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ABSTRACT Stress is known as a silent killer that contributes to several life-threatening health conditions
such as high blood pressure, heart disease, and diabetes. The current standard for stress evaluation is based
on self-reported questionnaires and standardized stress scores. There is no gold standard to independently
evaluate stress levels despite the availability of numerous biophysiological stress indicators. With an increas-
ing interest in wearable health monitoring in recent years, several studies have explored the potential of
various biophysiological indicators of stress for this purpose. However, there is no clear understanding of the
relative sensitivity and specificity of these stress-related biophysiological indicators of stress in the literature.
Hence this study aims to perform statistical analysis and classification modelling of biophysiological data
gathered from healthy individuals, undergoing various induced emotional states, and to assess the relative
sensitivity and specificity of common biophysiological indicators of stress. In this paper, several frequently
used key indicators of stress, such as heart rate, respiratory rate, skin conductance, RR interval, heart rate
variability in the electrocardiogram, and muscle activation measured by electromyography, are evaluated
based on a detailed statistical analysis of the data gathered from an already existing, publicly available
WESAD (Wearable Stress and Affect Detection) dataset. Respiratory rate and heart rate were the two best
features for distinguishing between stressed and unstressed states.

INDEX TERMS Stress monitoring, biophysiological stress response, sensitivity analysis, heart rate, respi-
ratory rate, skin conduction, electrocardiogram, electromyograph.

I. INTRODUCTION
It is well understood that every human being is exposed to
some level of stress more than once in their lifetime. Stress
can be defined as a non-specific response of our body to meet
a certain demand in extreme conditions [1]. According to
the British Health and Safety Executive (HSE), 44% of all
work-related illnesses in 2017/18 was due to stress [2]. It has
been seen that stress generally has negative effects on the
mental health and well-being of a person [3]. Acute stressors
(stimuli that cause stress) may not impose any health burden
on young and healthy people having an adaptive and good

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi .

coping response, but if the stressors are too persistent or too
strong, these stressors may lead to depression and anxiety [4].
Chronic stress is known to contribute to life-threatening con-
ditions such as heart disease, high blood pressure, diabetes,
and obesity, and an acute episode of stress can trigger a heart
attack or stroke by causing arterial inflammation [5].

The current standard for clinical evaluation of stress is
based on self-reported questionnaires or standardized stress
scores, such as the Perceived Stress Scale (PSS) [1]. However,
with the recent development in wearable biosensor technolo-
gies, a huge interest has been seen in measuring biophysio-
logical responses of stress for the evaluation and monitoring
of stress. To develop a reliable device for stress monitoring,
it is important to understand how stress affects the human
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body from a physiological and biochemical point of view.
Under the influence of a stressor, the stress triggers the
sympathetic nervous system, causing the release of various
hormones such as adrenaline or cortisol [6], [7]. The release
of these hormones leads to changes in heart rate, respiratory
rate, and causes muscle tension among other physiological
responses. These changes in the body prepare the individual
for a physical fight or flight reaction. The changes caused in
both the biochemical and physiological state of the human
body in response to stress can be observed and used as an
indicator of stress. Physiological indicators are of particular
interest due to the possibility of measuring these indicators
non-invasively.

The wearable sensor technology has progressed to the
level that several physiological parameters can be measured
continuously as well as wirelessly. Some real-time stress
detecting models have been described [8]–[10]. Even with
all these advances, no clinically validated stress model can
be considered suitable for clinical use to monitor stress
in real-time (in the natural environment). The lack of a
reliable stress model can be explained by several key chal-
lenges that need to be addressed before the development
and clinical validation of a model. Firstly, there is no uni-
versally accepted definition of stress. Secondly, there is a
lack of corresponding gold standard ground truth values
or real data which can be somewhat associated with the
unavailability of a standard definition of stress. For example,
cortisol is considered as a stress hormone in some studies
and a self-reported questionnaire is used as ground truth to
assess the stress level in the field. However, the correla-
tion between cortisol (a stress indicator) and self-reporting
questionnaires is reported in the range of 0.26 to 0.36
[9], [10]. This poor correlation can be associated with sev-
eral factors including poor reporting in the questionnaires,
which makes it difficult to assess the prediction accuracy of
cortisol.

The third challenge is the collection of physiological data.
The collection of stress parameters in the natural environment
is very difficult, especially in the presence of various sources
of error and noise [11]. For example, to collect day-long
electrocardiogram (ECG) data, ECG sensor electrodes are
connected to the subject’s body for a day. The adhesion of
the ECG electrodes may degrade over time as the day goes
by, thus producing a lot of noisy readings. The physical
movement of the subject may also cause noisy spikes in the
data due to changes in the contact of the electrodes with
the body. Moreover, data could also be lost during wireless
transmission.

