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ABSTRACT Image haze removal is essential in autonomous driving as the outdoor images captured during
unfavorable weather conditions, such as haze or snow, are affected by poor visibility. Much research has
been done to overcome image degradation such as low contrast and faded color due to haze. However,
in the traditional model, a phenomenon is neglected that several particles simultaneously involved in light
acquisition. To address this problem, we propose a novel single image dehazingmethod based on the spatially
adaptive atmospheric point spread function (APSF). We developed a module that estimates the APSF to
overcome the limitations of the spatially invariant APSFwhich used in existing dehazing algorithms. The key
factor in the estimation is that road scenes with haze have different statistical characteristic from common
hazy images in color and resolution. Furthermore, the APSF on the traffic signs or lights is estimated by
generating superpixels to prevent halo artifacts around the sharp edges of the images. We adopted the total
variation model as a regularization functional to reduce halo and unnatural artifacts that may occur during
deconvolution. The haze-free images from the proposed method tested whether the proposed method can
enhance the performance of vision algorithms for autonomous driving. The experimental results demonstrate
that the proposed method outperforms state-of-the-art image dehazing methods enhancing the performance
of the vision algorithms. Moreover, additional experiments demonstrated the effectiveness of the proposed
method for quantitative and qualitative comparison with the state-of-the-art algorithms.

INDEX TERMS Haze removal, single image dehazing, atmospheric point spread function, multiple
scattering model, road scenes, deconvolution.

I. INTRODUCTION
Image acquired in bad weather conditions such as haze, rain
and dust may suffer from low visibility. Suspended aerosols
interact with light passing through the air, causing absorption
and scattering, in bad weather on hazy or foggy days. This
interaction causes serious image degradation such as blurring
effects, reduced contrast, and false colors. As vision based
autonomous driving and other Advanced Driver Assistance
Systems (ADAS) were developed, the low visibility from bad
weather condition may cause false detection [1]. A simple
example of the effect of haze on the results of the vision
algorithm is shown in Fig. 1. Therefore, an effective haze
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removal algorithm is required to ensure the reliable function
of outdoor vision systems.

Many studies have been conducted on the effect of haze
on color images. Several methods based on multiple images
or fusion of different images. Schechner et al. [2] used a
polarized camera to capture multiple images of the same
scene with different polarization angles and calculated the
atmospheric light and scene depth to obtain a clear image.
Liang et al. [3] proposed a dehazing algorithm that fuses
infrared and visible images to improve the visual quality
of hazy images. Ancuti and Ancuti [4] proposed a method
that fuses two diffidently enhanced images from an original
hazy image to perform contrast enhancement. Although these
approaches achieve remarkable results, they require a mini-
mum of two images or additional cameras that use different
spectral ranges, limiting their applications.
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FIGURE 1. The effect of haze on image acquisition and edge detection.
(a) hazy image, (b) result of the proposed method, (c) Canny edge
detection of (a), and (d) Canny edge detection of (b).

In recent years, single image dehazing methods have been
extensively researched with significant advances that require
priors or assumptions. Fattal [5] proposed amethod to remove
the effect of haze by estimating the albedo of the scene using
the change of the color line. Zhu et al. [6] introduced amethod
based on the fact that haze decrease the color saturation
and increases intensity. Tan [7] proposed an algorithm which
based on the found that the haze-free image with fine visual
effect presents relatively high contrast. Nishino et al. [8]
introduced a Bayesian probability algorithm that jointly
estimates the depth and scene albedo from a single image.
Additionally, several image enhancement methods such
as histogram equalization, wavelet transform, and Retinex
methods exist [9].

Recently, convolutional neural network (CNN) have been
applied in haze removal. Cai et al. [10] suggested that
using trained receptive fields can produce results similar to
heuristic priors, such as dark channel prior (DCP), indicat-
ing that neural networks can remove haze. This indicates
that the neural network could be also used in haze removal.
Ren et al. [11] proposed an effective multi-scale CNN to
restore high quality haze-free images using the NYU depth
dataset [12]. Li et al. [13] re-formulated an end-to-end dehaz-
ing CNN, AOD-Net, which can estimate transmission and
atmospheric light simultaneously. Zhang and Patel [14] pro-
posed the densely connected pyramid dehaze network that
can examine scene depth and atmospheric light simultane-
ously. The hybrid approach to adapt exist dehazing method
into learning based method also studied. Zhao et al. [15]
adopted DCP to adversarial networks (GANs) to increase
the visibility. Chen et al. [16] also used DCP for hybrid
image learning. Although most image enhancement meth-
ods and deep-learning-based methods are easy to implement
and some of them are based on the atmospheric scattering
model, deep-learning-based models face certain challenges

FIGURE 2. Image acquisition in an imaging system using (a) single
scattering model and (b) multiple scattering model.

in training data. Furthermore, most of the existing studies
use indoor image pairs for training and evaluate dehazing
models. Owing to the lack of real-world hazy and clear image
pairs, these learning based methods are ineffective in dealing
with real-world haze images [15]. Moreover, as the suitable
training data for the real-world road scene with haze is not
enough, the learning-based methods may fail to remove the
haze in the road scene.

On the other hand, many physics-based methods have also
been proposed aimed at solving the inverse problem of the
optical model to restore degraded images. Researchers have
observed that the effects of aerosols such as Rayleigh scatter-
ing and Mie scattering follow the Koschmieder’s law [17].
These effects on aerosols exponentially correlate with the
depth of the scene. The widespread haze removal algo-
rithms based on Koschmieder’s law are single scattering
model (SSM) which assumes only one particle affects the
image acquisition. In SSM, the haze removal is an ill-posed
problem as two unknown variables, scene depth and atmo-
spheric light, exist in one equation.

