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ABSTRACT Many research articles are published on regenerative medicine every year. However, only a
small proportion of these articles provide experimental methods on organ/tissue differentiation. Therefore,
we developed a database – ATTRACTIVE (An auTo-updating daTabase foR experimentAl protoCols in
regeneraTIVemEdicine) – that collects journal articles with differentiation methods in regenerative medicine
and updates itself automatically on a regular basis. Since the number of articles in regenerative medicine
was insufficient and unbalanced, which limited the performance of the supervised learning algorithms,
we proposed an algorithm that combines cosine similarity and linear discriminant functions to classify
articles based on their titles and abstracts more efficiently. The results show that our proposed methods
out-performed other machine learning algorithms such as k-nearest neighbors, support vector machine,
and long short-term memory methods. The classification accuracy reached 94.62%, even with a small and
unbalanced dataset. Lastly, we incorporated our classifier into the database for automatic updates. The
database is available at http://attractive.cgm.ntu.edu.tw/.
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I. INTRODUCTION
There are a considerable number of medical research articles
published every year. Many of these articles are collected and
stored in the National Center for Biotechnology Information
(NCBI) - PubMed Central (PMC) [1] database, which allows
researchers to access full-text articles for free. Researchers
can also find these articles via the Google Scholar search
engine. However, when it comes to searching for regenerative
medicine research articles that include differentiation meth-
ods for specific tissues/organs, both PMC andGoogle Scholar
give numerous results [2] (about 10,000∼200,000 results),
and most of these either do not relate to organ/tissue dif-
ferentiation topics directly or lack differentiation methods,
such as using the broad term ‘‘immunology’’. This forms
an obstacle for regenerative medicine researchers to access
a comprehensive set of published differentiation methods.

A targeted literature database would make it more con-
venient for researchers to search organ/tissue differentiation
methods. Such a database would need scheduled updates to
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make sure it included the newest published articles. However,
to update the database manually would require considerable
time and manpower. It is impractical to screen all the doc-
uments returned by Google Scholar and PMC, so human
curation limits the possibility of collecting data compre-
hensively. Therefore, an auto-updating database would be a
better way to solve this problem [3], [4]. The auto-updating
database would need to collect documents, read the content,
extract text features, and classify the text by itself on a reg-
ular basis. Although a crawler can collect articles from the
web with text-mining techniques that read and extract text
features, accurate classification of documents still remains
problematic.

Some previous research used cosine similarity algorithms
to cluster similar documents or text into the same cate-
gory [5]–[7]. Although these cosine similarity algorithms
showed good performance in clustering similar text, this
method could be improved by adding efficient learning
rules to train the classification model using deep learn-
ing algorithms [8]–[10], such as convolutional neural net-
works (CNN) or long-short term memory (LSTM). However,
deep learning algorithms require a great deal of labeled data
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FIGURE 1. The overview of ATTRACTIVE database.

to train the classification model [11]–[13], because they take
all the training patterns into consideration and modify the
hyperplanes when separating different classes progressively.

Support vector machine (SVM) is another popular machine
learning algorithm for text classification. Some previous
research applied SVM algorithms to train classification mod-
els [14]–[16]. SVM requires less data than deep learning to
reach a reasonable accuracy [17]. The reason for this is that
the SVM algorithm only takes the boundary points of dif-
ferent classes into consideration. It then tries to separate the
different classes by optimizing the distance of the hyperplane
between the boundary points [18].

Both SVM and deep learning algorithms are supervised
learning algorithms requiring a large amount of labeled
data for training, and labeling training data can be a
time-consuming process. Therefore, the purpose of this study
was to develop an algorithm that can label published articles
automatically by combining cosine similarity with linear dis-
criminant learning rules to train classification models, using
organ/tissue differentiation in regenerative medicine as a test
case. In the process, we built an online regenerative medicine
database containing differentiation protocols for different
organs/tissues – ATTRACTIVE (An auTo-updating daTabase
foR experimentAl protoCols in regeneraTIVe mEdicine).
The trained model was embedded in the system so that the
database can auto-update every six months. Fig. 1 shows
the overview of the system. The URL of ATTRACTIVE is
http://attractive.cgm.ntu.edu.tw/.

II. METHODS
Python 3.8.6 was used to develop our online database and
algorithm. The source code of the proposed algorithm is
available at: https://github.com/cil6758/ATTRACTIVE. The
training algorithm included four parts – dataset collection,
text preprocessing, feature extraction, and building learn-
ing models with a linear discriminant function (LDF) [19]
(Fig. 2). Two organ/tissue classification models, one using
titles and the other using abstracts, were built for comparison.

