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ABSTRACT This paper proposes a novel dynamic latent structure with time-varying parameters for virtual
sensing of industrial process with irregular missing data. The proposed latent structure is based on the linear
dynamic system (LDS) model. In order to capture the time-varying process characteristics, a Karman filter
based parameter updating method is developed and a virtual sensor is constructed to predict hard-to-measure
quality variables. The latent variable structure of the improved model enables the virtual sensor to capture the
variable cross-correlation and autocorrelation in the missing data by considering both spatial and temporal
information, so that the information in the missing data can be learned from those not missing in the samples
as well as the Markov process in the temporal stream. Incorporation of both spatial and temporal information
renders more flexibility, resulting in a virtual sensor with higher prediction accuracy even with irregular
missing data. The better performance of the proposed method is verified by two industrial applications with
different ratios of irregular missing data.

INDEX TERMS Data-driven process monitoring, virtual sensors, irregularly missing data, linear dynamic
systems (LDS), linear time-varying parameters, Kalman filtering, EM algorithm.

I. INTRODUCTION
With the development of distributed control and proliferation
networks in modern industries, a large amount of data is
collected and stored, making data-driven modeling, moni-
toring and control an attractive research direction [1]–[3].
Inmany industrial processes, quality variables are usually key
indicators that intuitively reflect the quality and efficiency of
industrial production. However, in some cases, quality vari-
ables are difficult to measure online due to high cost or hostile
environment. In order to overcome this difficulty, data-driven
virtual sensors have been widely used as a popular alternative
to estimate hard-to-measure key quality variables from easy-
to-measure process variables [4]–[6]. Such virtual sensors are
often based on methods like principal components regres-
sion [7], partial least squares [8], artificial neural network [9],
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or more recently, deep learning techniques [10]. As these
methods are data driven, the quality of data becomes a critical
problem, which may subject to noise, outliers or missing
data etc. [11], [12].

Among the data quality issues, handling of missing data
is perhaps the most important. Plenty of methods have
been proposed to deal with this issue, from missing data
removal to imputation using regression or probabilistic
methods [13]–[15]. Whilst data removal may cause loss
of meaningful information, data imputation becomes very
important, especially for tasks like online learning or moni-
toring. For instance,Masuda et al. [16] proposed a fault detec-
tion method with a pre-designed virtual sensing model to
predict the missing values. Deng et al. [17] proposed a miss-
ing data imputation method based on the space-time near-
est neighbor value to ensure the performance of subsequent
data processing and available data entries. Alternatively,
Luo et al. [18] adopted least squares regression to train the
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required data features from the existing observations in the
original data matrix, so as to achieve an accurate prediction
for missing serve-quality data. Lin et al. [19] reconstructed
missing data by introducing deep learning framework to deal
with random and large-scale missing problem. The above
mentioned work showed mixed success, as inappropriate
imputation brings additional information and may deteriorate
the performance of modeling and monitoring. In addition,
these deterministic methods do not perform well when faced
with uncertainty and disturbances, which is common in indus-
trial processes.

Compared to deterministic methods, probabilistic meth-
ods have attracted significant attentions in dealing with
missing data problem [20], [21]. One popular probabilis-
tic method to deal with missing data is the EM algorithm,
which replaces the missing values by the posterior expec-
tation given the existing observations [22], [23]. Another
effective method is based on probabilistic latent variable
model, by approximating the real likelihood using incomplete
likelihood, the data latent feature can reflect the relation-
ship among variables in the missing data set. For example,
Zhou et al. [24] constructed a multi-rate probabilistic prin-
cipal component regression model by integrating the cross
correlation between multi-rate variable, resulting in the capa-
ble of quality-prediction with the non-randomlymissing data.
Similarly, Ge & Zhou [25], [26] proposed a semi-supervised
probability latent variable regression model to deal with
insufficient quality labels. Zheng et al. [27] proposed a
semi-supervised probabilistic partial least squares regression
model for virtual sensing to accommodate for missing quality
data. Despite the research progress, most of aforementioned
methods are built under the assumption that the data samples
are i.i.d. Such assumption, however, is not valid in many
industrial processes exhibiting dynamic characteristics. For
dynamic processes, it is necessary to consider autocorrelation
among data samples. A popular dynamic model structure
is the Linear Dynamic Systems (LDS) model [28]–[30].
The LDS can be modified to accommodate missing
values as well as multi-sampling rate data using Kalman
filtering [31], [32]. In addition, Cong et al. [33] proposed
a dynamic multi-sampling rate linear Gaussian state space
model to handle data samples with three sampling rates,
whose parameters are estimated using the EM algorithm.
Also, Ref. [34] adopted a similar idea to effectively improve
the accuracy of virtual sensor when there is missing data in
the output observations.