This problem can be solved by setting a prior; the most
commonly used prior is a DCP proposed by He et al. [18]
wherein certain pixels with low intensities exist in at least
one channel of RGB color space. Based on this prior, the dis-
tance between the object and the image acquisition device is
estimated accurately to obtain a haze-free image. However,
DCP fails to recover the sky regions in hazy images, owing to
its similarity to the value of atmospheric light. Consequently,
the color distortions appear in the restored images. Addi-
tionally, DCP sustains halo artifacts in depth discontinuities
without time-consuming soft matting, as it assumes a constant
depth in the local image patch. To address this problem,
Li and Zheng [19] proposed to restore the haze image by
exploiting globally guided image filter.

Furthermore, a non-local approach uses the change of pixel
values to estimate the scene depth and atmospheric light,
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FIGURE 3. Differences in applying deconvolution in dehazing. (a),(d) hazy image, (b),(c) dehazing with/without deconvolution using DCP, and
(e),(f) dehazing with/without deconvolution using the proposed method.

as explained by Berman et al. [20]. Despite recent approaches
based on the flexible adjust the level of the haze removal [21],
boundary constraint [22], and etc., recover quality and com-
plexity of the single image dehazing is still tough problem.
Moreover, SSM ignores the atmospheric scattering with more
than one particle despite adopting a physical model, which
may cause blurring artifacts on the images [23].

Another approach to overcome this limitation of SSM is to
use the multiple scattering model (MSM), which is based on
the idea that more than onemolecule affects the light acquired
by the camera from an object in hazy conditions (Fig. 2).
Unlike in SSM, light entering one pixel of a camera or image
sensor in the MSM is affected by the surrounding region
thus becoming blurred. Narasimhan and Nayar [24] defined
a blur kernel for different weather conditions with the optical
thickness defined as the atmospheric point spread function
(APSF). Wang et al. [25] estimated the blur kernel using the
generalized Gaussian distribution (GGD) to deblur the hazy
image by means of aWiener filter. The results of applying the
SSM and the MSM to the same image are depicted in Fig. 3.
The red box in Fig. 3 depicts that MSM restores the dense
haze better than SSM. Using the blur kernel and deconvolu-
tion, high-frequency information reduced by the haze can be
recovered, which can help estimate the transmission map for
the dense haze regions as shown in Fig. 3. Thus, not only in
the proposed method but also in the conventional dehazing
method, the approach involving deconvolution is found to be
helpful for haze removal.

As dehazing methods are based on the physical model,
including image enhancement and deep-learning-based
methods, they do not consider the characteristics of the road
scene, resulting in darker regions and color shifts in road and
traffic signs. Road regions with achromatic colors, such as
asphalt, are affected by over-saturation or low visibility as
haze removal methodsmake the roads darker. This causes low
visibility in the region of interest, despite the removal of haze.

To address this problem, we propose a novel single image
dehazing method with a spatially variant APSF for road
scenes. We estimate a spatially variant blur kernel for haze
removal to improve the visibility while reducing the artifacts
caused by a spatially invariant blur kernel. Haze removal is
achieved in two steps. Initially, we set the proper blur kernel
with characteristics of haze in the road scene.We estimate the
APSF using generalized normal distribution. Furthermore,
the deblurred image is obtained, minimizing the artifacts
at the edges. The second step estimates the remaining two

unknown values, namely scene depth and atmospheric light,
to recover the scene radiance.

We utilize the DCP proposed by He et al. [18] to estimate
scene depth and atmospheric light. The dehazing method
using DCP removes the haze effectively; however, it presents
a disadvantage in images with dense haze. As the area
affected by the haze more thicker, in terms of contrast the area
have a lower dynamic range, also the low frequency compo-
nent increases in terms of resolution. The low frequency and
contrast complicate the estimation of transmission map in the
haze removal method based on DCP, as all channels in the
area have similar values. This problem can be overcome with
deconvolution.

The novelty of our study is as follows:

• We propose how to estimate the blur kernel spatially
variant with respect to the characteristics of the road
scenes with haze.

• We adopt the superpixel algorithm for blur kernel and
transmission estimations to consider the features of the
road scenes, such as traffic signs and lights.

• We employ total variation (TV) as the regularization
strategy to handle the edges and remove noise in the
deconvolution process during haze removal.

The rest of this paper organized as follows. In section II,
we review the conventional haze removal algorithms using
MSM and explain the superpixel algorithm. Section III pro-
poses a new haze removal algorithm with a spatially variant
blur kernel for road scenes. In section IV, we evaluate the
performance of the proposed method with application to
several vision algorithms and analyze the subjective quality
and objective metrics. Section V concludes the paper.

II. PROBLEM FORMULATION AND RELATED WORK
In this section, we present the existing SSM- andMSM-based
image observation models for haze removal. Further,
we define the spatially variant model for haze removal using
image restoration theory. Finally the briefly review of the
superpixel algorithm is presented.

A. HAZE REMOVAL USING MULTIPLE SCATTERING MODEL
In the SSM, the effect of haze can be defined as follows:

I = J · t+ A(1− t), (1)

where I is the observed image, J is the scene radiance,A is the
global atmospheric light, and t is the medium transmission.
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FIGURE 4. Difference in image segmentation between superpixels and patch-based method. (a), (c), (e) segmentation using superpixels;
(b), (d), (f) segmentation using patch-based method.

t can be represented as

t = exp(−ηd), (2)

where d is the depth and η denotes the atmospheric scattering
coefficient.

