
Received May 7, 2021, accepted May 16, 2021, date of publication May 20, 2021, date of current version June 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082186

Novel Deep Reinforcement Algorithm With
Adaptive Sampling Strategy for Continuous
Portfolio Optimization
SZU-HAO HUANG 1, (Member, IEEE), YU-HSIANG MIAO2, AND YI-TING HSIAO 2
1Department of Information Management and Finance, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
2Institute of Information Management, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Szu-Hao Huang (szuhaohuang@nctu.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Contract MOST 110-2622-8-009-014-TM1,
Contract MOST 109-2221-E-009-139, Contract MOST 109-2622-E-009-002-CC2, and Contract MOST 109-2218-E-009-015, and in part
by the Financial Technology (FinTech) Innovation Research Center, National Yang Ming Chiao Tung University.

ABSTRACT Quantitative trading targets favorable returns by determining patterns in historical data through
statistical or mathematical approaches. With advances in artificial intelligence, many studies have indicated
that deep reinforcement learning (RL) can perform well in quantitative trading by predicting price change
trends in the financial market. However, most of the related frameworks display poor generalizability in the
testing stage. Thus, we incorporated adversarial learning and a novel sampling strategy for RL portfolio
management. The goal was to construct a portfolio comprising five assets from the constituents of the
Dow Jones Industrial Average and to achieve excellent performance through our trading strategy. We used
adversarial learning during the RL process to enhance the model’s robustness. Moreover, to improve the
model’s computational efficiency, we introduced a novel sampling strategy to determine which data are
worth learning by observing the learning condition. The experimental results revealed that the model with
our sampling strategy had more favorable performance than the random learning strategy. The Sharpe ratio
increased by 6%–7%, and profit increased by nearly 45%. Thus, our proposed learning framework and the
sampling strategy we employed are conducive to obtaining reliable trading rules.

INDEX TERMS Portfolio management, reinforcement learning, adversarial learning.

I. INTRODUCTION
Portfolio management is a process of selecting and supervis-
ing a group of financial products that meet an individual’s
long-term financial objectives. Within a certain period, peo-
ple buy and sell portions of diverse assets to obtain profits
and achieve risk diversification. To reach this goal, portfolio
managers who employ quantitative trading methods attempt
to obtain favorable returns by identifying patterns in his-
torical data through statistical or mathematical approaches.
With advances in artificial intelligence, numerous studies
have indicated that deep reinforcement learning (RL) per-
forms well in quantitative trading in terms of predicting price
change trends in the financial market. Thus, various machine
learning, deep learning, and RL applications have been devel-
oped for financial market trading. In particular, numerous
studies have attempted to predict price trends by employ-
ing supervised learning applications, such as support vector
machines or deep neural networks. Moody and Saffell [1]
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and Deng et al. [2] have applied the model-free method
to solve the trading problem without the step of predicting
future prices. However, both frameworks generated discrete
trading signals for one asset, which might not represent the
optimal trading decision in real-world conditions. To address
this shortcoming—focusing on a single asset—some studies
have considered the portfolio problem. Jiang et al. [3] applied
recurrent network techniques to a portfolio in the cryptocur-
rency market, and Yu et al. [4] proposed a framework that
could predict future prices, generate data for training, and
learn from the experience of experts. Nevertheless, according
to the random walk theory, market price changes are highly
stochastic and challenging to simulate. Hence, the aforemen-
tioned methods have the problem of poor generalizability.
That is, a given model may exhibit favorable performance in
the training set but perform poorly during testing. To address
these problems, [5] and [6] proposed an adversarial learning
framework for stock prediction. However, these studies have
only focused on predicting future market trends rather than on
a particular trading decision. Thus, to maximize the general-
izability of our portfolio management model, we introduced
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adversarial learning to introduce perturbations into our input
stock price streams, making our model more robust against
highly stochastic price data. This measure prevents our model
from ‘‘memorizing’’ the input data and model overfitting; it
also increases the agent’s ability to explore the environment.
Most RL methods typically fail to control risks. To address
this shortcoming, understanding the correlations between
different assets is essential. References [7] and [8] utilized
autoencoders for important feature extraction among differ-
ent stock prices, but these methods were only applied to
passive investment strategies. Therefore, in this study, we pro-
posed a novel market representation network to extract latent
information between different stocks. Based on this latent
information, our RL agent can acquire the future variance of
various assets and further control the risks. Another problem
for RL frameworks is the high computational costs [9]. There-
fore, we designed a novel sampling strategy to reduce the
immense computational resources required for RL; this strat-
egy involved selecting the assets that cannot be effectively
managed by agents during the training phase. Specifically,
by increasing the probability of sampling these assets, our
agent is more likely to spend more time and computing power
on managing portfolios that they are unfamiliar with. Thus,
in this paper, we propose a comprehensive RL framework
with the following contributions:
• We provided an adaptive sampling strategy to increase
computation efficiency; training performance increased
by 6 %–7 % in terms of the Sharpe ratio and 45% in
terms of profit.

• We adopted adversarial learning to add a sampled noise
to the input feature (stock price data); this measure
increased the generalization ability of the model.

• We adopted the market representation network to pre-
training our model to control for the risks during the
training period. The model with the market representa-
tion network reduced the maximum drawdown (MDD)
by 40 % and increased the Sharpe ratio by 22 times.

The remaining parts of this paper are organized as follows:
Section II provides a review of the related works; Section III
provides an introduction of the improved deep RL network;
Section IV describes the experimental results; and finally,
the major contributions and future research directions are
summarized in Section V.

II. LITERATURE REVIEWS
In this section, we introduce works related to portfolio man-
agement. We first introduce conventional approaches for
portfolio management and then introduce modern (learning-
based) portfolio management frameworks. Finally, we also
introduce several common RL and deep learning generaliza-
tion techniques.