A. DATA COLLECTION
Since the amount of curated regenerative medicine articles
in LifeMap Discovery database (https://discovery.lifemapsc.

FIGURE 2. The workflow of training a classifier.

com/) [20] was limited andwas not enough formachine learn-
ing algorithms to converge. In addition, some articles did not
include organ/tissue keywords in the titles or abstracts, train-
ing the classifier to identify the indirect and related keywords
is vital for correct classification. Therefore, we expanded the
training set to enhance the terminology identification ability
of the trained classifiers by the following method. Articles
in the PMC database were collected to train organ/tissue
classification models by E-utilities [21], the crawler provided
by NCBI. The total article number in the training dataset was
17,239, as shown in Table 1.

The keywords used to search the article were ‘‘[organ/tissue
keyword]’’+ ‘‘stem cell’’. For instance, the terms, ‘‘kidney’’
+ ‘‘stem cell’’, were used to search for articles related to
kidney in the PMC database. In addition, the ‘‘[organ/tissue
keyword]’’ also took formal terminologies into consideration
for searching articles. We collected these terminologies from
LifeMap Discovery [20]. All articles whose title mentioned
any search keywordwere downloaded and labeled as the same
category under ‘‘[organ/tissue keyword]’’.

For articles in which organ/tissue keywords were not in the
title, we trained our classification models to identify all the
related keywords. For example, an article related to pancre-
atic stem cells might not have the keyword ‘‘pancreatic’’ in
the title, but use ‘‘insulin-producing cells’’. The more titles
and abstracts we collected, the more words our classifica-
tion models could learn. By learning highly related key-
words, the model could associate ‘‘pancreatic’’, ‘‘insulin’’,
and ‘‘islet’’ with ‘‘pancreas’’. The collected training dataset
is shown in Table 1.
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TABLE 1. Training dataset.

B. TEXT PREPROCESSING
After papers were downloaded, Beautiful Soup 4 (version
4.8.2) [22] was used to extract the information from the
downloaded articles. The extracted text was preprocessed by
the following procedures: case folding, tokenizing, filtering,
and stemming.

The case folding step transformed all uppercase letters to
lowercase letters. In the tokenizing step, sentences were split
into words, and punctuation and numerals were removed.
In the filtering step, each word was mapped to the NLTK
dictionary [23] and stop words (e.g., ‘‘the’’, ‘‘is’’, ‘‘and’’,
etc.) were removed. In the stemming step, we stemmed the
extracted root of each word, because a word may have differ-
ent spellings in different parts of speech (noun, verb, adjec-
tive, adverb, etc.). Stemming text words can avoid regarding
variants of a word in different parts of speech as completely
different features.

C. FEATURE EXTRACTION
After the above steps of text preprocessing, each remaining
word was considered a feature. We used a category-based
term frequency – inverse document frequency (CTF-IDF)
method to calculate the feature values.

1) TERM FREQUENCY (TF)
Equation (1) is the formula used to calculate the term fre-
quency of a word in a document:

TF(t) =
ft,d
Td

. (1)

where TF(t) is the frequency of term t in a document d . ft,d
is the occurrence time of term t in document d . Td is the total
word number of document d .

2) TERM FREQUENCY –inverse DOCUMENT FREQUENCY
(TF-IDF)
Equation (2) is the formula for inverse document frequency:

IDF(t) = log (
Dtotal
Dterm

) (2)

where IDF(t) is the inverse document frequency value of term
t . Dtotal is the total document number in the dataset. Dterm is
the number of documents where term t appears.

In (2), the IDF value becomes zero when Dterm equals
Dtotal , which means term t appears in all the documents.
This indicates that term t cannot be a feature used to distin-
guish documents efficiently. Therefore, the IDF weight value
becomes zero.

Next, we can calculate the TF-IDF value for each term by
multiplying TF by IDF value as shown in (3):

TF-IDF(t) = TF(t)× IDF(t) (3)

If a term appears frequently in a single document but rarely
appears in other documents, it has high TF and IDF values,
indicating that the term is a good specific feature of the article.