The problem of the LDS methods in handling missing
data is that they require prior knowledge about data
missing patterns. However, since the time and frequency of
missing data cannot be predicted, i.e., the missing pattern can
be completely at random, the LDS based methods may not be
useful in practice. In addition, most of the work in literature
assumes the parameters of LDS model are time-invariant
when faced with missing data, which may not be practical
in real applications. In order to overcome these difficulties,
this paper develops a virtual sensor for time-varying dynamic

system based on the LDSmodel, which can adapt to data with
unknownmissing patterns. The latent variable structure of the
improved LDSmodel enables the virtual sensor to capture the
information in the missing data by considering both spatial
and temporal information. That is to say, the information in
the missing data can be learned from those not missing in the
samples as well as theMarkov process in the temporal stream.
Considering of both spatial and temporal information renders
more flexibility to the developed virtual sensor, so that it can
easily cope with missing data.

The rest of this article is arranged as follows. Preliminaries
are given in Section 2 where the missing data characteristics
and LDS are briefly introduced. In Section 3, the proposed
model will be mainly discussed. The performance of relevant
methods is validated through two cases in Section 4. Finally,
some conclusions are made in Section 5.

II. PRELIMINARIES
In this section, the characteristics of the irregular missing data
are introduced in subsection A, and a brief review of linear
dynamic systems is then given in subsection B.

A. THE PATTERNS AND CHARACTERISTICS OF MISSING
DATA
Missing values usually occur in the data which is caused by
the abnormalities in measuring equipment, data transmission,
and storage. Among them, the irregular missing data in the
form of Fig.1 is the most common missing type in actual
industry. The main characteristics can be summarized as
follows.

FIGURE 1. The schematic of irregular data missing patterns (Different
colored squares represent variables with different sampling rates where
the white squares represent missing values).

1) Irregular Missing – Random missing value can be
found in almost every single variable (row) and sam-
ple (column), which makes it difficult to describe the
behavior of the process using traditional methods.

2) Data Objective Existence – The missing data caused
by collection errors truly exists, which means
the variable-wise and sample-wise relationship has
not actually been interrupted by the data missing
problem.

3) Information Imbalance – As important indications for
process safety, most quality variables can only be

77018 VOLUME 9, 2021



Z. Ying et al.: Dynamic Latent Structure With Time-Varying Parameters for Virtual Sensing of Industrial Process

obtained through laboratory analysis and complex
calculation, which increase the level of informa-
tion imbalance between process variables and quality
variables.

According to the characteristics of irregular missing data,
the maximum possible data inherent characteristics should
be extracted via the existing measurements while reducing
information loss during data modeling. For convenience,
the data missing situation can be expressed by a state indi-
cator $r,c which can indicate the blank in row r , column c
by simply setting the corresponding element $r,c to 0,
otherwise 1.

B. LINEAR DYNAMIC SYSTEM (LDS)
LDS is a typical probabilistic dynamic model, which can
deal with the dynamic and uncertain characteristics of pro-
cess simultaneously [35]. The model structure of LDS is
shown in Eq 1. The feature latent variables zt are used
to reflect the main information of the measurement data,
which are also linked by a first-order Markov chain to char-
acterize the process dynamics. For virtual sensing model-
ing, the measurement sample gt can contain both process
variables (input variables xt ) and quality variables (output
variables yt ) to obtain the relationship between the both.More
about virtual sensing applications with LDS can be found
in [30].

zt = 3zt−1 + 0

gt = Wzt +� (1)

Furthermore, the main mathematical symbols appearing in
this paper are defined as follows.

zt represent the i-dimensional latent feature vector.
gt represent the sample vector <((N+M)×1).
G represents the original data matrix <((N+M)×T ),

where the row represents the variable dimension,
the column represents the sample dimension.

N ,M represent the number of process variables and qual-
ity variables respectively.

µπ ,6π represent the initial probability distribution of the
latent variable, zt=1 ∼ N (µπ , 6π ).

µt ,Vt represent the forward estimate of the latent variable
probability distribution, zt ∼ N (µt ,Vt).

µ̂t ,V̂t represent the backward estimate of the
latent variable probability distribution,
zt ∼ N

(
µ̂t , V̂t

)
.

3 represents the state transition matrix <(i×i), which
reflects the dynamic transfer relationship between
the latent variables.