The fourth challenge is dealing with the confounding vari-
ables. Physiological stimulation that is indicative of the sub-
ject’s stress can easily be obfuscated by changes in posture,
movement of limbs, or any other physical activities. Separa-
tion of good quality signal for analysis of stress is therefore
significantly challenging.

The fifth challenge is the identification and calculation of
discriminative features that are specific and can be easily

distinguished as a stress response from other comparable
physiological stimuli.

The final challenge is the development of classifiers using
computed features, and training and validation of the model
for field usage. This is the most difficult challenge to tackle
due to the lack of a gold standard dataset that can be used to
train and validate the model. If self-reported questionnaires
are used as a label for stress, then for consistency analysis the
threshold is set to be 0.7 for declaration of a concordance [12],
which also reflects inherent biases and variabilities in the self-
reported data.

Many sensor-based stress monitoring devices and research
studies exploited the relationship between stress and resulting
physiological variations [13]–[17]. These include machine
learning techniques to detect stress from physiological and
activity data collected from respiration (RESP), electrocar-
diogram (ECG) and accelerometer (ACC) sensors [18], [19].
Other less frequently used indicators, blood volume pulse
(BVP), skin temperature (TEMP), electromyography (EMG),
photoplethysmogram (PPG) and electrodermal activity
(EDA), have also been recorded and used for stress monitor-
ing [20], [21]. These physiological indicators are not specific
to stress response, therefore, the stress prediction based on the
physiological indicators may have varying accuracy, be it for
any individual indicator or a combination of these indicators.

Besides the physiological indicators, several biochemical
indicators are also used for stress detection. In humans,
these indicators include the level of cortisol, adrenaline,
alpha-amylase, copeptin and prolactin [4], [22], [23]. Among
these indicators, cortisol is considered the primary stress
hormone [24]. Several techniques have been proposed to
measure cortisol level in saliva, sweat and hair [25]–[27]. This
paper is intended to provide a sensitivity analysis of biophys-
iological indicators of stress rather than biochemical ones.
A comprehensive review on biochemical stress indicators can
be found elsewhere [28].

A. RELATED WORK
Han et al. [21] proposed a stress detection technique that
detects three levels of stress i.e. no stress, moderate stress,
and high perceived stress using ECG and PPG signals.
The authors collected data from 39 subjects and reported
classification accuracy of 84% using a random forest and
support vector machine (SVM) classifier for three-stage clas-
sification of stress. For binary classification i.e. rest and
stress, an accuracy of 94% was achieved. Choi et al. [29]
proposed a wearable device to measure the stress, drowsi-
ness, and fatigue of the vehicle drivers. Stress indica-
tors they measured were (Galvanic Skin Response) GSR,
activity data from accelerometer, skin temperature, and
PPG signals of 28 drivers. The authors reported an accuracy
of 68.3% for four classes i.e. normal, stressed, drowsiness,
and fatigue and an accuracy of 84.5% for three classes
i.e. normal, stressed, drowsiness or fatigue classification.
Mohino-Herranz et al. [30] assessed the mental fitness of
different subjects. They used ECG and Thoracic Electrical
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Bioimpedance (TEB) signals to monitor the stress of 40 sub-
jects. The authors achieved error rates of 21.2%, 32.3%, and
4.8% for activity identification, mental activity, and emo-
tional state, respectively. Liu et al. [31] determined the fea-
sibility of the EDA signal parameter and developed a stress
monitoring device. The authors used only EDA signals for
the detection of the stress of 11 drivers. After computing
Fisher projection and Linear Discriminant Analysis (LDA),
the authors reported a classification accuracy of 81.8% by
only using EDA.

Lee et al. [32] and Healey et al. [33] wanted to develop a
wearable glove that could detect the stress of drivers and col-
lected data from 28 and 10 drivers, respectively. The authors
of both studies recorded PPG signals for analysis. Lee et al.
achieved a classification accuracy of 95% while Healey et al.
reported an accuracy of 62.2% using only PPG signal (respi-
ratory rate) recorded through sensors on driver’s gloves. Sim-
ilarly, Wijsman et al. [34] and Healey et al. [33] developed
an algorithm for detecting mental stress using physiological
signals. These signals included ECG, PPG, EMG, and EDA
from 18 and 10 subjects, respectively. Wijsman et al. claimed
to reach 80% accuracy for two-class (i.e. rest and stress)
classification and concluded that the accuracy indicates that
these features are suitable to be used for an individual’s stress
detection while Healey et al. reported classification accuracy
of 86.6% using the same physiological signals.