A. CONVENTIONAL APPROACH IN PORTFOLIO
MANAGEMENT
Modern portfolio theory or mean–variance theory proposed
by Markowitz uses a mathematical solution that constructs a

portfolio maximizing the expected return and considers the
given level of risk [10]. According to that theory, investors
must only consider the trade-off between the mean and
variance of the portfolio return and must seek the maxi-
mum expected return for a given level of the risk profile
to increase the certainty of achieving an expected return.
However, mean–variance theory has some limitations [11]
because asset volatility is required for constructing themodel,
and determining an asset’s future volatility is challenging in
practice. Momentum investment is a well-known quantitative
investment strategy. According to this strategy, the momen-
tum effect is used to reveal the price stickiness of stocks
over a certain period; this information is then used to predict
price trends and make investment decisions [12]. Rouwen-
horst observed similar momentum patterns for European and
emerging stock markets and reported that the momentum
profit was not limited to a particular market but was present
in all 12 European markets investigated [13].

B. MACHINE LEARNING AND DEEP LEARNING
APPROACH IN PORTFOLIO MANAGEMENT
Machine learning, with its excellent pattern-extraction ability
from input data, has also been applied in portfolio man-
agement. Koyano and Ikeda [14] applied semisupervised
learning to the posts in stock blogs to expand the follow-
the-loser portfolio strategy. This approach aimed to predict
the stock price by analyzing blog posts associated with
bullish or bearish emotions to maximize the expected cumu-
lative return of the portfolio. Xing et al. [15] converted sen-
timent information into market information by applying an
ensemble of evolving clustering and long short-term memory
(LSTM). These market information perspectives were later
integrated into modern portfolio theory through a Bayesian
approach. Malandri et al. [16] proposed an optimal allocation
strategy for portfolios by using financial sentiment analysis,
in which three machine learning algorithms were applied:
LSTM, multilayer perceptron, and random forest classifier.
The results revealed that LSTM extracted emotional data on
the market more efficiently than could other machine learn-
ing algorithms. Mean–variance theory has a limited impact
on practice because of estimation problems when applied
to real data. Hence, Ban et al. [17] applied two machine
learning concepts, regularization and cross-validation, for
portfolio optimization. Branke et al. [18] applied a multiob-
jective evolutionary algorithm with a critical line algorithm
to obtain a continuous Pareto front. Hachicha et al. [19]
utilized fuzzy logic control and differential evolution tech-
niques to explain the financial market for addressing the fuzzy
portfolio selection problem. Macedo et al. [20] employed a
genetic algorithm for portfolio selection and proposed the
use and comparison of discovered technical analysis indi-
cators for pursuing higher returns under certain risk levels.
However, these methods cannot effectively address continu-
ous decision problems such as an end-to-end portfolio man-
agement framework. Numerous recent studies have applied
financial-model-free deep RL for portfolio optimization
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problems [3], [4], [21], [22] because of its ability to address
the continuous decision problem. Almahdi and Yang [23]
extended the previous recurrent RL framework by using
a risk-adjusted performance objective function and the
expectedMDD. Yu et al. [4] proposed a framework that com-
bined three major components. Liang et al. [24] implemented
fundamental RL algorithms, including deep deterministic
policy gradient (PG), deterministic PG, and proximal pol-
icy optimization (PPO), for portfolio optimization; however,
these algorithms still exhibited weak generalization ability in
the testing stage.

Numerous studies have also focused on model generaliza-
tion for RL and deep learning [25]. Reference [26] proposed
a metacontroller to address the delayed reward during the
decision process. Reference [27] proposed a comprehensive
framework to solve the overfitting problem in RL. Refer-
ence [28] designed a regularization method to prevent deep
Q-network overfitting.Moreover, [5], [6], [29], [30] proposed
an adversarial learning framework for stock prediction and
portfolio management.

The current literature review revealed that deep RL is the
most suitable approach for portfolio optimization. The RL
framework enables us to dynamically determine the alloca-
tion of assets at each moment by employing deep learning.
This approach is also more likely to extract meaningful infor-
mation from the original data without the necessity of making
mathematical or model assumptions. Furthermore, RL makes
it easier to address the continuous decision problem while
considering the transaction fee. Therefore, for the aforemen-
tioned reasons, we applied deep RL to conduct our research.

III. METHODOLOGY
In this section, we provide a brief overview of the portfolio
management system. A schematic of the system is provided
in Fig. 1. Motivated by the Ensemble of Identical Indepen-
dent Evaluators (EIIE) framework, the policy network is our
agent that makes investment decisions at every time step; it
also interacts with our environment—the financial market.
However, instead of applying the deterministic PG as typical
in the EIIE framework, we applied a stochastic approach
by adopting three types of standard RL algorithms: the PG,
actor–critic (AC), and PPO. More details are provided in
Section III A–D.

The current portfolio work differs from the previous port-
folio works in that its primary goal is to identify a general-
ized trading strategy given limited training time and multiple
portfolio pools. The implication is that we could not adopt
various solutions to reach all possible combinations during
the training process. This task is extremely time-consuming
and resource-intensive. Consequently, enabling the agent to
learn the generalized trading strategy under such a diverse
environment is a major challenge. Therefore, in Section III-F,
we propose a weight-adjusted sampling method to deter-
mine which portfolios are worth learning for the current
agent. In portfolio optimization, managers consider not only
maximizing profits but also the risks of investors. However,

FIGURE 1. System overview.

we could not guarantee that our model would determine an
appropriate balance between maximizing returns and min-
imizing risks. Thus, we designed a market representation
network (Section III-G) to pretrain our model to acquire
the possible risks. Finally, we integrated adversarial learn-
ing (Section III-H) into the state-of-the-art RL algorithm to
enhance model robustness.