However, in MSM, the effect of more than one particle
results in an optical blur on the image plane, as illustrated
in Fig. 2. Wei et al. [23] proposed that scene radiance can be
blurred with the surrounding radiance. However, the method
does not consider the optical blur caused by particles, and
airlight. Narasimhan and Nayar [24] defined APSF which
causes optical blur for isotropic point light source. The
images obtained using MSM model can be expressed as:

Iblurred = I ∗ APSF

= ((J · t+ A(1− t)) ∗ APSF, (3)

where ∗ means convolution operation [26].
The modeling of the image degraded by the MSM is

expressed as an ill-posed problem with three unknowns:
APSF , t, and A, as shown in Eq. (3). Many studies have
been conducted for accurate APSF estimation. The conven-
tional methods used a single kernel based on the weather
conditions, such as haze, fog, and rain as suggested by
Narashiman et al. [24], and Wang et al. [25] used the GGD.
Wang et al. substituted the shape and scale parameter values
of GGD in a Legendre polynomial during application to sev-
eral images. The Legendre polynomial requires one param-
eter value based on weather conditions; thus, the parameter
value used by Wang et al. defines a spatially-invariant APSF
for the entire image. However, spatially-invariant blur kernel
generates artifacts in the flat areas and edges, as depicted
in Fig. 6.

In image restoration theory, the input image degraded by
the blur kernel can be mathematically modeled using the
following equation:

y = Hx+ n, (4)

where y is an observed image, H is the system matrix of
degradation, x is the original image, and n is the correspond-
ing error or noise, which assumed as Gaussian.

The artifact removal usingAPSF is considered as the image
restoration problem, wherein x is determined as:

x = I = (J · t+ A(1− t)). (5)

In the proposed method the degradation matrix H is esti-
mated spatially variant to restore optical blur while suppress

artifact and noise. Additionally, the system matrix H is esti-
mated based on the characteristics of the road scenes, to solve
the problem which road region goes darker with faded color.
The spatially variant blur kernel can be mathematically mod-
eled by the following equation:

yk = hk ∗ xk + nk , (6)

where k is the index for each region and hk is the spatially
variant blur kernel that is considered as APSF in this paper.

B. SUPERPIXEL ALGORITHM
A superpixel is a group of pixels sharing common charac-
teristics, such as pixel intensity. The superpixel algorithm is
widely used in the vision area because it can divides the entire
image into a desired number of regions based on the charac-
teristics of the region and provides useful primitives for evalu-
ating the characteristics of local images [27]. However, owing
to the calculation time and computational cost, the superpix-
els undergo image segmentation. Achanta et al. [27] calcu-
lated superpixels by simple linear iterative clustering (SLIC),
which uses a 5-D space with the L∗, a∗ and b∗ values of the
CIELAB color space and the x, y pixel coordinates for local
clustering. Several approaches have been proposed using
image segmentation with SLIC [9], [25], [28], [29]. The
superpixel is used for segmentation of the sky region using
object [25] or initial transmission estimation [25], [28], [29].

A road scene contains many objects, including traffic signs
and lights. In traditional patch-based methods, these objects
are affected by halo artifacts as the transmission map is esti-
mated differently when the same object is split into multiple
patches. Most conventional methods have different faded
colors or halos appearing in one object, particularly where
color information is essential. This problem can also occur
in the deconvolution of artifacts, such as ringing artifacts and
noise boosting, as incorrect kernel estimation of light sources.
Therefore, blur kernel estimation and haze removal through
segmentation for characteristic regions are required in a road
scene.

In the proposed method, superpixels are used to estimate
the APSF considering the characteristics of each region,
and the regions are classified using the superpixel algorithm
instead of the conventional patch-based algorithm. The pro-
posed algorithm involves images containing haze in a road
scene, and there may be cases wherein the same object is
estimated as different transmission maps. The superpixel

76138 VOLUME 9, 2021



M. Kim et al.: Single Image Dehazing of Road Scenes Using Spatially Adaptive APSF

FIGURE 5. Change in the segmented region according to the number of superpixels. (a) n = 30; (b) n = 50; (c) n = 100; (d) n = 300.

FIGURE 6. Haze-removed image with deconvolution. (a) hazy image and
(b) haze-removed image with the ringing artifact.

algorithm facilitates kernel estimation considering the char-
acteristics of the region, using the cars, roads, and telephone
poles as individual areas, as presented in Fig. 4. Conventional
methods use superpixels to estimate and correct only the sky
regions [25], whereas the proposed method uses superpixels
in the main objects of the road regions as well. The difference
in grouping of images according to the change in the number
of superpixels in Fig. 5. Despite the increase in the number
of groupings, the road and sky regions, the border between
the building and sky, and the border between the building and
road are divided into different groups.

III. PROPOSED METHOD
In this paper, we propose a single image haze removal algo-
rithm using spatially variant APSF based on a MSM. The
proposed algorithm is divided into three parts. At first, we set
priors using the features of the road scene and calculate
the APSF of each region. After estimating the blur kernel,
the total variation is used to restore the degraded image while
preserving the edge. This is followed by the estimation of
the transmission map and airlight based on the deblurred
image. Finally, the haze-removed image is obtained through
the pixel-based blending method.

A. APSF ESTIMATION USING SUPERPIXEL ALGORITHM
In this section, the spatially adaptive APSF is estimated by
measuring the effect of haze on each region. As mentioned
earlier, applying the same kernel to the entire image generates
various artifacts in regions that are less affected by the haze.

In the proposed method, the angle norm factor and gradient
are set to model the characteristics of the road image; APSF

for each region is defined using these two factors. Most road
images are composed of a large amount of edge information
(the peripheral portion excluding the road) and a flat area
(road, vehicle bonnet, etc.). When the image is affected by
haze, the overall contrast of the image including the edge
information decreases. Choi et al. [30] measured the density
of haze features such as contrast energy and image entropy.
In our previous study [31], we measured the degree of haze
contained in a region using the standard deviation and esti-
mated the APSF of the region proportional to it. However,
contrast alone cannot identify whether the area in which the
kernel is estimated is an area with information not visible
owing to the haze or a flat area without haze. Therefore,
the proposed method estimates the blur kernel using the color
information of the area segmented by superpixels combined
with the gradient information.