Chen et al. [35], Shi et al. [36] and Kim et al. [37]
developed a stress detection system based on multimodal
features and kernel-based classifiers using ECG, EDA and
PPG signals. The studies collected data from 14, 22, and
175 subjects, respectively. Chen et al. analysed the data in
terms of precision, sensitivity and specificity. While using
a full feature set, SVM with a linear kernel gave the high-
est inter-drive classification precision. For the cross-driver
analysis, SVM with radial basis function (RBF) kernel gave
a precision score of 89.7%. Shi et al. concluded that the
SVM based model detected stress with high precision and
recall rate and classification accuracy of 68%. Kim et al.
reported that they achieved a classification accuracy of 78.4%
for three emotional states classification problems and an
accuracy of 61.8% for four-state classification problems.
Sun et al. [38] determined mental as well as the physical
stress of 20 subjects during different physical activities. The
authors used ECG, EDA, and accelerometer signals. They
reported a classification accuracy of 92.4% using accelerom-
eter data along with ECG and EDA physiological signals.
The inter-subject classification accuracy was reported to
be 80.9%.

Mozos et al. [39] and Sandulescu et al. [40] pre-
sented a stress detection methodology for people who suf-
fer from stress in social situations. Both studies used EDA
and PPG signals for stress detection collected from 5 and
18 subjects, respectively. After experimentation, Mozos et al.
reported an accuracy of 92 % with the SVM (RBF ker-
nel) classifier, in comparison to Linear kernel SVM (80%),
AdaBoost (67%) and k-nearest neighbours (KNN) (62%),

when using a selected set of features. Sandulescu et al. were
successful in classifying the stress of each participant with
an average accuracy of 79%. The authors concluded that
their approach is a good starting point for the detection of
a subject’s stress state in real-time. Such detection alongside
some intervention in real-time may improve quality of life.

Muaremi et al. [42] presented a stress detection system
using a smartphone and wearable chest belt. The authors
evaluated their system in a real-world environment with
35 test subjects studied for 4 months. The prediction accu-
racy was calculated using the leave-one-out-cross-validation
(LOOCV) method. The system achieved a 55% accuracy
using mobile phone features only (accelerometer) while a
59% prediction accuracy was obtained using the heart rate
variability (HRV) feature. The combination of both features
gave a prediction accuracy of 61%. Lai et al [42] described an
intelligent stress monitoring assistant (SMA) prototype and
used a deep learning-based method for stress detection using
the WESAD dataset. The authors used Residual-Temporal
Convolutional Network (Res-TCN) to recognise and detect
stress states with an accuracy of 86% and 96%, respectively.
Smets et al [43] used a data-driven approach for stress detec-
tion, using real-life data obtained from 1002 subjects in five
consecutive, free-living days. The authors found a signifi-
cant difference between the ECG, skin conductance and skin
temperature for different stress levels. They compared their
self-reported data with the standard digital phenotypes-based
wearable device and achieved the F1-score (a measure of test
accuracy using precision and recall) of 0.43, which suggests
that the physiological stress response varies greatly between
individuals. Thus, the stress detection systems should apply
personalised models for accurate stress detection.

From a review of the related literature, it can be noticed
that the best features for stress detection and monitoring
are still unclear. Several studies have used the same physi-
ological parameters and have implemented the same classi-
fier, yet reported different accuracies. It is important to note
that no study has previously tried to find what parameter
is the best predictor for stress. The first step should be to
establish a statistically significant difference between base-
line and stress state before developing any machine learn-
ing model. Most studies have reported machine learning
models for stress identification using various features avail-
able from the sensor that was used to collect the data. The
results reported in these studies may only apply to those
particular features or sensors. The main objective of this
study is to analyze the relative importance of the most com-
mon and clinically relevant biophysiological stress indicators
and identify the most useful specific indicators for a wear-
able sensor-based stress monitoring solution. Most previous
studies have focused on the determination of sensor/signal
ratios. Our study ranks biophysiological stress indicators in
order of diagnostic performance using single and multivari-
able (deviance) analysis. This is a commonly used approach
to assess the predictive model, in this case, the stress state
response.
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The only other study closest to this work is by
Zhen et al. [44]. According to the authors, the improper
imposition of workload on pilots is the most critical cause
of the human error. Thus, the authors studied different phys-
iological responses of pilots during flight. These parame-
ters included eye blinking, saccade, pupil diameter, fixation,
respiratory rate, and heart rate. They performed statistical
analysis to check the sensitivity and diagnostic ability of
the aforementioned physiological parameters. They collected
data from 12 healthy student pilots and applied a one-way
ANOVA test to the collected data. After the experiment, they
concluded that from all the physiological parameters, pupil
diameter and respiratory rate turned out to be the most sen-
sitive parameters in distinguishing different stages. The diag-
nostic capability of the parameters was different. Respiratory
rate and eye blinking were directly related to the difficulty
of the task (stress) while other parameters were affected by
external factors, for example, fatigue and attention.

The advantages of our study over the Zhen et al. study
are three-fold. First, the set of stress measuring features
analysed in their paper is different from ours. Secondly,
we have performed descriptive and regression analysis.
Thirdly, we developed a classification task to evaluate the sen-
sitivity and specificity of selected biophysiological param-
eters for stress detection. The analysis was performed on a
publicly available dataset collected in theWearable Stress and
Affect Detection (WESAD) project [1]. The main objectives
of this paper are:

• Descriptive analysis of the commonly used stress moni-
toring features.