3) CATEGORY-BASED TF-IDF (CTF-IDF)
In order to identify the representative words for each
organ/tissue category, we improved the TF-IDF value by
calculating the category-based TF-IDF (CTF-IDF), as shown
in (4):

CTF-IDF(t) = TF(t)× IDF(t)× log (
Ctotal
Cterm

) (4)

where CTF-IDF(t) is the category-based TF-IDF value of
term t . TF(t) is the term frequency of term t . IDF(t) is the
inverse document frequency value of term t . Ctotal is the total
number of categories. Cterm is the number of categories in
which term t appears.
In (4), the log value becomes zero when Cterm equals

Ctotal , which means term t appears in all the categories. This
also indicates that term t cannot be used to distinguish the
documents in different categories efficiently.

4) BUILDING THE ORGAN/TISSUE STATIC MODEL
Each article was assigned to the same category with the
searching organ/tissue keyword, and every word in each arti-
cle was assigned its own TF, TF-IDF, and CTF-IDF values.
Hereafter we call these values ‘‘feature values’’. For an arti-
cle, the feature values of the terms can form a vector of
the article as shown in Fig. 3a. The sum of all the article
vectors in a specific organ/tissue category can further form
a category vector. The category vector is the static model
for each specific organ/tissue. Fig. 3b illustrates the concept,
where articles 1 to 5 belong to the category ‘‘pancreas’’ while
articles 6 to 9 belong to the category ‘‘heart’’. Then, the static
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FIGURE 3. (a) Example of using CTF-IDF feature values to form an article
vector from an article abstract. (b) Example of forming category vectors
(static models) for each organ/tissue category.

category model for ‘‘pancreas’’ is the sum of the vectors for
articles 1 to 5, while the static category model for ‘‘heart’’ is
the sum of the vectors for articles 6 to 9. Equation (5) shows
how to form the static model for each category:

−→
Mi =

ni∑
j=1

−→
Va(j) (5)

where
−→
Mi is the i-th organ/tissue static category model vector.

The
−→
Mi category includes ni articles.

−→
Va(j) is the j-th article

vector which belongs to category
−→
Mi.

5) CLASSIFYING ARTICLES BASED ON COSINE SIMILARITY
Since each article has its own article vector and the static
model for each organ/tissue category is also a vector, to eval-
uate the similarity between article and category, we can
calculate the cosine similarity [7] between an article and
the organ/tissue static models and assign the article to the
category which has the highest similarity score. Equation (6)

shows the formula of cosine similarity:

Sim(
−→
M ,
−→
V a) =

−→
M ·
−→
V a

‖
−→
M ‖‖
−→
V a‖

=

∑n
k=1(
−→
M k ×

−→
V ak )√∑n

k=1(
−→
M k )2 ×

√∑n
k=1(
−→
V ak )2

(6)

where
−→
M is one of the organ/tissue static model vectors,

−→
V a

is the article to be classified, and
−→
M k and

−→
V ak are the k-th

component of vectors
−→
M and

−→
V a, respectively.

6) ADDING THE LEARNING RULE – LDF
To improve the static organ/tissue category model, LDFs [19]
were used. First, one article was chosen from the training
dataset and cosine similarity between the selected article
and every organ/tissue model was calculated, and the article
was assigned to the category with the highest score. Next,
the algorithm checked whether the assigned category was
the same as the label (each article from the training dataset
was initially labeled). If the assignment was not consistent
with the label, the wrongly assigned article vector would be
subtracted from the wrong organ/tissue model vector and the
correctly assigned article vector would be added to the correct
organ/tissue model, as shown in (7) and (8).

−→
M ′wrong =

−→
Mwrong −

−→
V a (7)

−→
M ′correct =

−→
M correct +

−→
V a (8)

where
−→
Mwrong and

−→
M ′wrong are the original and improved

wrongly classified organ/tissue category models, respec-
tively.

−→
M correct and

−→
M ′correct are the original and improved

correct category models, respectively.
−→
V a is the article vec-

tor.
Equations (7) and (8) can enhance the classification ability

of the model by highlighting the feature values (TF, TF-
IDF, CTF-IDF) of the critical terms in the model vector. For
instance, in the ‘‘kidney’’ category, critical terms such as
‘‘kidney’’ and ‘‘nephron’’ have much higher weight values
than other regular words.

This algorithm used all the training articles to improve the
organ/tissue model for each round. If there was one article
that was assigned to the wrong category, the algorithm would
proceed another round until all articles were correctively
assigned to the right categories. Note that some of the ele-
ments in the category vectors would be less than zero in
the LDF method. When an article included no keywords
related to regenerative medicine, the article was assigned to
the ‘‘unclassified’’ category.

