given by the proposed model and other three MCDM
models are highly systematized and structured, and optimiza-
tion algorithms are unnecessary in the process of solving the
model. Besides that, compared with the other three MCDM
models, Theorem 3 indicates that the evaluation process of
the proposed model can be completed automatically accord-
ing to a specific evaluation criterion. Fig. 4 shows that the
proposed model can lead to a faster decision-making speed,
which confirms that the proposed model has higher decision
efficiency in both aggressive and conservative investment.

Finally, in order to study the practicability of the proposed
model, a sensitivity analysis is conducted with respect to
the investment attitude of investors. The weights of the used
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TABLE 5. Comparisons of Standard Deviation of Portfolio Results among Different MCDM Models under Mean-variance Framework.

TABLE 6. Comparisons of Standard Deviation of Portfolio Results among Different MCDM Models under Mean-entropy Framework.

FIGURE 4. Comparisons of portfolio decision-making running time among different MCDM models under different frameworks.

FIGURE 5. Sensitivity analysis results of proposed model under mean-variance framework and mean-entropy framework.

evolution criteria are changed gradually with each of the lin-
guistic terms given in Table 2 or Table 3. And the results of the
sensitivity analysis are shown in Fig 5. Fig. 5 shows that with
the decrease of aggressive level (or the increase of conserva-
tive level), investors are more and more inclined to choose the

alternative with less risk and lower return. On the contrary,
with the decrease of conservative level (or the increase of
aggressive level), investors tend to choose the alternative with
higher return and more risk. It is worth noticing that when
the quantitative value of investment attitude is at a low level,
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FIGURE 6. Comparisons of aggressive portfolio decision-making results between optimization model and proposed model under different
frameworks.

FIGURE 7. Comparisons of conservative portfolio decision-making results between optimization model and proposed model under different
frameworks.

the ranking orders of the alternatives are easier to change with
the change of the investment attitude. This is because at this
stage, the result comes from a fierce game of return and risk,
and neither of them has gained an overwhelming position.
According to these results, the proposed model can highly
simulate the process of human cognition and decision making
in a robust and reliable way.

B. EXAMPLE 2
To further assess the generality and flexibility of the
proposed model in other frameworks, in this example,
the mean-variance-skewness framework and mean-variance-
skewness-kurtosis framework, which add higher-order
moments of return distribution into the mean-variance frame-
work, need to be discussed. In the ensuing experiments, let
k1 = 0.42 for the mean-variance-skewness framework and
k1 = 0.23, k2 = 0.48 for the mean-variance-skewness-
kurtosis framework. It can be readily verified that the recip-
rocal matrices constructed in both criterion layer and scheme
layer have acceptable consistency with the above parameters.

Consider that numerous optimization models have been
proposed for portfolio selection under these two frameworks,
it is necessary to make comparisons with the proposed model.
After having solved the optimization model and the proposed
model, the intuitive investment portfolio results are shown
in Fig. 6 and Fig. 7. It can be seen from Fig. 6 and Fig. 7
that the security pool has 7 securities (alternatives) in total
and the allocation proportion of each alternative is repre-
sented by the length of its corresponding color bar. for the

optimization model, both Fig. 6 and Fig. 7 show that small
changes in investment attitude always lead to irregular and
drastic changes in investment results, which means the opti-
mization model lack stability. But for the proposed model,
no matter the investor’s investment attitude is aggressive or
conservative, the investment results given by the proposed
model changes regularly with the change of investment atti-
tude level, which reveals that the proposed model gives more
reasonable and stable decision results.

In order to make a more comprehensive comparison,
besides the optimization model, the other three MCDM
models mentioned in the previous example are employed
as the objects of comparison. The standard deviations of
these portfolio selection results in different conditions are
shown in Table 7 and Table 8. From Table 7 and Table 8
it can be known that the proposed model leads more dis-
tributed decision results, which verifies that the proposed
model can use expert experiences to disperse risks more
effectively and reasonably. Meanwhile, since some potential
risks can be identified by the higher-order fuzzy moments,
the proposed model leads more balanced portfolio selection
results compared to the mean-variance and mean-entropy
framework. However, excessive consideration of risk fac-
tors would inevitably weaken the effect of return, and then
make the investment results prefer to focus on those alter-
natives with less risk and lower return. This is the reason
why the proposed model the mean-variance-skewness frame-
work leads more distributed portfolio selection results than
that under the mean-variance-skewness-kurtosis framework.
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TABLE 7. Comparisons of Standard Deviation of Portfolio Results among Different MCDM Models under Mean-variance-skewness Framework.

TABLE 8. Comparisons of Standard Deviation of Portfolio Results among Different MCDM Models under Mean-variance-skewness-kurtosis Framework.

FIGURE 8. Comparisons of portfolio decision-making running time among different MCDM models under different frameworks.

FIGURE 9. Sensitivity analysis results of proposed model under mean-variance-skewness framework and mean-variance-skewness-kurtosis
framework.

In addition, from the perspective of the speed and effi-
ciency for a decision-making model, since the evaluation
process of the proposed model can be completed automati-
cally, it achieves the fastest speed in the decision-making of
portfolio selection according to Fig. 8.

Finally, in order to show the practicability of the pro-
posed model under these two frameworks, a sensitivity anal-
ysis is conducted with respect to the investment attitude of
investors. The results of the sensitivity analysis are shown
in Fig 9, where the linguistic terms corresponding to different
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TABLE 9. Fuzzy Returns of 280 Securities from China Shanghai Stock Exchange and Their Corresponding State Characteristics.