• Regression analysis for the selection of the most impor-
tant features that can be used for stress monitoring
devices in the future.

• Implementation of a uni-variable and multi-variable
classification model (using logistic regression) to clas-
sify stress state from the non-stress state of an individual.

Figure 1 summarizes the pipeline of the proposed work.
The rest of the paper is organized as follows: Section II
provides an overview of theWESAD dataset and the methods
for preprocessing, normalization and statistical tests to obtain
the statistical importance of the features (stress indicators);
Section III presents the results and discussion, and conclu-
sions are provided in Section IV.

II. METHODOLOGY
A. STUDY PARTICIPANT
The data were collected using two multimodal devices: a
chest-worn device (BioSignalPlux RespiBAN Professional);
and a wrist-worn device (Empatica E4). Some recent stud-
ies that have used WESAD datasets are Reiss et al. [45],
Jiang et al. [46], Aridas et al. [47] and Taufeeq et al. [48].
The data included a high-resolution measurement of BVP,
EMG, EDA, ECG, RESP, TEMP, and movement from ACC.
All the participants were healthy graduate students of the
University of Siegen, Germany [1]. Study participants with

FIGURE 1. Block diagram to summarize the pipeline of the proposed
work.

mental disorders, heavy smoking, pregnancy, or those suf-
fering from any cardiovascular and other chronic diseases
were excluded from the study. A total of 17 individuals
participated in the study but the data of two participants were
incomplete due to the malfunctioning of sensors and were
therefore removed from the dataset. There were 12 males
and 3 females in the remaining 15 subjects with a mean
age of 27.5 ± 2.4 (SD) years. Some of the variables were
missing in the data from subject no. 11. Thus, all analyses for
this paper were completed using 14 subjects. In the dataset,
there are 11,500,000 baseline (non-stress) samples and
6,400,000 stress samples.

B. FEATURES RELATED TO STRESS
During stress, heart rate usually increased, thus causing more
blood to flow within the body. This change in blood flow can
be measured through BVP, which is derived from a PPG sig-
nal. Change in heart rate and heart rate variability can also be
monitored using ECG signals [49], [50]. Stress also causes
the release of sweat, thus changing skin conductance prop-
erties. This change is measured by the EDA device. There is
vast literature available that demonstrates the association of
muscle tension with stress. Muscle tension changes are mea-
sured using EMG signals [51], [52]. In some people, chronic
stress causes a low-grade fever (between 99◦ to 100◦F) and
may also cause anxiety as well as restlessness. Thus, Temper-
ature (TEMP) sensors and accelerometer (ACC) readings can
also be used to monitor stress [53]–[55].
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C. SETUP AND PLACEMENT OF SENSORS
The chest-worn device, RespiBAN Professional, was used
to record ECG, EMG, EDA, TEMP, and RESP along with
additional ACC data. The placement of the device control unit
and sensors is shown in Figure 2.

FIGURE 2. Placement of RespiBAN Professional Device (a) shows the
placement of different sensors on the front of the human body (b) shows
the placement of EMG sensors on the back of the body.

The data from RespiBAN Professional was sampled at
700Hz. The ECG signal was recorded using a standard 3-lead
approach (as shown in Figure 2) and an inductive respiration
sensor was used to record the RESP signals.

The EDA signals were recorded from the abdomen and
EMG was recorded from the muscles of the upper trapezius
on both sides of the spine. In addition, Empatica E4 was
worn on the dominant hand by all subjects, and BVP, EDA,
TEMP, and ACC signals were recorded at the sampling rate
of 64Hz, 4Hz, 4Hz, and 32Hz, respectively. All the par-
ticipant data were recorded on the devices and then trans-
ferred to a computer through a wired connection. On the
day of study, upon arrival, participants were equipped with
chest and wrist-worn sensors. A functionality test was per-
formed to test the working of the sensors. After that, both
the devices were synchronised using a double-tap gesture,
manually.

D. STUDY PROTOCOL
The study protocol was designed to record readings
of 3 different states of the participants, i.e. baseline, amuse-
ment, and stress. Participants were also asked to complete a
self-reporting questionnaire after each session and undergo a
guided meditation session to get de-excited after amusement
and stress conditions. Participants could not intake tobacco
or caffeine one hour before the study commenced. Moreover,
the participants were asked to avoid strenuous exercise on the
day of the study. All study participants signed informed con-
sent before commencing. A short sensor test was conducted
while equipping the participants. Finally, both the devices
(RespiBAN Professional and Empatica E4) were manually
synchronized.