Fig. 7 expresses the road image including haze and
the value of each pixel in the RGB three-dimensional
(3D) space. In the case of a haze-free image, pixels are
evenly distributed in the R, G, and B planes, as depicted
in Figs. 7(j)-(l). However, the distribution of the pixel values
in hazy images containing details such as leaves, trees, and
signs (Figs. 7(g)-(i)) indicates that the width is narrower than
that of the haze-free image, although the distribution of the
entire hazy image is not particularly focused on one side.
If each pixel of the image is projected onto the RGB color
space in this manner, a unique vector pointed by each pixel is
obtained. This vector can be expressed as;

Ci = [ri, gi,bi], (7)

where i is the pixel position, r, g, and b are the vectors
composed of the pixel value at each color channel.

Earlier studies have established that the distribution of
images containing haze is concentrated around the achro-
matic series [1, 1, 1] in vector form with normalization
between 0 and 1. The sky and the road regions expressed in
the RGB color space in Fig 7. The distribution of the sky
region (Figs. 7(a)-(c)) occupies a very narrow area in 3D
space with most of the pointing vectors point in similar
directions. This is regarded as having a similar direction
vector (position vector) when each point in the sky area is
considered as one vector. The road area (Figs. 7(d)–(f)) also
exhibits a similar distribution (having one position vector),
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FIGURE 7. Expressing each pixel in RGB color domain for different patches. (a)–(c) sky area; (d)–(f) road area; (g)–(i) hazy area; (j)–(l) area without
haze.

TABLE 1. Angle norm factor and the gradient value for Fig. 7.

with the vectors pointing in directions over a relatively wide
range, which can be considered as a large vector magnitude.
However, classifying an area using only a position vector has
certain limitations. For example, although the distribution of
the images in Figs. 7(j) and (k) have similar position vectors
in the sky and the road areas, the vector is stretched more
widely in Fig. 7(k). To define angle norm factor, first the
average of the projected vectors is defined as a mean pointing
vector, and the average of the angles formed by each vector
with mean pointing vector is obtained. The angle norm factor
can be expressed as;

AFk =
1
n

∑
i∈N

arccos (
xi · µk

||xi||||µk ||
), (8)

µk =
1
n

∑
i∈N

Ci = [µ(r,i), µ(g,i), µ(b,i)], (9)

where µ is the mean of each color channel, k is the index
of the separated group with superpixel algorithm, N is kth
subset, and n is the number of the pixels in each subset N .
Thus, the degree of haze through the distribution within a
group in a color space is estimated using the angle norm
factor.

The calculated gradient values and angle norm factors of
the hazy, road, and sky areas are listed in Table 1. Although
both the hazy and road areas have low angle norm factors,
the value is lower in the road area than the dense hazy area.
This is because when there are no unique parts such as a
lane or a crack, the road area appears as a color composed
of components of similar material. If the kernel is estimated
with only the angle norm factor, artifacts occur in the road
area as presented in Fig. 6.
To prevent this, the proposed method uses the gradient

of each group to estimate the kernel. The effect of the haze
appears low in the gradient because the haze component is
applied as an additive term. Generally, the gradient value is
small only in the area affected by the haze. However, in the

image containing the haze, the sky region also has a small
gradient value. The aforementioned color distribution appears
in the road region as well; however, it has a larger value than
the dense hazy region in terms of gradient. This is because
the road surface has a rough surface and not perfectly flat
owing to the different components (concrete, cement, stone,
etc.). In the proposed method, the two regions, sky and road
regions, are separated through a gradient.

The number of gradients in the region is defined as follows:

Gradk (x) = ||∇x||1 =
∑
i∈N

|∇xi|

=

∑
i∈N

|∇vxi| +
∑
i∈N

|∇hxi|, (10)

where |∇vxi|, and |∇hxi| denote the vertical and horizontal
differences between the adjacent pixels, respectively. Eq. (10)
can determine the distribution in the edge of the area in more
detail than the existing contrast measurement methods using
variance and standard deviation.

The road region contains multiple areas with a small num-
ber of gradients, such as signs and lanes. These areas do not
exhibit a significant distinction in the number of gradients
before and after being affected by the haze. Consequently,
it is difficult to determine the degree of haze using only the
number of simple gradients. Therefore, the proposed method
uses the color distribution of the area containing the haze to
estimate the APSF kernel, compensating for the disadvan-
tages of the two terms, the angle norm factor and gradient
value.

In the proposed method, we utilizes the generalized normal
distribution, wherein the additional parameters are added to
the normal distribution, along with the two terms obtained to
estimate the spatially variant APSF. The probability density
function (PDF) of the normal distribution (Gaussian distribu-
tion) and the generalized normal distribution can be expressed
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as follows:

f (z)normal =
1

σ
√
2π

exp {−
1
2
(
z− ψ
σ

)
2
}, (11)

f (z)G_normal =
β

2α0(1/β)
exp(−

|z− ψ |
α

β

), (12)

where ψ is mean or location, σ is standard deviation and
0 is the gamma function. In a generalized normal distribu-
tion, the shape of the symmetric distribution is decided by
the shape parameter β, which also has a relationship with
kurtosis.