W represents the observation matrix <((M+N )×i),
reflecting the linear conversion relationship
between measurement and feature.

0,� represent the model measurement noise.
Q,R represent the covariance matrix of the noise term,

denote as 0 ∼ N (0,Q) and � ∼ N (0,R).

∗,$r,c represent time-varying tag and missing status indi-
cator respectively.

III. THE PROPOSED MODEL CONSTRUCTION
In this section, the construction process of the proposed
model is introduced in detail, which is followed by the
model parameter solution and some further discussions.
Finally, a virtual sensing technique based on the model is
developed.

A. LINEAR DYNAMIC TIME-VARYING PARAMETER
STRUCTURE (LDVPS)
During the LDS modeling, all variables and their cross
correlation can be obtained throughout the process, which
is not available within incomplete data set. The invariant
parameter structure of LDS seems impossible to transfer
remaining variable information in different sampling time to
the common latent variable simultaneously. To address this
problem, the linear transformation relationship between each
measurement variable and the common latent variable should
be established separately, so that the irregular missing data
and its remaining variable information are fully reflected in
a common feature space. Furthermore, in such a structure,
a first-order Markov chain is designed between the adjacent
latent variables to describe the process dynamic. The pro-
posed model can be expressed as:

zt = 3zt−1 + 0

x(n)t = αnzt + εn

y(m)t = βmzt + ξm (2)

where n = 1, 2, . . . ,N and m = 1, 2, . . . ,M enumerate
all measured entries that may be involved at each sampling
moment. αn ∈ <(1×i) and βm ∈ <(1×i) denote the loadings of
process variables x(n)t and quality variables y(m)t respectively.
εn ∼ N (0, δn) and ξm ∼ N (0, σm) stand for measurement
noise of single variable where δn and σm are the variance.
When dealing with irregular missing data, the measured
variables x(n)t or y(m)t may be null in each sampling sam-
ple. Therefore, the parameter {αn, δn, βm, σm} and noise item
corresponding to the missing entries can be removed from
the structure to establish the relationship between remaining
variables and the common latent variable. For distinguish,
the incomplete sample can be denoted as g∗t , and the remain-
ing parameters in the sampling time t are incorporated as
the observation matrix W ∗t and the interference covariance
matrix R∗t , respectively. Actually, the missing status of vari-
able change with sampling time, which means that the set-
tings of W ∗t and R∗t are related to time. With the assumption
that all variables obey Gauss, the probability evolution for-
mula of the model can be abbreviated as:{

p (zt |zt−1 ) = N (3zt−1,Q)
p
(
g∗t |zt

)
= N

(
W ∗t zt ,R

∗
t
) (3)
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The joint logarithmic likelihood function of the proposed
model can be expressed as:

ln p
(
g∗1g
∗

2 · · · g
∗
t , z1z2 · · · zt

)
= ln

{
p (z1)

T∏
t=2

p
(
g∗t
∣∣ zt) p ( zt | zt−1) p (zt−1)}

= ln p (z1)+
T∑
t=2

ln p (zt |zt−1)+
T∑
t=1

ln p
(
g∗t |zt

)
(4)

Contrast to complete likelihood term
T∑
t=1

ln p (gt |zt),

T∑
t=1

ln p
(
g∗t |zt

)
needs to ensure consistency of information in

both the common feature space and the sample space with
different measurement conditions simultaneously, which
requires the learning of model parameters can reflect the con-
straint relationship among variables even if some values are
missing. In other words, there is common information among
different measurement samples, i.e., the cross correlation of
remaining variables, which can be fully described by the
latent feature variable after obtaining the optimal parameter
solution. In this paper, the EM algorithm is utilized to learn
the proposed model parameters.

B. MODEL PARAMETER SOLUTION USING EM
The EM algorithm is an efficient optimization strategy for
latent variable estimation and parameter learning, which
operates E-step and M-step iteratively [33].
E-Step: Deriving the expectation of the log-likelihood

function with respect to the latent variable. In the gen-
eral LDS modeling process, the posterior distribution of
latent variable p

(
zt
∣∣g∗t=1:T ) = N (µt ,Vt) is usually esti-

mated by the Kalman filtering algorithm combined with
current observations and parameters. As for missing data,
the proposed model tries to modify the traditional Kalman
forward filtering algorithm to ensure that the filtering
parameters are synchronized with the time-varying model
parameters.