For baseline readings, participants were asked to stand or
sit at a table and read a magazine. Baseline readings were
recorded for 20 minutes and were labelled as a baseline state.
Amusement state was induced by showing eleven different
funny clips with a gap of 5 seconds between them. The total
length of the amusement state was 392 seconds for each
participant.

The stress condition was induced using the Trier Social
Stress Test (TSST) [56]. TSST consists of mental arithmetic
and a public speaking task. Both tasks are considered reliable
to evoke stress [19] as they inflict a high mental load and
are categorized as a social-evaluative threat in subjects. The
participants had to deliver a speech for five minutes on their
strengths and weaknesses in front of a panel. Participants
were told that the judging panel is from the human resource
department and impressing them will increase their hiring
chances. After the speech, the panel asked each participant
to count backwards, with the gap to 17, from 2023 to 0.
If the participant makes any mistake while counting, they
had to start over. This exercise following the speech also
lasted for five minutes. So, TSST was conducted for a total
of 10 minutes. After TSST, participants were given a rest
period of 10 minutes. After the amusement and stress period,
participants were asked to perform some predefined medita-
tion steps to de-excite and bring them back to a neutral state.
Meditation included controlled breathing instructed through
an audio track. After removing the sensors, participants were
told that the panel was of normal researchers so that they can
recover from the test induced stress.

As humans are naturally good at adapting to different
situations quickly, two study protocols were designed for this
study to keep the randomness and collect the true feelings of
the subjects. The two protocols are shown in Figure 3. Half of
the subjects followed version 1 protocol while the other half
followed version 2 protocol.

E. SIGNAL PROCESSING AND FEATURE EXTRACTION
Raw data from all the sensors (ECG, EDA, EMG, and
RESP) were collected using a 0.2-second non-overlapping
sliding window, and all physiological features, except
EMG, were computed using a 60-second non-overlapping
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FIGURE 3. The two distinct protocol versions for the proposed study. The
dark boxes indicate filling out self-reporting questionnaires.

sliding window. The window sizes were chosen following the
recommendations of Koelstra et al. [57].
From raw signals of ECG, the heart rate was calculated

using the Hamilton peak detection algorithm [58]. Moreover,
heart rate variability (HRV) was derived from the locations of
the peaks in ECG. Figure 4 shows the block diagram of the
Hamilton peak detection algorithm. The algorithm works on
the detection of the QRS complex in the ECG signal. The
preprocessing steps involve rectification of the signal rather
than squaring the signal as in [59], averaging sliding window,
low and high pass filtering followed by some QRS detection
rules. Rectification of the signal gives us better sensitivity of
detection algorithm, which is also indicated in [60]. TheQRS
complex detection rules are as follows:

FIGURE 4. Steps to detect QRS complex using Hamilton peak detection
algorithm.

• Ignore all the detected peaks preceding or following
larger peaks by less than 200 milliseconds.

• If the peak is detected, check whether the signal contains
both positive and negative peaks. If not, the detected
peak represents a baseline shift.

• If a peak is detected within 360ms of the previously
detected peak and had a maximum slope less than 50%
of the maximum slope of the previous peak then assume
it as T-wave.

• If the detected peak is larger than the detection threshold
then consider it as a QRS complex otherwise consider it
as noise.

The detection threshold is calculated using estimates of
QRS peaks and noise peaks heights and is mathematically
represented as:

Detection_threshold = average_noise_peak+ TH

∗(average_QRS_peak-average_noise_peak) (1)

In equation 1, TH denotes the threshold coefficient
between 0.3124 and 0.475. Each time the QRS complex is
detected, it is stored in a buffer with previously eight most
recent peaks while every non-QRS complex is stored in a
buffer that contains previous eight non-QRS peaks also called
noise peaks. Through equation 1, we set the detection thresh-
old between the mean or median of QRS and noise peaks.
The noise detection is done similarly to [61]. The algorithm
characterizes low-frequency noise by the interval between the
end T-wave and the start of P-wave while high-frequency
noise by bandpass filtered beats outside the QRS complex.
In this study, we have used the heart rate and RR interval
extracted from the ECG signal using the above-mentioned
algorithm.

The sympathetic nervous system controls the EDA
response that provides high arousal states with high sensitiv-
ity. EDA signals were first passed through a low-pass filter
with a critical frequency of 5 Hz, similar to work reported
in [62], [63] and phasic (skin conductance response) and
tonic (skin conductance level) components were extracted.
The phasic component is a short-term response due to some
stimulus while the tonic component shows a slow varia-
tion in baseline conductance. EDA features can be found
in [64], [65]. In this study, we used the phasic components.

The raw EMG signal was processed in two steps. In the
first step, the DC component was removed using a high-pass
filter and the peak frequency was calculated from the filtered
signal by applying a 5-second window. In the second step,
a raw EMG signal was passed through a low-pass filter with
a cut-off frequency of 50 Hz, to suppress the power line
noise, and features were extracted using themethod described
in [66]. A normalized root means squared (RMS) value of
EMG voltage amplitude is used as a feature in this study.