7) EXPERIMENTAL SETUP
Our experiments used five different training methods to mea-
sure the performance of article classification: static modeling,
cosine similarity + LDF (Cos + LDF), SVM, K-nearest
neighborhood (KNN) [24], and long short-term memory
(LSTM) [25].
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For the static modeling and Cos+ LDFmethods to classify
an unlabeled article, the TF values for each term of the article
were extracted, and cosine similarity between the article and
static model vectors of each category was calculated. The
article was assigned to the categorywith the highest similarity
score. For the Cos + LDF method, if an article had cosine
similarity score < 0 to all the organ/tissue category vectors,
the article was assigned to the ‘‘unclassified’’ category.

The scikit-learn package [26] was used to train the SVM
model. We applied the ‘‘linear’’ kernel because it pro-
vides better text-classification performance, according to
Kalcheva et al. [14]. Regularization parameter C was set to
10 and the ‘‘class_weight’’ parameter was set to ‘‘balanced’’
due to the unbalanced characteristics of our training data.

The sickit-learn package was also used to train the KNN
model. The k-value was set to 5 because it could provide
better classification performance according to [27]–[29].

Tensorflow [30] and Keras [31] were used to train the
LSTM model. A two-tier stacked model [10] was chosen
and the hidden units were set to 256. The loss function was
‘‘categorical_crossentropy’’.

8) VALIDATION
The articles from LifeMap Discovery [20] were used as
our validation dataset, because these articles were curated
by human professionals. The validation dataset contained
260 articles with 26 organ/tissue categories: pancreas, kidney,
epidermis, cornea, lung, muscle, Schwann cell, dopaminergic
neuron, heart, motor neuron, neuron, melanocyte, thyroid,
mesoderm, liver, endoderm, ectoderm, bone, cartilage, astro-
cytes, oligodendrocyte, reproductive system, retina, blood,
adipose and endothelium (Table 2).

Notice that there are some overarching relationships
between these categories. Endoderm includes liver, lung, pan-
creas, and thyroid. Mesoderm includes adipose, blood, bone,
cartilage, endothelium, heart, kidney, reproductive system,
and muscle. Ectoderm includes neuron, astrocyte, dopamin-
ergic neuron, motor neuron, oligodendrocyte, epidermis,
cornea, retina, melanocyte, and Schwann cell. The articles
discussed neuron differentiation topic but not mainly for
astrocyte, oligodendrocyte, dopaminergic neuron, and motor
neurons were assigned to the ‘‘neuron’’ category. The reason
to regard endoderm, mesoderm, and ectoderm as separate
categories and allow them to have their own model vectors
is that some of the articles did not have explicit organ/tissue
keywords in their titles, or their abstracts included only a
few organ/tissue keywords. This could result in failed clas-
sification of the articles. Allowing endoderm, mesoderm,
and ectoderm to have their own model vectors increased
the possibility of capturing these inexplicit articles when
comparing the similarity scores between different categories.
In the validation procedure, if the classification model could
classify an article to the correct organ/tissue or corresponding
germ layer, we regarded it as a correct classification.

There are several ways to evaluate text classification
results, e.g., accuracy, precision, recall, and F-measure.

TABLE 2. Validation dataset.

These metrics can be calculated from a confusion matrix and
the formulas are listed in (9)-(12):

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(9)

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F-measure =
2× Precision× Recall
Precision+ Recall

(12)

where TP, TN, FP, and FN mean true positive, true negative,
false positive, and false negative, respectively. Accuracy is
equivalent to the ratio of correctly assigned articles divided
by the total article number. Precision indicates, when the
classifier assigns a number of articles to a specific category,
the proportion of assigned articles that truly belong to the
category. Recall indicates the proportion of articles in a spe-
cific category that is assigned correctly. F-measure takes both
precision and recall into consideration, which provides more
objective information to evaluate the results.

9) DATABASE APPLICATION
To assist users with literature searches related to organ/tissue
experimental methods, we developed an online database.
The classifier was integrated into the database so that the
system could assign the collected articles to correspond-
ing organ/tissue categories. The database used the crawler
to download the published articles from the NCBI PMC
database and will update its content every six months using
the Linux ‘‘crontab’’ command.

The database updating workflow is shown in Fig. 4. After
downloading articles from the PMC database, the system
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FIGURE 4. Integration of the classifier into the auto-updating database.