Kurtosis measures the ‘tailedness’ of the probability dis-
tribution of a real-valued random variable. The kurtosis is
defined as follows:

Kurt[X ] = E[(
X − ψ
σ

)]4 =
ψ4

σ 4 . (13)

For the generalized normal distribution, the kurtosis
defined as:

Kurt =
0( 5

β
)0( 1

β
)

0( 3
β
)2

. (14)

When kurtosis increases, the distribution is sharply pointed
in themiddle and decays slowly in the tails; when it decreases,
the distribution becomes flatter on the top and thinner in the
tails. In Figs. 8(b) and (c), the graph of lower kurtosis with
sharp peak indicates the value of surrounding pixels. Thus,
kurtosis defines the shape parameter because the lower and
higher kurtosis increases and decreases the influence of the
surrounding pixels, respectively.

In the proposed method, to improve the amount of infor-
mation in the area with a high influence of haze, the APSF is
set using the wide tail considering the surrounding area. The
estimated wide tail kernel and deconvolution improves the
amount of information before transmission map estimation.
In addition, in areas where artifacts may occur because of
deconvolution, such as road and sign areas, a kernel flattened
from the top is estimated using a narrow tail.

Fig. 8(a) presents the relationship between kurtosis and the
shape parameter, β. The change in β for each region region
changes the kurtosis, determining the kernel shape. As the
value of β decreases, kurtosis increases, and the PDF of the
generalized normal distribution is estimated as a kernel of a
shape considering the surrounding area, as the top portion
becomes sharp and the tail portion becomes heavy. As the
value of β increases, kurtosis decreases, and the PDF flattens
the top area and is lighter at the tail, thus being estimated as
a kernel that prevents ringing or other artifacts.

In the generalized normal distribution, the scale parameter
α, determines the spread out degree of the probability distri-
bution. As indicated in Fig. 8, the distribution changes accord-
ing to α despite the same value of β. Therefore, calculating
the value of α is equally important as that of β in determining
the kernel. Figs. 8(b)–(e) present the different APSF kernels
estimated based on the changes in α and β.

The proposed method estimates the different values of β
for each region using the angle norm factor and the gradient
value. If the angle norm factor is small owing to the color
information in a region distributed in a similar direction,
the influence of haze is considered significant. Therefore,
a kernel capable of compensating for high-frequency infor-
mation using the surrounding information before transmis-
sion map estimation is required. For regions with a low angle
norm factor, a kernel with a sharp top region and a wide tail
is used. Therefore, the angle norm factor and β are directly
proportional, and β is expressed as follows:

βk = c1 · AFk , (15)

where c1 is the optimization parameter.
As mentioned previously, the gradient information distin-

guishes between areas containing a lot of haze that cannot be
separated only by color distribution. Therefore, for regions
with similar angle norm factors, smaller and larger gradient
values result in the greater and lesser effect of haze, respec-
tively. As the effect of haze increases, more information must
be restored using a kernel with a wide tail. Thus, the gradient
value is also proportional to β, wherein β is expressed as
follows:

βk = c2 · Gradk , (16)

where c2 is the optimization parameter.
In the proposed method, the value α is set using the modi-

fied angle norm factor. As mentioned earlier, the angle norm
factor indicates the degree of color distribution of a group.
Although the width of the color distribution range of the
group can be determined using the angle norm factor, it is
difficult to ascertain whether the range indicates a specific
color direction. For example, in the case of a sign composed
of the same color, the saturation increases in the original color
direction despite including the haze. These phenomena are
often observed in road images, including traffic lights (red,
green, and yellow), the color of the bonnet, and the head-
lights of vehicles coming from the opposite direction. The
modified angle norm factor measures the angle between the
color distribution of the group and the achromatic color. The
change in the achromatic color increases when the general
area is affected by the haze. Therefore, the pointing vector
[1, 1, 1] of [R,G,B] in the 3D color space is used as the
pointing vector of the achromatic color. The modified angle
norm factor can be expressed as:

MAFk =
1
n

∑
i∈n

arccos (
xi · ep
||xi||||ep||

),

ep = [1, 1, 1]. (17)

In the case of the modified angle norm factor, a smaller
angle between each vector and the achromatic pointing vec-
tor points in an achromatic direction. Therefore, informa-
tion from the surrounding area must be utilized through a
widespread kernel. However, in the case of signs and traffic
lights, although the color distribution of the group is highly

VOLUME 9, 2021 76141



M. Kim et al.: Single Image Dehazing of Road Scenes Using Spatially Adaptive APSF

FIGURE 8. Kurtosis of generalized normal distribution and atmospheric point spread function kernel with different α and β (a) changes of the kurtosis
with different β; (b), (c) α = 1; (d), (e) α = 2.

dense, the angle formed by the achromatic pointing vector
increases owing to the distribution pointing toward the pri-
mary color in the color space. In that case, it is necessary to
prevent aliasing through a narrow tail. Therefore, α and the
modified angle norm factor are inversely proportional to each
other, expressed as follows:

αk =
c3

MAFk
, (18)

where c3 is the optimization parameter. This relationship
can be applied to gradient values as well; the regions with
small gradient values have areas with both low (sky region)
and high modified angle norm factors (traffic signs). Finally,
the APSF for the each group k is estimated into:

APSFk =
β

2α0(1/β)
exp(−

|z− ψ |
α

β

), (19)

where α = c3/MAFk , and β = c1 · c2 · AFk · Gradk .
Using Eq. (4) with H defined based on Eq. (19), x̂

can be restored through a process called deconvolution.
Several deconvolution methods, such as Wiener filtering,
Lucy–Richardson [32], [33], alternating direction methods
of multipliers (ADMM) [34], [35] exist. As indicated in
in Fig. 3, although the noise component may not be included
in a haze composite image using computer graphics, actual
image acquisition involves both haze and noise components.
Therefore, it is necessary to use a deconvolution method
to suppress noise components while preserving the edge
information. This can be achieved using TV regularization
rather than only data fidelity. The deblurred image x̂ can be
expressed as follows:

x̂k = argmin
x
||yk − hk ∗ xk ||22 + λ||∇xk ||

1
1, (20)

where λ is the regularization parameter. The difference
between the deconvolution methods is presented in Fig. 9.
As deconvolution cannot remove haze itself, we compared the
result using the proposed dehazing method. The APSF kernel
is estimated equally for two images and the only difference is
deconvolution method. The edge information of an object can
be preserved during deconvolution using TV, which prevents
artifacts in the red box of Fig. 9.
As the image is restored from the optical blur using

ADMM to solve the TV regularization problem, only two
unknown values remain, which are estimated in the subse-
quent sections.