µt = 3µt−1 + Kt
(
g∗t −W

∗
t 3µt−1

)
(5)

Vt =
(
I − KtW ∗t

) (
3Vt−13T

+ Q
)

(6)

Kt =
(
3Vt−13T

+ Q
) (
W ∗t

)T
×

[
W ∗t

(
3Vt−13T

+ Q
) (
W ∗t

)T
+ R∗t

]−1
(7)

Especially, the initial distribution is calculated as:

µ1 = µπ + K1
(
g∗1 −W

∗

1µπ
)

V1 = 6π − K1W ∗16π

K1 = 6π
(
W ∗1

)T [W ∗16π (W ∗1 )T + R∗1]−1 (8)

It should be mentioned that the distribution of latent
variables need to be optimized by the following Kalman

backward smoothing algorithm which already proves itself
in missing data treatment [35].

µ̂T = µT ; V̂T = VT (9)

µ̂t = µt + Vt3T
(
3Vt3T

+ Q
)−1 (

µ̂t+1 −3µt
)

(10)

V̂t = Vt + Vt3T
(
3Vt3T

+ Q
)−1

×

(
V̂t+1 −

(
3Vt3T

+ Q
))

×

(
Vt3T

(
3Vt3T

+ Q
)−1)T

(11)

in which µ̂t and V̂t are the ultimate posterior distributions of
latent variables, and now the irregularly missing data is suc-
cessfully mapped into a latent sequence space with the same
dimension. Consequently, the expectation representation of
latent variables can be derived as.

E
〈
zt |g∗1:T

〉
= µ̂t (12)

E
〈
ztzTt |g

∗

1:T

〉
= V̂t + µ̂t µ̂Tt (13)

E
〈
ztzTt−1|g

∗

1:T

〉
= V̂t

(
3Vt−13T

+ Q
)−1

3Vt−1

+ µ̂t µ̂
T
t−1 (14)

Finally, the expectation of the logarithmic likelihood func-
tion with respect to the latent variable is expressed as.

Ezt |g∗t
〈
ln p

(
g∗1g
∗

2 · · · g
∗
t , z1z2 · · · zt

)〉
= Ez1|g∗1 〈ln p (z1)〉 +

T∑
t=2

Ezt |g∗t 〈ln p (zt |zt−1)〉

+

T∑
t=1

Ezt |g∗t
〈
ln p

(
g∗t |zt

)〉
(15)

M-Step: Setting the partial derivative of the likelihood
expectation with respect to each parameter to zero to get
updated value of new parameters. To this end, substitute
Eq 3 into Eq 15, and then expand.

∂Ez1|g∗1 〈ln p (z1)〉
∣∣
µnewπ ,6new

π

= −
1
2
ln |6π |

−
1
2
tr
(
E
〈
z1zT1

〉
6−1π

)
+E

〈
zT1
〉
6−1π µπ−µ

T
π6
−1
π µπ

(16)

∂Ezt |g∗t 〈ln p (zt |zt−1)〉
∣∣
3new,Qnew

= −
T − 1
2

ln |Q|

−
1
2

T∑
t=2

{
tr
(
E
〈
ztzTt

〉
Q−1

)
−2tr

(
E
〈
ztzTt−1

〉
3TQ−1

)
+ tr

(
E
〈
zt−1zTt−1

〉
3TQ−13

) }
(17)

77020 VOLUME 9, 2021



Z. Ying et al.: Dynamic Latent Structure With Time-Varying Parameters for Virtual Sensing of Industrial Process

∂Ezt |g∗t
〈
ln p

(
g∗t |zt

)〉 ∣∣∣αnewn=1:N ,β
new
m=1:M ,δ

new
n=1:N ,σ

new
m=1:M

=−
T
2
ln
∣∣R∗t ∣∣

−
1
2

T∑
t=1


tr
(
g∗t
(
g∗t
)T (R∗t )−1)

− 2tr
(
g∗t E 〈zt 〉

(
W ∗t

)T (R∗t )−1)
+ tr

(
E
〈
ztzTt

〉 (
W ∗t

)T (R∗t )−1W ∗t )
 (18)

Set the Eq 16 - Eq 18 to 0 to obtain the model parameter
update expression.

unewπ = E 〈z1〉

6new
π = E

〈
z1zT1

〉
− E 〈z1〉E

〈
zT1
〉

(19)

3new
=

(
T∑
t=2

E
〈
ztzTt−1

〉)( T∑
t=2

E
〈
zt−1zTt−1

〉)−1

Qnew =
1

T − 1

T∑
t=2


E
〈
ztzTt

〉
−3newE

〈
zt−1zTt

〉
−E

〈
ztzTt−1

〉
(3new)T

+3newE
〈
zt−1zTt−1

〉
(3new)T

 (20)