TABLE 3. Feature value metrics comparison.

conservatively selected the articles that explicitly included
‘‘differentiation’’ and ‘‘stem cell’’ keywords in the titles.
Then, the algorithm took the articles that included experimen-
tal protocols into consideration. Next, text preprocessing is
applied to the selected articles and the system calculates the
term frequency and builds the term vector for each article.
After that, the system calculates cosine similarity between
the article term vector and the organ/tissue model vectors
stored in the classifiers. An article is assigned to the category
with the highest similarity score. Finally, the system extracts
information on each article, such as ‘‘ID’’, ‘‘title’’, ‘‘author’’,
‘‘journal name’’, and ‘‘organ/tissue category’’, and stores the
information in the database. The web page of the database is
shown in Fig. 5.

D. RESULTS
1) COMPARISON OF DIFFERENT FEATURE VALUE METRICS
In order to build static organ/tissue category models for clas-
sification, the accuracy of using different feature value met-
rics was compared (Table 3). The TF-IDF metric performed
better than the TF metric, as expected, and the CTF-IDF
performed best among the three different metrics (title 90%
and abstract 93.85%). This indicated that CTF-IDF had good
ability to distinguish articles from different categories.

FIGURE 5. The web page of the regenerative medicine database
(ATTRACTIVE).

TABLE 4. Accuracy of different training algorithms.

2) CLASSIFICATION RESULTS
The accuracy of different algorithms used for classification
was compared (Table 4). The CTF-IDF metric was used to
build organ/tissue model vectors and train the classification
models. There were two types of classification models: title
and abstract. All the article titles and abstracts in the training
dataset were used to train the title and abstract classification
models by different algorithms. Each of these two models
were used to classify articles from the validation dataset.
In Table 4, the ‘‘Model’’ column indicates the applied model
type, the ‘‘Target’’ column indicates the classification target
(title or abstract), the ‘‘Method’’ column indicates the algo-
rithms used to build the classification model, and the ‘‘Accu-
racy’’ column shows the accuracy of each model trained by
different algorithms.

The results indicate that the static organ/tissue model
and Cos+LDF algorithm performed better than the other
three algorithms, i.e., SVM, KNN, and LSTM. Generally,
the Cos+LDF algorithm had better performance than the
static organ/tissue model, but when we used the abstract
model to classify article titles, the Cos+LDF algorithm
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TABLE 5. Precision, recall, and F-measure for abstract model-article
abstract classification.

had a little lower accuracy (about 1.54%) than the static
organ/tissue model. Among all the model-target combina-
tions and different algorithms, using the abstract model
to classify article abstracts provided the best performance
(94.62%). The SVM and KNN methods had poor classifi-
cation accuracy (<30%). For the LSTM learning method,
the accuracy ranged from 67.31% to 78.08%. This indicated
that LSTM could learn features from an unbalanced dataset
better than SVM and KNN.

Since using abstract model to classify articles based on
their abstracts by the Cos+LDF algorithm provided the best
performance, the precision, recall, and F-measure of this
model were compared (Table 5). The germ layer categories
‘‘ectoderm’’, ‘‘mesoderm’’, and ‘‘endoderm’’ were removed
from Table 5, because these categories were designed to
capture the articles that lack organ/tissue keywords in their
titles or abstracts. If an article shows obvious organ/tissue
keywords in its title or abstract, the classifier assigns the
article to the explicit organ/tissue category, instead of only
the germ layer name. Precision ranged from 0.6 to 1, recall
ranged from 0.5 to 1, and F-measure ranged from 0.67 to 1.

Lastly, we developed a database of articles on regenerative
medicine by applying the Cos+LDF abstract classification
model (Fig. 5). The articles in this database will be updated
automatically every six months. Users can search for pro-
tocols related to regenerative medicine directly based on
keywords. In addition, users can search articles based on pub-
lication years, journal, or organ/tissue type in the ‘‘advanced
search’’ mode. This mode allows users to search the database
for differentiation methods published during a specific time
range, articles published in journals highly focused on regen-
erative medicine research, or all articles related to specific
organs or tissues.

E. DISCUSSION
In this work, we developed an algorithm that combined cosine
similarity and LDFs to classify journal articles efficiently.
A category-based TF-IDF feature value metric was used to
build static model vectors for each category; additionally,
LDFs was applied to further improve the category vectors and
cosine similarity for classifying articles. Our method could
work well even in limited data size and unbalanced data dis-
tribution. Furthermore, we integrated our classificationmodel
into a database whose contents will be updated automatically.