FIGURE 9. Difference in deconvolution methods indicating dehazing
result using (a) Lucy–Richardson and (b) alternating direction methods of
multipliers.

B. ESTIMATION OF TRANSMISSION MAP & AIRLIGHT
We estimated APSF and restored x into x̂ in section III-A.
The two remaining unknown values are transmissionmap and
atmospheric light.

The proposed method utilizes DCP. The transmission map
is estimated using the deconvolved image with the estimated
APSF. The DCP utilizes the prior that the lowest pixel value
of the three channels in the region is 0 to solve the ill-posed
problem. It can be expressed as follows:

Jdarkpatch(p) = min
(k,l)∈�

min(J c(k, l)), (21)

where p is the dark channel value, k and l are pixel location,
� is a local patch in general and c denotes color channels in
color image which c ∈ (r, g, b). Using DCP, the transmission
map is estimated as follows:

t̄patch(k, l) = 1− w · min
(k,l)∈�

min
c
(
I c(k, l)
Ac

), (22)

where t̄ is estimated depth at (k, l) and w is adaptive param-
eter set to 0.95. The estimated transmission is called coarse
transmission. If coarse transmission used with initial estima-
tion, blocking artifacts occur at the boundary of each block.
He et al. used a soft matting method to remove blocking
artifacts. However, soft matting requires a lot of computation
and time. Bilateral filtering [36] and guided filtering [37]
has adopted to compensate computation while removing the
artifacts. Also, by developing the single-scale, which uses
one patch size entire image, methods based on multi-scale
retinex method of utilizing multiple patch sizes such as small,
medium, and large sizes and weighted summation were also
developed [38]. Multi-scale methods prevent large objects
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from being included in different patches. However, when the
edge information of the image or the characteristics of the
region are not known, this approach has a limit for dividing
the scale.

In the proposed method, in order to compensate the lim-
itations of the patch based DCP, transmission estimation of
the segmented region through superpixel algorithm is used
together. The method to obtain haze-free image through the
two methods is described in section III-C. The DCP using
superpixel is expressed as follows:

Jdarksuperpixel(p) = min
(k,l)∈�′

min(J c(k, l)), (23)

where �′ is the segmented group with superpixel algorithm,
not a local patch. The transmission map is estimated as
follows:

t̄sp(k, l) = 1− w · min
(k,l)∈�′

min
c
(
I c(k, l)
Ac

). (24)

Since segmentation through superpixel algorithm is per-
formed, the possibility of blocking artifacts that may occur
in coarse estimation may also be less as the total number of
masks is smaller than the method using the local patch. How-
ever, the boundary part divided by the superpixel algorithm is
not shaped square in most cases (Fig. 5), and the size between
the boundary is strong. Therefore, smoothing of the edge
part is essential like the patch-based method. To achieve this,
the proposed method utilizes the luminance information of
the input image. The filtered transmission can be represented
as follows:

tpj = aprLj + bpr ,

tspj = asprLj + bspr , (25)

where tp and tsp are the filtered transmission for t̄patch and
t̄sp, respectively, and L denotes luminance component of the
hazy image. The coefficients for guide filter can be expressed
as:

ar =
1
|�|

∑
i∈�r Lipi − µr p̄r

σ 2
r + ε

,

br = p̄r − arµr , (26)

where p is t̄patch for tp, and t̄sp for tsp. The estimated trans-
mission maps with two different approaches and the fil-
tered transmission maps are presented in Fig. 10. The red
box in Fig. 10(c) indicates that the estimation using super-
pixel easily identifies the signs on the road, whereas the
patch-based estimation does not detect it. This can suppress
halo artifacts during the dehazing process.

The final unknown value is atmospheric light. From the
Koschmieder’s law, the atmospheric light can be estimated
where the scene depth is becomes 0. He et al. first picked
0.1% highest pixels from dark channel image, and estimate A
as the highest value among those pixels. However, this poses
a computation problem as all the pixels in the image must be
sorted to pick the highest pixels.

FIGURE 10. Estimated and filtered transmission maps of Fig. 3(d). (a) t̄sp;
(b) t̄patch; (c) guided filtered t̄sp; (d) guided filtered t̄patch.

In the road scene, the sky region is generally included
in the image, except in special cases, and is chiefly dis-
tributed on the upper side in the horizontal direction while
the distribution in the vertical direction can vary. In the pro-
posed method, to speed up the calculation time, the input
image down-sampled 1/4 for horizontal and vertical direc-
tion. As the sky-region occupies most of the road scenes,
the down sampling does not affect to the estimation of A.

We have to extract the object which has white values like
streetlight while extracting the candidate pixels of A. Since
the estimation ofA is made for the pixel with the largest value,
there is a possibility that the value of a white object such as
a streetlight is estimated as the A value. In order to eliminate
not only this possibility but also the problem of color noise,
in the proposed method, morphological filtering is performed
on the candidate set. Through this process, the influence of
the sky region on the estimation of a value can be increased
and the influence of small objects and edges can be reduced.