The RESP signal was used to extract the respiratory rate
(RspR). Before computing the features of respiration, the raw
signal was filtered using a band-pass filter with critical fre-
quencies of 0.1 and 0.35 Hz. A peak detection algorithm
was used to identify minima and maxima in the signal and
inspiration volume, respiration duration, respiration rate, and
inhalation and exhalation ratio were derived as in [19].

F. STATISTICAL FEATURE
We normalized the data from the phasic component of skin
conductance, muscle activation, heart rate (HR), RR-interval
(RRI), heart rate variability (HRV) and the respiratory
rate (RspR) using min-max normalization to eliminate initial
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variation in the readings. Data for each are summarized using
the mean and standard deviation separately for stress and
baseline scenarios. All features along with their mathematical
representation are listed in the next subsections.

Let us suppose the above physiological signals are x and
xi is an i-th sample of the signal within the sliding window,
where i = 1, . . . , n. Then:

1) MEAN
Mean is denoted by x̄ and represents the mean value of a
raw signal within a sliding window. Mean is calculated by
the following equation:

x̄ =
1
n

∑n

i=1
xi (2)

2) STANDARD DEVIATION
Standard deviation is denoted by S and represents the devia-
tion of raw signal around the mean of the signal within the
sliding window. Standard deviation is calculated using the
following equation:

S =

√
1

n− 1

∑n

i=1
(xi − x̄)2 (3)

3) MEDIAN
Median corresponds to the cumulative percentage of 50% i.e.
middle reading in a dataset. It is calculated using the equation
as:

median =
(
n+ 1
2

)th
value (4)

Here n is the total number of entries in a dataset.

G. STRESS EVALUATION METHODOLOGY:
QUESTIONNAIRES
To validate the protocol, five different self-reports were filled
by each participant after every session. First, participants
filled out a Positive and Negative Affect Schedule, also
known as PANAS. In the second place, six items were picked
from the State-Trait Anxiety Inventory (STAI) to measure the
anxiety level of each participant. Thirdly, a Self-Assessment
Manikins questionnaire (SAM) was used to generate labels
in valence arousal space. Finally, nine items were included
in a questionnaire from the Short Stress State Question-
naire (SSSQ) to identify the type of stress that prevailed [1].
The outcome of these questionnaires can be considered as
subjective reports showing how the participants felt during
the test and can be used to train any personalized model.
However, for the defined dataset, the study protocol was
used to differentiate between the three states and there-
fore contributing to label different readings. The options of
answers were given for each questionnaire. PANAS ques-
tionnaire was answered using 5 points scale (1 = not at
all and 5 = extremely). The questionnaire asked the sub-
jects about their emotional state i.e. stressed, happy, sad,
or frustrated. STAI questionnaire was answered on 4 points

scale (1 = not at all, 4 = very much so) and included
questions about the subject’s feelings i.e. were they feel-
ing nervous, relaxed, worried, pleasant, jittery, or ease.
Valance and arousal were scored on the scale from 1 = low
to 9 = high. The SSSQ questionnaire included questions
about what the subject’s mindset was while answering the
questionnaire. Subjects answered on 5 points scale where
1 = not at all and 5 = extremely.
The self-reports were also analysed to make sure that the

designed experiment was suitable for inducing stress and
manipulating the subject’s affective states. Authors in [1]
calculated the mean and standard deviation of the anticipated
self-reports of three states i.e. baseline, amusement, and stress
states along with their subscales. The result of the analysis is
shown in Figure 5.

FIGURE 5. Analysis result of self-reported questionnaires.

After baseline and amusement states, the comparison of
self-reports revealed that amusement state had the desired
effect on the subject i.e. the subjects reported score was high
in valence and arousal (dimensional approach, DIM) and less
in STAI (anxiety).

The impact of induced stress was noticeably pronounced
across all the questionnaires. Analysis of the SSSQ score
revealed that the subjects felt more worried and engaged
as compare to distressed during the Trier Social Stress
Test (TSST) tasks. The score calculated are: Worrying =
10.6, engaged = 11.7 and stressed = 6. The higher value of
positive affect (PA) score shows that subject felt energetic and
concentrating during the TSST tasks that also resulted in a
higher engagement score in SSSQ. The elevated score of neg-
ative affect (NA) indicated an increased level of the subject’s
stress. The dimensional approach (DIM) score also supports
these observations by indicating an increase in arousal score
and a decrease in valence score. We had a higher STAI
score after TSST, as expected for a subject in a stressful
state.