αnewn =

(
T∑
t=1

$n,t · x
(n)
t · E

〈
zTt
〉)

×

(
T∑
t=1

$n,t · E
〈
ztzTt

〉)−1

βnewm =

(
T∑
t=1

$(N+m),t · y
(m)
t · E

〈
zTt
〉)

×

(
T∑
t=1

$(N+m),t · E
〈
ztzTt

〉)−1
(21)

δ
new

n =
1

T∑
t=1

$n,t

×

T∑
t=1

$n,t


x(n)t

2
− αnewn · E 〈zt 〉 · x

(n)
t

−x(n)t · E
〈
zTt
〉
·
(
αnewn

)T
+αnewn · E

〈
ztzt T

〉
·
(
αnewn

)T


σ
new

m =
1

T∑
t=1

$(N+m),t

×

T∑
t=1

$(N+m),t


y(m)t

2
− βnewm · E 〈zt 〉 · y

(m)
t

−y(m)t · E
〈
zTt
〉
·
(
βnewm

)T
+βnewm · E

〈
ztzt T

〉
·
(
βnewm

)T

(22)

It is worth noting that although αn, βm, δn, σm are cal-
culated separately, the learning of each model parameter
is influenced by other variables. Taking αn as an example,
the terms E

〈
zTt
〉
and E

〈
ztzTt

〉
correspond to the posterior

expectations of the latent variables in E step. As mentioned in
E step, the common latent variable is shared by non-missing
variables at each sampling moment, which means that the

relationship among the remaining variables can be retained
and accumulated over the whole sampling time. Therefore,
during repeated iterations of E step andM step, i.e., the model
parameters learning process, the information of missing data
can be extracted from the existing variable to the greatest
extent.

C. SOME DISCUSSION OF THE PROPOSED MODEL
In this sub-section, several characteristics of the proposed
model are further discussed, followed by the graphical expla-
nation of latent information extraction within missing data
from two aspects of spatial and temporal.
Remark 1: When all matrix elements of $r,c are set

to ‘‘1’’, the proposed model can be simplified as a traditional
dynamic model built on the complete data set. While the
quality-related elements in $r,c are partially set to ‘‘0’’,
it is equivalent to a semi-supervised method. If all ele-
ments in $r,c are orderly set to ‘‘0’’, it can be served as a
multi-sampling rate model. As a consequence of the above,
it can be seen that the proposed model has strong adapt
abilities to different patterns of missing data.
Remark 2: On the basis of the Markov chain in the pro-

posed model, the dynamic trend of process can be extracted
to help predict the latent information of missing data set even
though measurements are seriously uncollected.
Remark 3: From the existing variables and dynamic pre-

diction, the latent information of the original data matrix can
be restored to the greatest extent in feature space.

To better explain the mechanism of the remark 3, the visu-
alization of E step of the proposed model is given in Fig.2.
By using time-varying Kalman filtering algorithm, the exist-
ing collections will be transmitted into corresponding latent
feature information in a posteriori form, which can be further
combined with the dynamic prediction information of latent
variables to achieve the maximum utilization of the incom-
plete data. As shown in Fig.2(a), each sample is mapped
into the low-dimensional space to assist the estimation of
latent variable distribution N

(
zt
∣∣g∗t , W ∗t ,R∗t ). Simultane-

ously, in the low dimensional space, assuming that the distri-
bution of latent variable at the previous time t − 1 is known,
that is:

zt−1| g∗1, g
∗

2, · · · , g
∗

t−1

= E 〈zt−1〉︸ ︷︷ ︸
µt−1

+1zt−1;1zt−1 ∼ N (0,Vt−1) (23)

According to the model definition in Eq 2, the following
results can be obtained:

zt | g∗1, g
∗

2, · · · , g
∗

t−1︸ ︷︷ ︸
predictiont

=3zt−1 + 0 (24)

Substitute Eq 23 into Eq 24:

zt | g∗1, g
∗

2, · · · , g
∗

t−1︸ ︷︷ ︸
predictiont

=3 [µt−1 +1zt−1]+ 0

= 3µt−1 +31zt−1 + 0 (25)
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FIGURE 2. Visualization of the E step of the proposed model. In Fig.2(a), the high dimensional space ‘‘x-y-z’’
represents observation space where the blue spheres denote the distribution diagrams of the complete
measurement samples and the planetary orbit diagrams denote the measured samples with missing
variables. The low dimensional space ‘‘x-y’’ is the latent feature space, in which the red circles denote the
projection from the measured samples, as shown in Fig.2(b). The green circles denote the dynamic
prediction of the latent variables and the green arrow lines represent the Markov chain which reflects the
process dynamic trend.