A. RL FRAMEWORK FOR PORTFOLIO OPTIMIZATION
RL has two major components: the agent and environment.
In a typical portfolio optimization problem, the agent acts as
an investor in the financial market. The mission of the agent
is to obtain reliable profit by continuously determining the
portfolio weight of m assets for interaction with the financial
market environment. The environment is where the agent
obtains information such as comments on the Internet, articles
in the news media, or changes in stock prices. The infor-
mation provided by the environment is called the ‘‘state.’’
Crucially, the agent might only receive partial information
because some of the information may be difficult for the
agent to access. In addition to informing investors, the state
also provides feedback on the actions of the agent. This feed-
back is called ‘‘reward,’’ which is used to adjust the agent’s
behavior. The complete procedure is as follows: The agent
determines the portfolio weight by observing the information.
Subsequently, asset allocation performed by the agent may
result in changes in the environment. The changes may also
result in investor rewards. Reward in the portfolio problem
may be any performance indicator, both risk and profit. In this
manner, we apply RL to formulate the portfolio problem. The
following sections describe the state, action, and reward in
detail.
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B. STATE
Our environment is composed of external and internal states.
This distinction mainly depends on whether the action gen-
erated by our agent can influence the future environment.
For example, when someone drives a car, the surroundings
they observe comprise the state. Any action that the agent
takes may have a considerable influence on the surroundings.
However, in the financial market, we conduct back testing,
meaning that actions cannot have any influence on historical
price data. Such information that cannot be affected by the
agent’s actions is classified as the external state. Information
that can be affected by the agent’s decision is called the
account state. In the current paper, we develop a trading
strategy for high-frequency trading, and the trading frequency
is 30 seconds. Short-term traders focus more on technical and
chip factors and less on the news side; that is, they focus solely
on the price changes. By analyzing changes in the financial
market, they determine whether to long or short the asset to
reach the purpose of portfolio management. Therefore, our
simulation investors only pay attention to changes in asset
prices and current asset allocation when determining their
actions. The external state contains the historical price of each
asset. The internal state contains the latest portfolio weight,
the current total profit, and loss value.

FIGURE 2. The design of action.

C. ACTION
The agent’s duty in the portfolio framework is to determine
the portfolio weight vector. The design of this action is
demonstrated in Fig. 2. In our portfolio action space, we do
not short assets; we do not allow investors to borrow assets
and then return them in the future. We use a stochastic policy
to design the action space. The action space can be divided
into the discrete action space and continuous action space.
For the discrete type, softmax is often used to represent each
action’s probability. Some portfolio works have also used a
discrete action space to determine the portfolio weight vector.

However, in this design, a specific portfolio configuration
is defined, which the agent uses to make decisions. Hence,
a discrete action space cannot include all possible config-
urations. If the design of the action space is continuous,
the action is typically sampled from theGaussian distribution.
If a continuous value for each asset can be produced, all the
continuous values can be converted into a portfolio weight
vector by using the softmax function.
All continuous values that are output can be regarded as the

view matrix that predicts the potential growth of each asset in

the future. The Gaussian distribution can only produce one
continuous value. Therefore, we adopt the multinomial dis-
tribution to generate multiple continuous values. We assume
that each asset is independent. Thus, the network only outputs
the mu and diagonal sigma. For the output µ, we adapt the
tanh as the activation function to control the value range from
−1 to 1. For the output σ , we use softplus as the activation
function.

Notably, after being transformed through softmax, the port-
folio vector cannot be used to update the network. Instead,
the portfolio vector is only used to interact with the environ-
ment to generate the portfolio return. We adapt the original
view matrix to update the policy network in Fig. 2.

D. REWARD FUNCTION
Our reward design only considers profit; thus, we use the
most straightforward approach to maximize the long-term
reward. Each time step reward is rt , which is expressed as
the difference in portfolio value from time t + 1 to time t .
The target of the agent is to select a series of actions that
maximize the accumulated reward over time. In long-term
portfolio management, we pursue the highest final portfolio
value pf . The immediate reward for each time step t is the
portfolio return, which is expressed as rt = pt+1 − pt . After
considering the long-term reward with the discounted factor,
we can express the cumulative return Rt as follows [31]:

R
(
st , at , . . . , stf , atf , stf+1

)
=

tf+1∑
l=0

(
γ lrt+l

)
(1)

where γ is the discount factor. When considering the cumu-
lative rewards in this stage, low portfolio profitability should
not result in drastic actions because the profit at that time is
affected by other decision points. Hence, we use the discount
factor to reduce the influence of long-term reward.

E. POLICY NETWORK
1) POLICY GRADIENT
PG is used to boost the probability of the action if the action is
likely result in a high expected reward. Conversely, the algo-
rithm reduces the probability of the action if the action is
likely to result in an unfavorable reward. The objective func-
tion is expressed as follows [31]:

∇θJ (θ ) ← Eπ [
n∑
t

∇θ logπθ (at |st )Rt )] (2)

← Eπ [
n∑
t

∇θ logπθ (at |st )(Rt − b(st )] (3)

In Equation 3, we consider the baseline in our reward. The
goal of this mechanism is to reduce the impact of variance by
collecting numerous samples, which results in a more stable
training process. In our problem setting, we directly identify
the rewards at the same time and calculate the average value
as our baseline.
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2) ADVANTAGE AC
The advantage AC [32] is composed of a policy function π
with parameter θ and an estimate of the value function V (s)
with parameter 2. The policy function executes an action
according to the state, and the value function estimates the
average score in this stage by training another network. The
advantage function involves determining the benefit to be
gained from selecting the action compared with the average
value. An estimation At of the discounted advantage function
A(st , at ) is used to construct a policy estimator of the follow-
ing form [33]:

∇θJ (θ )← Eπ [
n∑
t

∇θ logπθ (at |st )At )] (4)

3) PROXIMAL POLICY OPTIMIZATION
Schulmanet al. [34] proposed a new family of PGmethods for
RL called PPO. The essence of PPO is to transform the online
training process in PG into an offline training process through
importance sampling. Unlike the PG approach, PPO allows
multiple epochs of minibatch updating, which leads to faster
convergence. Different from the AC approach, PPO intro-
duces a new objective function, which is called the clipped
surrogate objective function for policy update. The objective
function is expressed as follows:

LClip(θ ) = Et [min(rt (θ )At , clip(rt (θ ), 1−ε, 1+ε)At ] (5)

where At is advantage function and rt (θ ) denote the proba-
bility ratio between the new and old policies. This objective
function limits the upper limit of the update amount and
establishes a trust region around. The hyperparameter θold
defines the range of maximum improvement.