FIGURE 10. Comparisons of aggressive portfolio decision-making results between optimization model and proposed model under different
frameworks.

aggressive or conservative levels are given in Table 2 or
Table 3. Consistent with the previous example, Fig. 9 shows
that investors tend to choose the alternative with less risk
and lower return when the aggressive level decreases or the
conservative level increases. Instead, when the aggressive
level decreases or the conservative level increases, investors
tend to choose the alternative with less risk and lower return.
However, different from the previous example, the rank-
ing orders of the alternatives are easier to change with the
change of the investment attitude for aggressive investors.
This is because the addition of supplementary risk shakes
their investment attitude and makes them find a new balance
through a game between return and risk. But for conservative
investors, the consideration of supplementary risk deepened
their understanding of the importance of market risk, so there
are few changes on ranking in all variations of the investment
attitude. According to these results, the proposed model can
highly simulate the process of human cognition and decision
making in a robust and reliable way.

C. EXAMPLE 3
In this example, a case study of using a real-world data set is
given to illustrate the effectiveness of the proposed model.
This real-world data set randomly select 280 stocks from
China Shanghai Stock Exchange, and part of these stocks
are listed in Table 9. After that, considering the variabil-
ity and complexity of the real market, the mean-variance-
skewness and mean-variance-skewness-kurtosis framework
are employed here to comprehensively grasp the possible risk
in the security market.

First of all, among these 280 stocks, it can be known
from Theorem 1 that only 21 securities have the investment

value. Then, the proposed model is implemented with
k1 = 0.65 for the mean-variance-skewness framework and
k1 = 0.35, k2 = 0.75 for the mean-variance-skewness-
kurtosis framework. It can be checked that the reciprocal
matrices constructed in both criterion layer and scheme layer
have acceptable consistencywith the above parameters. Since
the most commonly used model of portfolio is the opti-
mization model, it is necessary to take it as reference to
show the superiority of the proposed model. The detailed
investment portfolio results given by the optimization model
and the proposed model are shown in Fig. 10 and Fig. 11
intuitively. It can be seen from Fig. 10 and Fig. 11 that the
results given by the optimization model cannot achieve the
smooth transition associated with the change of aggressive
or conservative level, while the proposed model acts well in
this aspect, which is more in line with the actual investment
done by human beings. Furthermore, the practicability and
efficiency of a portfolio selection model can be evaluated by
the standard deviation of investment results and the running
time of decision-making processes. In order to further verify
the superiority of the proposed model, the standard deviation
of investment results and the running time are considered.
Here, four typical MCDM models are implemented to make
comparisons, including the optimization model and other
three MCDM models. The detailed standard deviation of
each portfolio result is calculated and shown in Table 10 and
Table 11. Compared to the optimizationmodel and other three
MCDM models, both Table 10 and Table 11 imply that the
results given by the proposed model have smaller standard
deviations, which means that it can spread risk more effec-
tively. Moreover, compared to the optimization model and
other three MCDMmodels, Fig. 12 reveals that the proposed
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FIGURE 11. Comparisons of conservative portfolio decision-making results between optimization model and proposed model under different
frameworks.

TABLE 10. Comparisons of Standard Deviation of Portfolio Results Between Optimization Model and Proposed Model under Mean-variance-skewness
Framework.

TABLE 11. Comparisons of Standard Deviation of Portfolio Results Between Optimization Model and Proposed Model under
Mean-variance-skewness-kurtosis Framework.

FIGURE 12. Comparisons of portfolio decision-making running time between optimization model and proposed model under different frameworks.

model has higher decision efficiency and lower decision cost
in both aggressive and conservative investment.

VI. CONCLUSION AND FUTURE WORK
In this paper, different from the traditional optimization
model, a new decision-making model is proposed for port-
folio selection with the aid of AHP. In the proposed model,
in order to reflect the investment attitude and experience of

different investors, the expert knowledge is integrated into
the criterion layer and the structural method to construct a
reciprocal matrix with acceptable consistency is given. More-
over, in order to avoid the influence of other non-empirical
subjective factors on the decision-making result, this paper
breaks with the limitation of the original scale which has
seventeen fixed values only and give a calculation method
of building strictly consistency matrix, which ensures that
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the decision result is completely driven by the state charac-
teristics of a portfolio itself. Additionally, three experiments
involving synthetic and real-world data show that the pro-
posed model produces better performance in rationality and
timeliness than the optimization model and gives more dis-
tributed investments. The approach presented here has strong
generality and can be applied to other MCDM problems.

The present research is merely the first step in using AHP
to make portfolio decisions, and it is limited in the two
following aspects. First, only the five most representative
state characteristics of portfolio and the relative importance
relationship between two of them are considered, but the
interaction and coupling among them are not accounted
for. Second, the proposed method is mainly focused on the
problem of individual decision, so the differences of opin-
ions (judgments) expressed by individual members in group
decision cannot be reconciled. Therefore, in further stud-
ies, underlying causal relationships or association analysis
between different state characteristics and the effect brought
about by the change of causal strength cause for concern.
In addition, to achieve an increasing level of consistency
within the group towards the problem of portfolio selection,
aggregation mechanisms can be used in AHP by admitting
membership degrees for different investors.
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