On the basis of the above equations, the predicted distri-
bution of dynamic latent variable at sampling time t can be
derived:

E
〈
zt | g∗1, g

∗

2, · · · , g
∗

t−1
〉

= E 〈3µt−1〉 + E 〈31zt−1〉 + E 〈0〉

= 3µt−1

Cov
〈
zt | g∗1, g

∗

2, · · · , g
∗

t−1
〉

= E

〈 [(
zt | g∗1, g

∗

2, · · · , g
∗

t−1

)
−3µt−1

]
×
[(
zt | g∗1, g

∗

2, · · · , g
∗

t−1

)
−3µt−1

]T 〉
= E

〈
[31zt−1 + 0] · [31zt−1 + 0]T

〉
= 3Vt−13T

+ Q (26)

Consequently, the latent feature information at sampling
time t can be described using two different aspects, includ-
ing the projection from observation space in Fig.2(a) and
the prediction from latent sequence space in Fig.2(b). Then,
the fusion results of the two types of information can be
regarded as a beneficial complement for latent information
construction, as shown in the dotted box in Fig.2(b). The
final distribution expressions of the latent variable after the
combination can be expressed in Eq 5 - Eq 8, and the specific
derivation is shown in the Appendix.

D. VIRTUAL SENSOR APPLICATIONS
As mentioned in the previous sub-sections, the inherent
characteristics of the proposed model make it an efficient
approach for missing data treatment, which can be naturally
employed for virtual sensing in irregular data missing situa-
tions. The detailed virtual sensor process is depicted in Fig.3.
When a query sample Xqueryk=1,2,... enters, its latent variable can

be calculated as follows:

µk =
_

3µk−1 + Kk

(
Xqueryk −

_

W
∗

α

_

3µk−1

)
here :

_

W
∗

α =

[
_
α
T
1 , · · · ,

_
α
T
n , · · · ,

_
α
T
N

]T
(27)

Vk =
(
I − Kk

_

W
∗

α

)(
_
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+

_
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)
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+
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×
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∗
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(29)

in which
{
_

3,
_

Q, _αn=1:N ,
_

βm=1:M ,
_

δn=1:N

}
represents the

update result in the ultimate M step. Then, the prediction can
be obtained.

Y prek =

[
_

β
T

1 , · · · ,
_

β
T

m, · · · ,
_

β
T

M

]T
× uk (30)

IV. CASE STUDY
In this section, the proposed model LDVPS is utilized for
quality prediction in two industrial datamissing cases, includ-
ing a Debutanizer column and Sulfur Recovery Unit. The
superiority of LDVPS in virtual sensing applications is ver-
ified and two missing-data treatment models are also intro-
duced for comparison, namely semi-supervised probabilistic
latent variable regression (SSPLVR) and dynamic probabilis-
tic latent variable model (LDVPS) [30].
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FIGURE 3. Flow chart for virtual sensing modeling.

A. DEBUTANIZER COLUMN
The debutanizer column is an important part of the desul-
furization and naphtha splitter plant that is widely used to
evaluate the process monitoring performance among different
virtual sensing techniques [25]. The main purpose of this
process is to remove butane from the product and effective
monitoring of butane content is fully essential. For the pur-
pose of virtual sensors modeling, 7 process variables have
been collected from the process shown in Fig.4. These pro-
cess variables are closely related to butane content and listed
in Table 1. 1000 samples in the process have been collected
as the training data set, and the missing mechanism of dataset
is set using state indicator. Meanwhile, another 1000 samples
are collected as test data under the same working condition.
As a feasible reference scheme, it is assumed that the test sam-
ples are complete, which can compare the models’ tolerance
for training data missing. In addition, the cumulative variance
contribution rate has been employed to select the dimension
of latent variables before implementing virtual sensors appli-
cations of SSPLVR, DPLVM and LDVPS, as shown in Fig.5.

TABLE 1. The variables of the virtual sensor in the debutanizer column.