Overall, the analysis of self-reported questionnaires
revealed that the designed experimental protocol was suitable
to induce desired effective stress in the subjects, especially
with respect to stress conditions.
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H. STATISTICAL ANALYSIS
For the statistical analysis, only two-state data (Baseline and
Stressed states) were used to evaluate the relative importance
of each physiological indicator of stress in stress prediction.
Three types of analysis were performed: 1) an independent
analysis for each biophysiological indicator via a two-sample
t-test under the null hypothesis that the mean biophysiolog-
ical indicator is equal during the Baseline and the Stressed
States; 2) a multivariable (deviance) analysis to rank the
contribution of each biophysiological indicator in a logistic
regression model, defined as follows:

log
(

p (Stress)
p (Baseline)

)
= c0 + c1EDA+ c2EMG+ c3RRI

+c4HR+ c5RspR+ c6HRV (5)

The logit link function log
(

p(Stress)
p(Baseline)

)
is used (p is the

probability) to relate the log odds of being stressed to the
linear predictor where (c0,c1,c2,c3,c4,c5 and c6 are the coef-
ficients showing the direction of the relationship); 3) logis-
tic regression classification analysis to determine the mean
absolute error, rootmean square error, classification accuracy,
sensitivity and specificity of the model.

1) A TWO-SAMPLE T-TEST
The data statistics and the results of the t-test are provided
in Table 1. The units of each feature are RspR (breaths
per min), HR (beats per min), RRI (milli-sec), Phasic EDA
(micro-siemens), EMG (micro-volts) and HRV (milli-sec).
The p-value > 0.05 shows the relevant feature has the
non-significant mean difference between stress and baseline
state values while p-value <0.05 shows a significant differ-
ence in the mean values of stress and baseline condition.

TABLE 1. Statistical analysis result of physiological parameters.

2) DEVIANCE ANALYSIS
In logistic regression, deviance can be used to assess how
good the model is to predict the response (which in this
case is stress state) – the lower the deviance, the better the
fit to the sample data. To analyze the independent effect
of the variables in determining stress, separate regression

models were constructed for combinations of indicators, and
the deviance is then used to measure the strength of the
relationship between the response and independent variables.
Deviance analysis using logistic regression was performed
using MATLAB’s statistics toolbox while the classification
model was developed using Python code.

3) CLASSIFICATION METHODOLOGY
For the regression model, logistic regression was selected
instead of linear regression since our dependent variable
in this study is binary i.e. Stress vs No-stress/Baseline.
Logistic regression uses the maximum likelihood method to
arrive at the solution. Also, the logistic loss function causes
large errors to be penalized to an asymptotically constant.
The dataset has baseline (11,500,000 per subject) and stress
(6,400,000 per subject) samples of the 14 subjects. Given
that the number of subjects in the dataset is small, we used
stratified k-fold cross-validation with k = 14, to ensure
that the results achieved are generalizable. Stratified k-fold
cross validation ensures the selection of the same proportion
of samples of each class in each fold. The time complex-
ity of k-fold is measured by O(Kn), where n is the num-
ber of samples. The O(Kn) means that the experiment is
repeated K time. When K approaches n, the time complexity
becomes O

(
n2
)
. So, it can be concluded that as the value

of k increases, the systems becomes complex and compu-
tationally expensive. We evaluated the classification model
using leave-one-out cross-validation (LOOCV) to have an
unbiased estimate of the model performance. Stratified k-fold
cross validation differs from simple k-fold cross validation by
splitting the dataset in such a way that the mean values of all
the splits are almost equal.

III. RESULTS AND DISCUSSION
The data from 14 participants were used in the analysis,
as some of the variables were missing in the data from subject
no. 11. Figure 6 shows the distribution of the data in two
states for each variable on boxplots. The data statistics and
the results of the t-test are provided in Table 1. Logistic
regression is used whenever the outcomes of the analysis are
limited, which in this case is stress and baseline (unstress).
Thus, logistic regression is used to perform a deviance anal-
ysis. Similarly, for the classification task, the response vari-
ables (classes) are categorical (yes/no or true/false), so the
logistic regression classifier fits best for such type of clas-
sification problem and is used as stress versus non-stress
classifier.

A. A TWO-SAMPLE T-TEST
Based on the analysis of the p-values, the magnitudes of
the coefficients in the logistic regression, and the effect of
each variable on the deviance, it can be concluded that res-
piratory rate (RspR) is the best predictor of stress among
these six variables. This result re-enforces the outcome of
Zhen et al. [45] that respiratory rate is the most specific
and sensitive parameter out of all the other physiological
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FIGURE 6. Boxplots of the data from two states (Baseline and Stress) for EDA, EMG, HR, RRI, RspR, and HRV, respectively.

parameters and could be used as a stand-alone parameter to
detect stress in the lab as well as in the natural environment.
Heart rate (HR) combined with respiratory rate can provide a
slight improvement in the evaluation or monitoring of stress
using wearable sensors. On the other hand, electrodermal
activity and electromyogram are poor predictors of stress

and may not add value to the wearable stress monitoring
system.