The feature value metric experiments showed that
CTF-IDF has the best performance. CTF-IDF was able to
distinguish and highlight the feature terms for each cate-
gory. When there were multiple categories, CTF-IDF could
enhance the performance of text classification. Therefore,
CTF-IDF was applied in the subsequent experiments.

For classification accuracy, the static model and Cos +
LDF showed much better performance than SVM and KNN,
indicating that the static model and Cos + LDF methods
could identify the keywords for each category. For the static
model method, the weight of each keyword was emphasized
by summing up the CTF-IDF term vectors of the articles
belonging to the corresponding category. If an unlabeled arti-
cle title or abstract included keywords belonging to a specific
organ/tissue model, it received a high similarity score due to
the large weight of the keywords. For the Cos+ LDF training
method, an LDF was applied to further improve the static
model by enhancing the weight of the keywords iteratively.
This also improves the ability to distinguish articles between
different categories.

In our experiments, SVM had low accuracy. There are
several possible reasons for this result. The first is the unbal-
anced training dataset. Unbalanced training causes overfitting
problems in the learning procedure and results in incorrect
classification [32]. Insufficient training data size is a sec-
ond possible reason. As mentioned before, machine learning
algorithms usually require a large amount of training data to
learn features. In our experiments, some of the organ/tissue
categories contained an insufficient number of articles for
SVM to learn the features correctly. Most of the categories
included fewer than 1,000 training articles. The third reason
might be the curse of dimensionality as indicated in [33].
In our experiments, there were 26 categories for classification
and a large number of term features to learn. That meant that
much more training data was needed to overcome the high
dimensionality problem of SVM.

KNN has the same problems as SVM. The unbal-
anced training data caused serious bias in the classification
results [29]. Most of the articles were assigned to categories
that possessed a large amount of training data, such as the
‘‘blood’’ and ‘‘neuron’’ categories.

However, LSTM, one of the deep learning algorithms, was
not affected much by the unbalanced dataset and had an
accuracy of 67.31-78.08%. The reason why LSTM achieved
much better performance than SVM and KNN might be that
LSTM analyzed the training articles based on full text instead
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of keywords and term frequency metrics (TF, TF-IDF, and
CTF-IDF). Full text analysis allows LSTM to possess more
information than SVM and KNN. However, the training data
size was still not enough and limited the performance of
LSTM.

Since the dataset is unbalanced, the F-measure provides a
more accurate measurement than precision or recall alone,
as it takes both terms into consideration [34]. The ‘‘astro-
cyte’’ and ‘‘bone’’ categories had the lowest F-measures
of all the categories (both 0.67). We observed that both
of these categories correlated to the keywords of multiple
categories in the text. ‘‘Astrocyte’’ frequently correlated to
‘‘oligodendrocyte’’ and ‘‘motor neuron’’, while ‘‘bone’’ cor-
related to many mesoderm organ/tissue categories (data not
shown). There was a term, ‘‘bone marrow stem cell’’, which
appeared inmany article titles and abstracts and which caused
CTF-IDF to greatly decrease the weight of the term ‘‘bone’’.
However, some of the articles only used ‘‘bone’’ instead of
more specific terms such as ‘‘osteoblast’’ or ‘‘osteocyte’’ in
their titles and abstracts. This situation made it harder for
the classifier to classify the articles in the ‘‘bone’’ category
correctly due to the low weight of the organ/tissue keyword.
Therefore, the ‘‘bone’’ category had a lower recall value (0.5)
and F-measure (0.67). This could also be the reason why the
‘‘astrocyte’’ category had a lower F-measure.

Our method could be applied in situations where there
is limited data size, unbalanced data distribution, and many
categories for classification. This situation is common in
the microbial taxonomy assignment problem in the field of
molecular biology, since there is a large number of species
but a limited number of curated conserved genes. Therefore,
our proposed algorithm might also be suitable for taxonomy
assignment problems.

One limitation should be noted regarding our proposed
method. As mentioned before, we used CTF-IDF as the
feature value metric to enhance the distinguishing ability of
the classification model. However, if there were only a few
categories (e.g., two or three) for classification, it is highly
possible that the keywords would appear in all the categories.
This situation would make the critical feature terms of each
category close or equal to zero, causing the model to lose its
classification ability. Therefore, we emphasize here that the
CTF-IDF metric provides better performance in the situation
where many categories are available for classification. If only
a few categories are available for classification, the TF-IDF
metric is suggested.
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