F. ADAPTIVE SAMPLING STRATEGY
In this section, we describe our adaptive sampling strategy
for selecting what type of portfolio is worth learning for the
current agent. As mentioned in the previous section, we aim
to optimize the general rules of trading; thus, we train only
one portfolio. We sample numerous portfolios simultane-
ously and allow the agent to explore and obtain knowledge
from those portfolios. The agent operates on these portfolios
according to the current policy: some portfolios may per-
form well and others may not. The object of the comparison
function can be any rule-based portfolio benchmark, and in
our experiment, it is the constant rebalanced portfolio (CRP)
strategy. We employ five stocks from the Dow Jones Indus-
trial Index Average to construct a portfolio. If each portfolio
has its own sampling weight, millions of weights would need
to be updated. Because of limitations in computing power
and memory problems, our system could not sample those
portfolios simultaneously. Therefore, the sampling weights
adjusted are not the weights selected for each portfolio but
the weights assigned to each company. This approach results
in two situations. The first is that the sampling weight of each
company is the same on different trading days, and the second
is that each trading day has its own sampling weights for

FIGURE 3. Sampling adjust schematic diagram.

the companies (Fig. 3). Our sampling strategy is based on
the Adaboost algorithm. Adaboost is an improved boosting
classification algorithm. It attempts to increase the weight of
the samples that represent classification errors and linearly
combines them with the first few classifiers; thus, each time
the new classifier is trained, it focuses on the training the
samples that are difficult to classify. Eachweak classifier uses
a weighted voting mechanism instead of the average voting
mechanism, and only weak classifiers with higher accuracy
have greater weight. The portfolio comprises numerous tar-
gets. If the portfolio is favorable, then each target is also
classified as favorable according to the law of large numbers.
In the following two sections, the two sampling adjustment
strategies are discussed: using the same or different sampling
weights for each company on different trading days.

1) SAMPLING WEIGHTS OF EACH COMPANY ARE THE SAME
ON DIFFERENT TRADING DAYS
In Algorithm 1, suppose we have the current policy and com-
pany pool which contains m companies. Initially, the sam-
pling weight vector for the companies is denoted as
Ew = (w1,w2, . . . ,wm) =

(
1
m ,

1
m ,

1
m , . . . ,

1
m

)
, a uniform dis-

tribution, whichmeans that each company has an equal proba-
bility of being selected. The system first constructs numerous
portfolios by selecting the company according to the sam-
pling weights of each company, and it applies the policy to
make decisions for those portfolios and to update the policy
with the experience tuple. These steps are repeated numerous
times until the policy converges. After the model converges,
we simulate these portfolios and divide the companies into
two categories according to the law of large numbers. The
first group comprises the companies in which the agent per-
formed well, and the second group consists of the companies
in which the agent performed poorly. The performance of
each company is denoted as Ey = (0,0,0,. . . ,0). The system
assigns a value of 1 for the companies in which the agent
exhibits poor performance. We calculate the ε rate, which is
used to recalculate the sampling weights of the companies.
When the agent constructs the portfolios according to the
new sampling weights, the agent may perform half of the
portfolio well and half of the portfolio poorly, where ε =∑m

i=1 wiyi. Subsequently, we update the sampling weights of
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each company by using different equations. For the compa-
nies in which the agent performed poorly, the following equa-
tion is used to update the sampling weights: wi = wi exp(a);
for the companies in which the agent performed well, the fol-
lowing equation is used to update the sampling weights wi =

wi exp(−a). In the preceding equations a = ln
√

1−ε
ε
.

In sum, we first initialize the sampling weights and con-
struct numerous portfolios on the basis of these sampling
weights. After determining the performance of the portfolios,
the system identifies which companies the agent managed
well and which it managed poorly; that information is used
to calculated the ε rate. Finally, the system uses the ε rate to
adjust the sampling weight of each company. We summarize
our adaptive sampling strategy in Algorithm 1.

Algorithm 1 Sampling Weight Adjust Algorithm (1)
Input: Given company number m and sampling weight vec-

tor Ew for each company, initial the sampling weights of
each company by wi = 1/m, for i = 1,. . . ,m

Choose a number of portfolio according to the current
sampling weights vector Ew
Stimulate the portfolios and get each portfolio
performances
Initial Ey = (y0, y1, y2, . . . , ym) = (0, 0, 0, . . . , 0)
Set element yb of vector Ey to 1, for b ∈ those company
that the agent perform not well based on the Law of large
number
Calculate ε =

∑m
i=1 wiyi

for n← 1 to m do:
if ym == 1 then:

wm = wm exp(a), where a = ln
√

1−ε
ε

else
wm = wm exp(−a), where a = ln

√
1−ε
ε

2) SAMPLING WEIGHTS OF EACH COMPANY DIFFERS ON
DIFFERENT TRADING DAYS
In this section, we apply different sampling weights on differ-
ent trading days. According to Algorithm 2, we have n trading
days and a company pool that contains m assets.

Hence, each trading day has its own sampling weight
vector Ewn = (w0,w1, . . . ,wm). In the stage of forming a
portfolio, our system first selects a trading day according
to the uniform distribution; the system then forms a port-
folio on the basis of the sampling weight vector for that
day. After repeating the aforementioned steps, a variety of
portfolios are obtained, and the policy can be applied to make
a decision for those portfolios and update the policy with
the experience tuple. We repeat these steps numerous times
until the policy converges. After the model converges, each
day has its performance vector Eyn = (y0, y1, . . . , ym) = 0.
Hence, we must obtain the performance vector separately.
After obtaining the performance vector Ey we must calculate
each day’s epsilon εn rate and then use it to update each

day’s sampling weight vector. We summarize our adaptive
sampling strategy in Algorithm 2.