B. DEVIANCE ANALYSIS
Table 2 shows the results of deviance analysis of the
fit for single and multi-variant logistic regression models.

VOLUME 9, 2021 93575



T. Iqbal et al.: Sensitivity Analysis of Biophysiological Responses of Stress for Wearable Sensors

The values are sorted in decreasing deviance order. The low-
est value model is the best. It is evident that the deviance
decreases when the model includes RspR compared to those
without RspR. Interestingly, a single variable model, com-
prising only the RspR, fits better than the multivariable model
using EDA, EMG, HR and RRI together. Using any other
feature in combination with RspR achieves deviance of close
to 0, suggesting a perfect fit for these 14 individuals. Without
further samples, it is unclear which combination is optimal.

The box plot of six variables (EMG, EDA, RspR, RRI,
HRV and HR) shows that there was evidence of a difference
in mean values of RspR, RRI, HRV and HR between baseline
and stress states. On the other hand, there was a little differ-
ence in mean EMG and EDA for stress and baseline states
(see Figure 6), which is also evident by the results of the t-test
(see Table 1).

From the above-mentioned results, it can be concluded
that the data of EDA and EMG cannot be separated eas-
ily, which reinforce our p-value (i.e., the p-value is greater
than 0.05) and deviance analysis (Table 2) results. The data
of respiratory rate can easily be separated using any logistic
fitting curve and thus, qualifies as a most distinctive feature
to distinguish baseline state from stress state.

TABLE 2. Logistic regression model fitting (largest to smallest).

C. CLASSIFICATION METHODOLOGY
The result of the logistic regression classification model is
shown in Table 3a and Table 3b. The table shows the test-train
split for classification, classification accuracy, sensitivity,
specificity, Receiver operating characteristic Area Under the
Curve (ROC AUC) score, 95% confidence interval of sensi-
tivity and specificity along with likelihood ratios of the devel-
oped model. Since the number of subjects in the dataset is
very small (n= 14), therefore leave-one-out-cross-validation
is also performed to obtain a more robust estimate of the
model performance. From the tables, we can see that among
the analysed physiological parameters, respiration rate and
heart rate give better accuracy than RR interval, skin conduc-
tance, muscle activation and heart rate variation. The combi-
nation of respiratory rate, heart rate and heart rate variability
gives us almost the same accuracy as of combination of all the
six parameters. So, we can conclude that the combination of
respiratory rate, heart rate and heart rate variability, which can
be calculated using a single PPG sensor, is the best predictor
of stress.

TABLE 3. (a). Logistic regression classifier results (using 14-fold/LOOC
validation): Accuracy, Sensitivity, Specificity and Confidence Intervals.
(b). Logistic regression classifier results (using 14-fold/LOOC validation):
Likelihood ratio, Variance, Standard Deviance and ROC AUC score.

D. GENERAL DISCUSSION
While these classification results indicate the potential of the
logistic regression (machine learning) technique to predict
stress using the above features, there is still a question of gen-
eralizability due to the very small size of the dataset, despite
rigorous cross-validation. Therefore, these results need to be
validated using a larger dataset. The main conclusion from all
three analysis results is that RspR is the best singular feature
for detecting stress (from table 1) while the combination of
RspR and HR (RRI) are key multi-features of stress, with
HRV emerging as the next best.

IV. CONCLUSION
Several human biophysiological variables have been explored
to evaluate and monitor both physical and mental stress levels
in recent literature. Many of these variables have been inde-
pendently used in wearable sensor-based devices. This paper
is particularly focused on a comparative analysis of these
variables in terms of sensitivity and prediction specificity
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for stress monitoring. The comparative analysis has been
performed by applying a t-test to validate the hypothesis
that the physiological data for each variable for the stress
and non-stress (baseline) states is statistically differentiable,
and logistic regression was applied to identify the strongest
predictor of stress.

A logistic regression-based classifier was also trained and
validated during this study to determine the classification
accuracy of the model. The results of two types of statistical
analysis and classification model suggest that respiratory rate
is the strongest (stand-alone) predictor of stress compared
to other commonly used physiological variables that include
heart rate, RR interval, heart rate variability in the ECG/PPG,
skin conductance (electrodermal activity) and muscle acti-
vation (electromyogram). Heart rate (RRI) emerged as the
second-best predictor of stress. The prediction model, con-
sisting of the combination of respiratory rate, heart rate and
heart rate variation, derived from a single sensor, gives accu-
rate classification results as a combination of EDA, EMG,
RspR, HR (RRI), and HRV. The latter is a more complex
sensory system, prone to motion artefacts.

It is important to note that all efforts were focused to
provide a fair comparison by using data from the same device
and participants. However, there may be other excitation
sources (of similar responses) that these experiments failed to
capture. Therefore, including context to the data, for example,
physical activity, will be key to effective monitoring of stress
on a daily basis.
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