The haze-free image J can be restored using the decon-
volved input I , A, and filtered transmission map. The
haze-free image, scene radiance, is expressed as:

Jpatch(k, l) =
Ideconv(k, l)− A
max(tp(k, l), t0)

Jsp(k, l) =
Ideconv(k, l)− A
max(tsp(k, l), t0)

), (27)

where t0 is a typical value that prevents the denominator from
reaching 0. As we indicated earlier, we get two scene radiance
which uses patch based DCP, and superpixel segmentation
based DCP.

C. FUSION FOR A HAZE-FREE IMAGE
Asmentioned in III-B, we obtain two different scene radiance
Jpatch and Jsp from Eq. (27). When the same operation (e.g.
gamma correction, histogram equalization, white balance) is
performed into the entire image, the degradation of the hazy
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image is not eliminated because the optical density of haze
varies across the entire image [4]. Codruta et al. performed
weight map andmulti-scale fusion using Gaussian and Lapla-
cian pyramids, differences in luminance, chrominance, and
visual saliency between the haze-removed image and the
original image. However, this multi-scale fusionmethod is for
an image in which only one operation is processed when the
haze is removed, thus limiting the performance improvement.

In the case of an image obtained for transmission using
a superpixel, the major edge portion of the image can be
well-preserved. However, as the same transmission value is
assumed for an area larger than the patch-based method,
the haze-free image may become darker. Therefore, in the
proposed method, the haze-free image is finally obtained
using two different approaches. Theweightmap for the fusion
of two images can be calculated in pixel units using the three
factors proposed in III-A.

The weight map can be calculated based on the change in
the amount of haze before and after removal. This implies
that better haze removal increases the number of gradients,
the color distribution is more diverse, and the achromatic
tendency influencing the haze is reduced. In addition, com-
paring the original image with the image after haze removal
preserves the original value before and after haze removal
for, particularly road parts with small gradient values, traffic
lights, and signs containing one color. The weight map can
be expressed as follows:

W (k, l) =
f sp(k, l)

f sp(k, l)+ f patch(k, l)
,

f (k, l) =
AF(k, l) · Grad(k, l)

MAF(k, l)
, (28)

where f sp and f patch are the factors for the superpixel-based
and the patch-based haze-removed images, respectively,
as mentioned in Eq. (27). The patch size used was identical to
the one used in transmission map calculation. Additionally,
we used the segmentation information of the input image
because the characteristics of a haze-free image are different
from the input image, owing to the superpixel segmentation.
To remove the blocking artifact caused by the superpixel
segmentation, we filtered weight map with guide image, for
which we used multiplication of the patch-based and seg-
mented images. Fig. 11 presents two haze-free image and
weight map with filtering.

The final haze-free image is obtained with:

J (k, l) = W (k, l) · Jsp(k, l)+ (1−W ) · Jpatch(k, l). (29)

IV. EXPERIMENTAL RESULTS
In this section, we validate the performance of our proposed
method using multiple hazy images. The hazy images used
in the experiment are divided into synthetic and naturally
hazy images with and without ground truth, respectively.
We obtained the synthetic images from the Frida image
database [1], [39], Virtual KITTI dataset [40], O-HAZE

FIGURE 11. Haze-free images obtained using (a) superpixel algorithm,
(b) patch-based algorithm. (c) weight map for fusion, and (d) haze-free
image with fusion.

database [41] and RESIDE database [42]. Unlike the syn-
thetic image, natural hazy images do not have ground truth
images, but it is necessary to use the natural hazy images
to check whether the proposed method is applicable. For
the natural hazy images, we collected various images using
Flickr.com and several image search engines including hazy
images from the paper Choi et al. proposed [30]. As the pro-
posed method tests haze removal from road scenes, the exper-
iment was conducted using only the images containing the
road area and cars from the image databases.

Initially, we compared the haze-removed images obtained
using conventional methods. As the proposed method utilizes
DCP, the algorithm proposed by He et al.was compared with
the proposed algorithm. In addition, we compared the method
of removing haze using color attenuation prior (CAP) [5],
and the density of fog assessment-based defogger (DEFADE)
method which analyzes the effect of haze on the image
through various features [30]. To reflect the recent research
on haze removal through a deep-learning approach, we com-
pared the results of the proposed method with that of the
CNN-based dehazing algorithm, DehazeNet [10]. The results
of AOD-Net [13], a learning-based dehazing method using a
scattering model, was also compared together. Additionally,
the results of patch map based hybrid learning dehazeNet for
single image haze removal (PMHLD) [16], which imported
DCP into network, was compared to reflect recent research
on haze removal. Finally, we compared our results with haze
removal based on artificial exposure fusion (AMEF) [43] as
it effectively removes haze from images using a one-sided
histogram.

The results of the proposed method were compared with
the conventional results from two perspectives. Initially,
we applied the haze-removed image through each method
to the vision algorithm that uses the road scene as the input
image, verifying the effect of haze removal on the per-
formance of vision algorithms: Vanishing point estimation
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FIGURE 12. Comparison results of vision algorithms with different haze-removed methods. The first row is hazy and hazy-free images.
The second row is edge map detected with Canny edge detector. The third row is the Hough transform for each results. The fourth row is detected
vanishing point for each image. (a) the hazy image, (b) results of DCP, (c) results of CAP, (d) results of DEFADE, (e) results of DehazeNet, (f) results
of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed method.

utilizes the method proposed by Kong et al. [44] and line
segment detector (LSD) proposed by Gioi et al. [45]. This
is followed by a combined qualitative and quantitative com-
parisons of the results.