Algorithm 2 Sampling Weight Adjust Algorithm (2)
Input: Given m company number, n trading days, initial the

sampling weight’s matrix wn,m = 1/m, which is the n×m
matrix.

repeat
Select a trading day n and choose a number of portfolio
according to current company weight wn

until Select enough portfolio
Stimulate the portfolios and get each portfolio
performances
Initial the performance matrix yn,m = 0, which is the n×m
matrix
for day← 1 to n do:

Set element yday,b of matrix y to 1, for b ∈ those
company perform not well in that day based on the Law
of large number
Calculate ε =

∑m
i=1 wday,iyday,i

for n← 1 to m do:
if yday,n == 1 then:

wday,n = wday,n exp(a), where a = ln
√

1−ε
ε

else
wday,n = wday,n exp(−a), where a = ln

√
1−ε
ε

G. MARKET REPRESENTATION NETWORK
As noted in the previous section, the portfolio optimization
process is divided into two phases. The first step is to predict
each asset’s future trend, and the second phase is to rebalance
each asset according the trend exceptions and the current
portfolio allocation. To enable the agent to rapidly acquire
skills in predicting potential risk and future trends, we use
the market representation network to model the relationship
between current market price trends and future market price
trends. First, we train an autoencoder network to determine
the latent space of stock price streams. The autoencoder
consists of two parts: the encoder layer and the decoder
layer, and the purpose of the latent space is to extract crucial
information on stock price relations among various stocks
(see step 1 in Fig. 4) and future price trends. Finally, we can
calculate VAR according to the future price. Thus, we train
a network, the embedding layer, that allows the model to
accurately predict the future price’s latent space and VAR on
the basis of the predicted future values (see step 2 in Fig. 4).

VAR is the maximum possible loss of a financial
asset or portfolio value over a specific period at a certain
probability level. After designing the embedded network,
we integrate our embedded network with our policy network.

Some changes are necessary because of the integration
of the embedded network with the policy network. In the
original design, each asset fits directly into the policy net-
work through the fully connected neural network. When the
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FIGURE 4. Market representation network.

embedded network is integrated into our policy network,
each asset fits separately into the embedded network; thus,
the parameters of the embedded network are shared. The
embedded network outputs each asset’s latent space. Thus,
we concatenate each asset’s latent space and use it to fit the
policy network through the fully connected neural network.
The aforementioned process is how our market representative
network fits into our policy network. Two points should be
considered here: whether the parameters of the embedded
network should be updated and when the policy network
should be updated. The question of whether the parameters
of the embedded network should be updated is similar to
the problem faced during the initial preparation of the policy
network. If the parameters of the embedded network are
fixed, fewer parameters can be updated; thus, the ability to
fit the portfolio may be limited.

H. ADVERSARIAL LEARNING
Deep RL has the following advantages: it can capture non-
linear features, has low prior assumptions, and is similar
to human financial investments. A study [35] that high-
lighted the high performance of RL plus adversarial train-
ing in mountain car and hopper environment applications
served as inspiration for our approach. Because financial data
have high-noise and nonstationary characteristics, we employ
adversarial learning to make the model more robust. Adver-
sarial learning adds noise to data to enhance model robust-
ness. More specifically, adversarial learning uses incorrect
information to fool the agent. As a result of the incor-
rect information, the agent performs relatively uncommon
actions. Google DeepMind and Open AI have proven that
adding noise to network parameters helps the algorithms
explore their environments more effectively.

In our work, adversarial learning is implemented by adding
small perturbation signals to the input features when the
model is learning from experience. In the subsequent exper-
iments, our price perturbation will be restricted at most 1 %

of the original vibration amplitude:

st ′ = st · (1+ ε) (6)

The perturbation rate epsilon is sampled from [−0.01,
0.01]. Before each state st was fed into the policy network,
a sampled noise is added into the observed historical price
data. We expect the agent will make action decisions accord-
ing to the state st′ under perturbation. It can help to train
agents more robustly and let the decision making focuses on
real market trends than random noise of financial markets.
However, while updating the RL agent, we calculated the
policy gradient according to real state st . Detailed algorithm
was illustrated in Algorithm 3.
By incorporating adversarial training, the versatility and

robustness of the model will increase, and the agent would
be less sensitive about noise disturbance of the stock price
change. Therefore, undesirable transaction costs caused by
frequent re-balancing will not reduce the final portfolio
returns.

Algorithm 3 Adversarial Learning
Input: initialize θ as the parameters of policy π (s, a |θ )

for t ← 1 to T do:
Receive state st
Add noise into the price data, the state become s′t
Execute action at According to s′t and get st+1

Rt ← total discounted rewards from t to T
Update the policy θ ← θ + η∇θ logπ(st , at |θ )Rt

IV. EXPERIMENTS
We used stock price data from Wharton Research Data Ser-
vices (WRDS) and conducted four experiments. We used the
Trade and Quote database, which contains intraday transac-
tion data for all securities posted on the New York Stock
Exchange, American Stock Exchange, and Nasdaq National
and Market System.
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A. EXPERIMENTAL DATASETS
We collected the data of constituent stocks in the Dow Jones
Industrial Average because this index is regarded as an accu-
rate representation of the US stock market. Furthermore,
the companies in the Dow Jones have a particular influence
and popularity in their domain according to the Global Indus-
try Classification Standard. Data were extracted every second
and were collected from January 3, 2017, to December 29,
2017, for a total of 251 trading days. Daily trading hours were
from 9:30 AM to 4:00 PM.