In the aspect of model performance evaluation, mean
square error (MSE) and goodness of fit (R2) are usually
adopted as regression evaluation indexes. Table 2 shows
the index value trends of the three virtual sensors under
different variable missing rates where the smaller MSE or
the larger the R2 denote the higher prediction accuracy of
virtual-sensor model. To guarantee reliability, every index
values in Table 2 are the average results of 100 experiments,
and the missing positions of variables in each experiment
are randomly reset. It can be seen that the prediction

FIGURE 4. Flow chart for virtual sensor modeling.

FIGURE 5. The cumulative variance contribution plot.

TABLE 2. The index values of three virtual sensor methods under
different variable missing rate.

performance of SSPLVR and DPLVMmodels decreases with
the missing rate rising from 1% to 15%, while LDVPS can
maintain a good prediction performance steadily. This means
that the LDVPSmodel is less affected bymissing data and can
provide more robust virtual-sensor modeling technology for
missing data treatment. Taking 5% and 15% missing rate as
examples, the predictive effect of the three models on butane
content is shown in Fig.6 and Fig.7. In these two figures, both
LDVPS and DPLVM models have better prediction results
than SSPLVR models due to their consideration of process

VOLUME 9, 2021 77023



Z. Ying et al.: Dynamic Latent Structure With Time-Varying Parameters for Virtual Sensing of Industrial Process

FIGURE 6. The prediction effect of three models on butane content when
5% variable missing rate.

FIGURE 7. The prediction effect of three models on butane content when
15% variable missing rate.

dynamics. However, with the increase ofmissing rate, the per-
formance gap between DPLVM and SSPLVR model gradu-
ally narrowed, and the advantages of LDVPS model became
more and more prominent. There are two main reasons for
this phenomenon. Firstly, the error caused by the removal of
incomplete samples by DPLVM is acceptable when dealing
with small-scale irregularmissing data, as shown in Fig.6. But
when the scale of irregular missing data increases, DPLVM
will lose the entire sample even if the sample is missing only
one variable, which is much higher cost than dealing with
multi-sampling rate data or small-scale missing data. Worse
still, DPLVM will not be sufficient to accurately extract the
process dynamics along with the loss of mass data informa-
tion and the destruction of data structures. It can be clearly
seen from Fig.7 that the prediction curve of the DPLVM
model is seriously deviated after 600s. Secondly, the negative
effects of quality-related variables missing can be ‘‘immune’’
by SSPLVR semi-supervised modeling method, and the sam-
ples that missing process variables can be directly removed
without considering the auto-correlation between them. As a
result, although SSPLVR does not consider process dynamic,
its utilization rate of data is much higher than that of DPLVM,
and the predicted results are relatively stable.

On the contrary, LDVPS can establish a probabilistic
dynamic model that is consistent with the characteris-
tics of missing data without discarding any samples or
part of variables, which can more thoroughly extract the
cross-correlation between variables and the auto-correlation
between samples. From the experimental results, LDVPS
occupies an absolute advantage in the three models. More-
over, when themissing rate is as high as 50%, LDVPS can still
maintain a high prediction accuracy, which is a capability that
SSPLVR and DPLVMmodels do not have, as shown in Fig.8.

FIGURE 8. The prediction effect of LDVPS models on butane content
when the variable missing rate is as high as 50%.

B. SULFUR RECOVERY UNIT (SRU)
SRU is an important green cleaning device in the oil refining
process and is widely used in the treatment and recovery of
sulfur-containing waste gases [36]. The simplified schematic
diagram of SUR process is shown in Fig.9. Firstly, two waste
gases, MEA (rich in H2S) and SWS (rich in H2S and NH3),
are sent into the waste heat boiler for combustion, and the air
flow (oxygen content) is controlled by adjusting valve S1 to
ensure the appropriate stoichiometric ratio. Next, the com-
bustion products from the furnace are cooled by C1− C3
to produce liquid sulfur which is increased by a subsequent
catalytic reaction of R1− R3. The specific chemical reaction
equation of the process is shown in Eq 31. To monitor the
performance of sulfur conversion process and control the air
feed ratio, the tail gas analysis of residualH2S and SO2 gases
is required. However, hardware sensors are often corroded
by sulphur-containing gases and require regular cleaning and
maintenance. Therefore, virtual sensing techniques for SRU
processes need to be developed to achieve on-line prediction

FIGURE 9. The flowchart of the Sulfur Recovery Unit.
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FIGURE 10. The prediction effect of three virtual sensor methods when the variable missing rate is 15%,
(a.1-a.3) SO2 content prediction; (b.1-b.3) H2S content prediction.

of H2S) and SO2 gases. In this example, 5 process variables
are selected as the inputs of virtual sensor modeling, andH2S
and SO2 contents are output variables, as shown in Table 3.