B. DATA PROCESSING
After collecting the transactions data, we resampled the data
frequency into 30-second blocks and converted the data into
open-high-low-close (OHLC) charts. OHLC charts express a
stock’s opening, high, low, and closing prices for a specific
period, thus describing the status of the market during a
specific period. Some individual stocks had missing data on
a specific trading day because of trading interruptions for
major events or insufficient information disclosure. We filled
the missing price data (resulting from weekends and holi-
days) with the latest closing price to maintain time series
consistency. Crucially, for standardization of data preprocess-
ing, this window cannot contain future information. Hence,
to obtain a customary agent that exhibits robust performance
with various stocks, we subtracted the opening price, closing
price, high price, and low price from the opening price at the
beginning of the period. To improve computing efficiency,
we applied the moving average (MA) line to represent past
trends. In the following experiments, we used a 5-, 20-, 30-,
60-, 120-, 900-, 1800-, 3600-, 7200-, and 10800-second MA.
The preprocessing procedure for MA indicators is the same
as that for the OHLC price.

C. EXPERIMENT TRADING SETTING
This section includes a description of the proposed system
parameters for experimental settings. The first parameter,
the asset number m is set to 5, which means that 5 individual
assets should be picked and allocated to build the portfolio.
The parameter was determined empirically by considering
the trade-offs between the large unsystematic risk (i.e. large
portfolio volatility) caused by a small portfolio size and the
large rebalancing costs caused by a large group of trading
targets. For the optimization of the complete domain, we col-
lected numerous portfolios when we updated our models. The
number of portfolios is N which was set to 500. Since our
agent is a stochastic policy, meaning it has many variances,
we repeated each portfolio numerous times to reach a more
accurate expected value.

After selecting the portfolios, we have Pn repetitions to
collect the performance of the agent; we have Pn identical
workers to gather experience. Since the interaction between
the agent and themarket is stochastic, the experience gathered
by each worker would be different. Given our agent may
not be able to master the selected portfolios within only one

TABLE 1. Hyperparameters settings.

update, the number of update times Ut represents the process
where an agent collects experience and updates the model.
After Ut updates, the portfolios are re-selected. Both Ut and
Pn are hyperparameters, and they are set to 10 in our system.
Detailed learning Process of trading Agent is displayed in
Algorithm 4.

Algorithm 4 Reinforcement Learning Process of Trading
Agent
Input: initialize θ as the parameters of policy π (s, a |θ )
Input: Maximum trajectory numberMax(τ ), Current trajec-

tory number Current(τ ) = 0, update timesUT , repeat num-
ber Pn

while Current(τ ) <Max(τ ) do
randomly choose N groups portfolios and each portfo-
lio contain m assets.
for number← 1 to Ut do

repeat those portfolios Pn times
get trajectories

(
s1,1, a1,1, r1,1,. . . ,sN ,T , aN ,T , rN ,T

)
under the policy π
for time t ← 1 to T do

Rt ← calculate total discounted rewards from t
to episode end T with discount factor γ

Current(τ )← Current(τ )+ N × Pn
Update the policy network with experience tuple

After the manipulation mentioned above, we expect our
agent can learn a general trading strategy within a limited
trading time. Thus, the maximum trajectory Max(τ ) was set
to 1 million. The rest of the parameters of our simulations
are as follows: The amount of cash owed by the investor was
100,000. We averaged the assets in each target in the initial
state. The transaction cost was set to 25 %. In the subsequent
experimental settings, the comparison was based on these
settings. Our actor’s learning rate was set to 0.000001, and
the batch size was set to 1024. The reward function included
the discount factor, whichwas set to 0.99. Table 1 summarizes
our hyperparameter settings.

Before introducing the experiment, we briefly describe
the distinction between training and testing. Because our
portfolio consists of hundreds of possibilities, the agent can-
not explore all options with RL in a short period. If the
agent achieves excellent performance in the training inter-
val, we believe the agent is sufficiently powerful to manage
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TABLE 2. Sharpe and profit for the standard portfolio optimization’s algorithm in 2017.

any portfolio optimization problem even if the portfolio is
selected in the training interval. Therefore, our testing period
is the same as the training period.We randomly select 30 port-
folios, and each portfolio consists of five assets traded for
60 trading days from January 3 to March 27, 2017. In the
following experiments, we use the aforementioned settings
to compare our results.

D. PORTFOLIO PERFORMANCE MEASUREMENT
We use the following indicators to measure portfolio mea-
surement performance. The first indicator, which is of great
importance to most people, is the profit value. In addition
to the investment return, the risks that investors are exposed
to during investment should also be considered. Therefore,
the portfolio can be measured by indicators of profit and risk.
In the following section, we describe the common risk indica-
tors when measuring portfolio performance. The Sharpe ratio
is widely used to measure the performance of an investment
by considering its risk; it is defined as follows:

Sharpe =
Et [ρt − ρf ]√
var

(
ρt − ρf

) (7)

where ρt is the periodic return, and ρf is the risk-free rate of
return. A higher Sharpe ratio indicates higher returns earned
per unit of risk. Profit factor is the ratio of the net profit versus

the net loss, and is defined as follows:

ProfitFactor =
GrossProfit
GrossLost

(8)

Profit factor refers to how much an investor can gain based
on the risk of losing 1 dollar; thus, a higher value is desirable.
The last risk indicator is MDD, which is the maximum loss
from the peak of a portfolio to its trough before a new peak
is attained. MDD is an indicator of downside risk over a
specified time period. MDD is expressed in percentage terms
and computed as follows:

MDD = max
τ∈(0,T )

{
max
t∈(0,τ )

p(t)− p(τ )
p(t)

}
(9)

where time T is the maximum of the drawdown over the
history of the variable p(t) which refers to the closing price
at time t and T > τ . In the first experiment, we com-
pare our reinforcement algorithm with two portfolio bench-
marks and EIIE topology. The first portfolio benchmark,
uniform buy and hold (UBH), involves investing in each
asset evenly at the beginning and retaining the portfolio
until the end of the trading session. The second benchmark,
uniform CRP, is a passive strategy that uniformly rebalances
the proportion of assets at each moment. The EIIE convolu-
tional neural network (CNN) method, which was discussed
in Section III, applies a deterministic policy. We imple-
ment the AC, PG, and PPO reinforcement algorithms. All of
our policies were stochastic. The performance outcomes are
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TABLE 3. Profit factor and maximum drawdown for the standard portfolio optimization’s algorithm in 2017.

recorded in Tables 2 and 3. The rows in the tables represent
30 portfolios, and each column represents a distinct method
for portfolio optimization. We use four technical indicators
to measure the performance of the trading strategy. To facil-
itate our presentation, we divide the four indicators into two
tables. The first table lists the Sharpe ratio and net profit
for each portfolio, and the second table presents the profit
factor and MDD. Thus, Table 2 presents the performance of
the first portfolio in various portfolio solutions. The optimal
performance (i.e., the largest Sharpe ratio, profit, and profit
factor, and the lowest value MDD) in each row is presented in
boldface.

1) SHARPE RATIO
The proposed method outperforms the baseline methods,
CRP and UBH, in terms of the Sharpe ratio (Table 2). More-
over, to evaluate the robustness of our model, we calculated
the number of times each model outperforms the portfolio
baseline CRP. The results indicate that our RL algorithms
surpass the baseline CRP under most circumstances in terms
of the Sharpe ratio. When we scrutinize the performance of
various RL algorithms; overall, the AC model has the high-
est Sharpe ratio, followed by the EIIE CNN; and the base-
line UBH has the lowest score. This outcome is reasonable
because, unlike the other policy-based methods (EIIE CNN
and PG), AC adopts a critic network and thus can perform
robustly.

2) NET PROFIT
Next, in terms of net profit, our proposed RL-based mod-
els also outperform the baseline methods. However, among
the RL-based algorithms, PG displays relatively unstable
performance: although it often outperforms other methods,
it also frequently has lower performance than other meth-
ods. By contrast, AC displays both robustness and stabil-
ity throughout various test cases. Finally, of all the PPO
RL-based methods, PPO exhibits the lowest performance.

3) PROFIT FACTOR
Regarding the profit factor, the RL-based methods still
exhibit robust performance in comparison with the baseline
methods. AC again exhibits optimal performance, followed
by EIIE CNN; PPO again exhibits a relatively poor result.

4) MAXIMUM DRAWDOWN
For MDD, the RL-based methods outperform the baseline
methods. EIIE CNN exhibits the highest performance, and
PPO and PG have relatively poor performance, indicating that
these two methods are less adept at controlling risks.

Overall, RL-based methods perform more favorably than
the baseline methods. Specifically, EIIE CNN and AC exhibit
the highest performance among all the evaluation methods.
However, the general RL methods (RL-based methods) are
clearly deficient in terms of profit stability and risk control.
For example, although the overall average of the PG model
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TABLE 4. Sharpe and profit for the training technique in 2017.

is higher than that of the CRP approach, the PG model only
obtains high returns for specific portfolio assets but suffers
losses in multiple portfolio targets. Therefore, further tech-
niques for controlling risks and enhancing the generalizabil-
ity of these models are required.

E. PERFORMANCE OF THE STANDARD PORTFOLIO
SOLUTIONS
We incorporate adversarial learning and a market representa-
tion network into our framework. We use adversarial learning
to add noise to the price data during our agent’s exploration
phase. The noise added ranges from -1 % to 1 % of the
original value. The purpose of this price perturbation is to
enhance the robustness of reinforcement learning and avoid
overfitting. In addition, market representation network is
applied to provide sufficient information of incoming trends
and potential risk to the agent. This network is trained with
the historical price data of the component companies of Dow
Jones industrial average index from 2016; this period does
not overlap with the training period of the portfolio agent
in reinforcement learning. The performance of the models is
presented in Tables 4 and 5..

The performance of the models is presented in
Tables 4 and 5. In this experiment, instead of performing
comparisons with the portfolio baseline methods, we com-
pare the models with the original RL-based algorithms.

We test four models: (1) the original PG indicated in the
previous experiment, (2) a model trained with PG and adver-
sarial learning, (3) a model trained with PG and the market
representation network, and (4) amodel trained using PG plus
the aforementioned two techniques (i.e., adversarial learning
and market representation). Each row in the aforementioned
tables represents the performance of a particular portfolio
over 60 trading days, and each column represents one of
the model with specific training skills. RP represents the
use of the market presentation network, and adv refers to
the application of adversarial learning. RPadv denotes the
application of both techniques.

1) SHARPE RATIO
Overall, themodifiedPG_RPadv outperforms the other meth-
ods, including the baseline PG_original. In the 30 portfolio
tests, the adv model outperforms the original model; the
Sharpe ratio of the RP and RPadv models is 21 and 23 times
that of the original models, respectively. As long as the
models that applied the market representation network have a
higher Sharpe ratio, the RP and RPadv models perform well.
The results reveal that the method is effective for reducing
risks. Notably, the performance of the adversarial learning
model improves considerably in terms of the Sharpe ratio;
however, its ability for risk control is less than the market
representation network PG_RP.
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TABLE 5. Profit factor and maximum drawdown for the training technique in 2017.

2) NET PROFIT
In terms of net profits, the RPadv model again has the most
favorable results of all the models. According to the net profit
statistics, the performance of the adv, RP, and RPadvmodels
is 29, 21, and 22 times higher than that of the original models,
respectively. Notably, although PG_adv sometimes exhibits
favorable net profit results, PG_RPadv still markedly out-
performs PG_adv on average because it is more stable. This
finding indicates that controlling risks and enhancing gener-
alizability are essential for earning long-lasting net profits.

3) MAXIMUM DRAWDOWN
Regarding the average loss of investors, the RPadvmodel has
the lowest average MDD of all the models, which is consis-
tent with our initial assumptions. The market representation
network PGRP has higher performance in preventing capital
loss than the original model and the adversarial learning
model.

4) PROFIT FACTOR
Concerning the profit factor, our modified PG_RPadv still
outperforms the other methods. The adversarial learning
model is more adept at maximizing profits than the represen-
tation network.