3H2S +
1
2
O2 → SO2 + 2H2S + H2O

4NH3 + 3O2 → 2N2 + 6H2O

SO2 + 2H2S → S3 + 2H2O (31)

TABLE 3. The variables of the virtual sensor in the debutanizer column.

A total of 2000 sets of data samples in SRU process
have been collected, and then the state indicator is used to
label the variable missing cases. To further verify the virtual
sensor performance of the proposed model, MSE and R2

were employed again for the evaluation indexes of SSPLVR,
DPLVM and LDVPSmodels. Table 4 and Fig.10 respectively
show the prediction indexes and results of the three models
when the variable missing rate is 15%. Because the LDVPS
model has the highest utilization rate of data and can consider
the dynamic process, its prediction results are better than the
other two models. It is worth noting that the number of red
dots representing the predicted result in Fig.10 is alwaysmore
than the number of other colors. The main reason for this
phenomenon is that SSPLVR andDPLVMmodels remove the

TABLE 4. The prediction index values of three virtual sensor methods
when the variable missing rate is 15%.

test samples with missing variables, which makes it impossi-
ble to give the prediction results at the corresponding time.
In contrast, LDVPS can give the predicted value of the test
sample at each moment, and the predicted points are closer
to the diagonal (highest prediction accuracy). In summary,
the proposed model LDVPS is more suitable for handling
irregular missing data and has higher prediction accuracy
under the same situation.

V. CONCLUSION
In this paper, a novel linear dynamic time-varying parameters
structure for irregular missing data treatment is proposed
and applied to virtual sensing modeling. Unlike traditional
data deletion and filling methods, LDVPS can construct a
probabilistic dynamic model that meets the characteristics of
missing data without discarding any valuable data informa-
tion or introducing additional noise. By setting time-varying
parameters, the linear transformation relationship between
the common latent variable and the remaining variables is
established, so that the information of missing data can be
captured from those not missing in the samples. In addi-
tion, the process dynamics can be reflected by the Markov
chain between adjacent latent variables, which can provide
a reasonable supplement for latent information prediction.
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The EM algorithm is introduced to solve the model parame-
ters where the E step is improved by the time-varying Karman
filtering algorithm to estimate the information of latent vari-
ables of missing data set. Experiments show that the LDVPS
model is more suitable for missing data treatment, which can
maintain good stable prediction accuracy under large scale
irregular missing data.

APPENDIX
E-step: Improved Karman forward filtering inference

The accurate estimation of the latent variable distribution
is required.

p
(
zt | g∗1, g

∗

2, · · · , g
∗
t
)︸ ︷︷ ︸

updatet

=
p
(
g∗t
∣∣ zt , g∗1, g∗2, · · · , g∗t−1) · p ( zt | g∗1, g∗2, · · · , g∗t−1)

p
(
g∗1, g

∗

2, · · · , g
∗
t
)

×
p
(
g∗1, g

∗

2, · · · , g
∗

t−1

)
p
(
g∗1, g

∗

2, · · · , g
∗
t
) (32)

in which
p
(
g∗1,g

∗

2,··· ,g
∗

t−1

)
p(g∗1,g

∗

2,··· ,g
∗
t )

tends to 1 in EM iteration process.

p
(
zt | g∗1, g

∗

2, · · · , g
∗
t
)︸ ︷︷ ︸

updatet

= p
(
g∗t
∣∣ zt) · p ( zt | g∗1, g∗2, · · · , g∗t−1)︸ ︷︷ ︸

predictiont

(33)

where p
(
zt | g∗1, g

∗

2, · · · , g
∗

t−1
)︸ ︷︷ ︸

predictiont

represents the current latent

variable distribution prediction using all observations at the
previous moment, that is, latent dynamic prediction:
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Hence, we can get the probability distribution recursion
formula of latent variables with respect to time:

p
(
zt | g∗1, g

∗

2, · · · , g
∗
t
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updatat

= p
(
g∗t
∣∣ zt) · ∫ p ( zt | zt−1)

× p
(
zt−1| g∗1, g

∗

2, · · · , g
∗

t−1
)︸ ︷︷ ︸

updatet−1

dzt−1 (35)

equivalent to:

N ( zt |µt ,Vt)

= N
(
g∗t
∣∣B∗t zt ,R∗t )

×

∫
N ( zt |3zt−1,Q)N ( zt−1|µt−1,Vt−1) dzt−1 (36)

Finally, the Eq 5 - Eq7 are obtained via Eq 36.
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