In conclusion, our proposed PG_RPadv is effective over-
all in various evaluation methods. The sole implementation
of adversarial learning may lead to high profits (i.e., profit

factor and profit), but this approach has limited ability in
controlling risks (i.e., MDD and Sharpe ratio). By contrast,
solely implementing market representation techniques may
lead to effective risk control but lower profits. Nevertheless,
both of these approaches still outperform the original PG
method.

F. PERFORMANCE OF ADAPTIVE SAMPLING STRATEGY
The goal of our adaptive sampling strategy is to spend more
time learning with the portfolios that the agent is not famil-
iar with or in which it has relatively poor performance.
In Section III-F, the company’s sampling weight design is
divided into two categories according to whether differ-
ent or same sampling weights are applied for the companies
on different trading days. In the first case, the company’s
sampling weight remains constant on different trading days;
this group is represented by ‘‘Sample Strategy 1’’ in the
following description and in Tables 6 and 7. For ‘‘Sam-
ple Strategy 2,’’ the company’s sampling weight differs on
different trading days. To verify our sampling mechanism,
we employ two RL-based methods, AC and PG algorithms,
with our sampling mechanism. This experiment employs the
same testing data as the previous experiment. The results
are listed in Tables 6 and 7. We use six models in this
experiment, namely PG, AC, PG Sample Strategy 1, AC Sam-
ple Strategy 1, PG Sample Strategy 2, and AC Sample
Strategy 2.
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TABLE 6. Sharpe and profit for sampling method in 2017.

TABLE 7. Profit factor and maximum drawdown for sampling method in 2017.
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1) SHARPE RATIO
The average Sharpe ratio of the 30 environments using our
sampling mechanism is approximately 7 % higher than that
of environments using random sampling (Table 6). PG with
Sampling Strategy 1 has slightly higher performance than
PG with Sampling Strategy 2. Moreover, AC with Sampling
Strategy 1 has the highest performance, followed by AC with
Sampling Strategy 2 and the naïve AC.

2) NET PROFIT
In terms of net profit, bothAC and PGwith Sampling Strategy
2 substantially outperform the other methods. This finding
indicates that distinct sampling weights on different trading
days can enhance profit earning ability.

3) MAXIMUM DRAWDOWN
In terms of MDD, for both the PG or AC RL algorithms,
Sampling Strategy 1 outperforms the original method and
Sampling strategy 2. In terms of MDD, although the loss
suffered by investors during the period is reduced, the degree
of the reduction is not as high as is the case with the market
representation network. This indicates that the sampling
strategy can increase overall performance but only slightly
reduce risk.

4) PROFIT FACTOR
The PG with Sampling Strategy 1 exhibits substantial
improvement—its profit factor is nearly 23 times that of
the original PG. Furthermore, AC with Sampling Strategy
2 exhibits a slightly lower result than AC with Sampling
Strategy 1.

Overall, both our modified sampling methods provide
more favorable results compared with our baseline, random
sampling. Specifically, Sampling Strategy 1 provides higher
results in terms of the Sharpe ratio, profit factor, and MDD.
Thus, employing the same company weights on different
trading days is more appropriate than employing different
values. Finally, AC still outperforms PG in most circum-
stances, which is consistent with our first experiment (see
Tables 2 and 3).

V. CONCLUSION
We proposed a comprehensive RL framework that can
improve generalizability under limited computational
resources by applying adversarial learning, a market repre-
sentation network, and an adaptive sampling strategy. First,
we designed an adaptive sampling strategy to determine
which data are worth learning by observing the learning
condition. This strategy enabled the agent to learn the general
trading strategy more effectively within a limited period.
We also used adversarial learning during the RL process to
enhance the model’s robustness. By adding perturbations to
our highly stochastic stock price streams, we enhanced the
generalizability of our model. Moreover, to help our agent
control risks, we pretrained an autoencoder network to obtain
the latent space of the price and the VAR of the stock streams.

This embedded network, namely the market representation
network, helped our RL agent minimize risks and maximize
returns throughout the portfolio management period. While
the proposed RL learning system still displays less capability
in risk control, in our future work, multi-agent framework
should be adopted and different agents could be designed to
deal with different portfolio management objectives. In this
multi-objective machine learning framework, some agents
focus on portfolio profit maximization, while others might
aim to minimize the risk of the decision making. The agents
can collaboratively find an optimal strategy for portfolio
management which balance return and risk. In addition,
with the use of auto-ML techniques, the hyperparameters of
each experimental settings may be optimized automatically
without manually tuning processes.

Our experimental results indicated that compared with the
naïve learning strategy, the model with our sampling strategy
had 6 %–7% higher performance in terms of the Sharpe ratio
and 45 % higher performance in terms of the profit value.
Furthermore, the model employing adversarial learning and
the market representation network reduced theMDD by 40 %
and increased the Sharpe ratio and profits by 22 times. The
goal of this study was to enable the agent to learn the gen-
eral rules of trading by exploring and learning from a wide
variety of environments containing diverse portfolios. Many
recent studies have employed similar approaches to address
the so-called lifelong learning problem. Lifelong learning is
achieved through continuous learning of new knowledge and
with the aim of achieving excellent results in various tasks.
To enable this process, we must confirm that the knowledge
of the model is transferable, and that the model does not
forget the experience it has acquired. In reality, if the model
learns to perform task 1 and then learns task 2, the model is
highly likely to forget the knowledge acquired in task 1. Thus,
we must incorporate multiple tasks into the model and learn
simultaneously to limit knowledge loss. However, the ability
of models is limited. As tasks continue to increase, we cannot
expect a model to address all the problems. Therefore, in
future work, we hope to apply the notion of metalearning.
The purpose of metalearning is to learn how to learn some-
thing. By continually learning tasks, the model can become
more proficient at learning and can subsequently learn faster
when a new task is presented.Also, we expect to adopt
multi-agent systems to realize multi-objective learning. This
would increase the agent’s ability in incorporating important
information, and achieve robustness and generalizability of
proposed reinforcement learning-based trading system.
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