For the experiments, we set three parameters which esti-
mates the APSF, c1, c2,and c3 as 1, 1, and 10 respectively. The
number of superpixels are set to 300 for each image. These
parameters have been set up through various experiments.

A. APPLICATION AND EVALUATION FOR DRIVING
ASSISTANCE SYSTEM
As the proposed method removes the haze effect in a road
scene, a subjective evaluation of haze removal is essential to
determine how the haze-removed image affects other applica-
tions while subjective evaluation of the removal of the effect
of haze is also important. In this section, the performances
of various vision algorithms are tested using road scenes to
evaluate whether haze removal enhances their performance.
We compare the results of the performance with the improve-
ment of the Hough transform and edge detection using Canny
edge detector, which is widely used in autonomous driving,
and the results of the vanishing point estimation. Fig. 12 com-
pares the result of the proposed method with the conventional
methods.

As the Canny edge detector includes a threshold, the edge
discrimination ability may vary depending on the threshold
setting. In the Hough transform, thresholds are included in
the parts that can be extracted as straight lines. We experi-
mented without adjusting the threshold because calculating
the optimal threshold for each image affects the detection.

Fig. 12(a), indicates that for a hazy image, the edge is
not estimated using the Canny edge detector and the inter-
section of each line does not occur in the Hough transform.
However, when the haze is removed using dehazing methods,
the intersection between the deformed lines occurs through
edge detection and Hough transform, validating that dehazing

algorithms improve the performance of the vision algorithm.
The edge information in the results of DEFADE, AMEF and
AOD-net (Figs. 12(d), (g), and (f)) increases compared to
the hazy image; however, the increase in edge information
and the number of intersections in the Hough domain is
smaller than those in other conventional algorithms, including
the proposed method. The fourth row in Fig. 12 depicts the
estimated vanishing point using Hough lines, indicated as
yellow lines for each result. The vanishing point is estimated
based on the intersection of the estimated Hough lines. The
results of DCP and PMHLD (Figs. 12(b), and (h)) indicate
that their ability to improve edge information is outstanding;
however, as the Hough line is incorrectly estimated the van-
ishing point is estimated to be several points. Additionally,
the two lines below are estimated to have no relation to the
vanishing point. The results of CAP (Fig. 12(c)) adequately
estimate the vanishing points through the intersection, while
a limitation exists in estimating the Hough lines. The image
in which the haze is removed using the proposed method
(Fig. 12(i)) exhibits the best performance in estimating the
amount of edge information and the vanishing point through
the Hough line in comparison with the other methods, includ-
ing DehazeNet (Fig. 12(e)). The metrics for the improve-
ment in the amount of edge information are compared in
Section IV-B.
The other widely used vision algorithm is line detection.

Fig. 13 presents an image wherein haze is removed using
the conventional algorithm, the hazy image, and the line esti-
mated using LSD. The red box in Fig. 13(a) is a section with
lanes that are important in autonomous driving. However,
it is not considered as a line in an image containing haze.
Although the results of DEFADE and AMEF(Figs. 13(d) and
(g)), presents stable results for haze removal, but they cannot
remove the haze effectively enough to detect a line in the
red box. DCP (Fig. 13(b)) effectively removes haze while
decreasing saturation, but does not effectively express the
length of the lane depicted in red box. The other conventional
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FIGURE 13. Comparison results of lane segment with different haze-removed methods. The first row is hazy and hazy-free images. The second row
represents the detected line for each image. (a) the hazy image, (b) results of DCP, (c) results of CAP, (d) results of DEFADE, (e) results of
DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed method.

methods, such as CAP, DehazeNet, AOD-Net and PMHLD
(Figs. 13(c), (e), (f), and (h)) detect the line in the red box
appropriately and express the edge information of the core
depicted in the blue box properly. However, the proposed
method (Fig. 13(i)) detects the lane in the red box and the edge
information of the corners in the blue box, along with addi-
tional information such as other boundary parts, shadows,
the boundary of the road, and the bottom of the vehicle, which
can be utilized in the vision algorithms. Since the method
proposed in the basic vision algorithm improves the detection
performance of the algorithm, it can be applied to other vision
algorithms.

B. SUBJECTIVE COMPARISON AND OBJECTIVE
EVALUATION
To assess the performance of the proposed method, we tested
various hazy images with images though conventional meth-
ods as mentioned in IV. For fair comparison, we set the patch
size as 7 × 7 and lower bound t0 as 0.1 for the patch-based
methods, DCP, AMEF, and the proposed method. The patch
size of the guided filter for the proposed method is set to
17×17 because it smoothened the blocking artifact reduction.
The results of the conventional methods including proposed
methods on the real-world images are on Fig. 14.
Although DCP removes haze sufficiently, there is no con-

sideration for the sky or road areas, so artifacts such as noise
amplification occur in the wide flat area like haze-opaque
region. As indicated in the first row of Fig. 14(a), the dense
haze in a distant place is not removed effectively. Addition-
ally, the result of the DCP is over-saturated while removing
the haze by using only one prior using the minimum channel,
as depicted in fifth and sixth rows of Fig. 14(b).
The CAP algorithm, proposed by Zhu et al., has weak

ability to remove haze than DCP, while it removes haze better
than DEFADE and DehazeNet. As the CAP algorithm based
on the substitution of the brightness with increasing depth,
the results images are unnatural or darker shown in first and
fourth rows of the Fig. 14(c). Additionally, CAP removing
the haze sufficiently in the anterior region of the image,
the removal of relatively distant haze is limited, as depicted
in the third and fourth rows of Fig. 14(c).
Although the DEFADE algorithm produces stable results,

it does not eliminate the haze effects effectively. As indicated

in Fig. 14(d), the haze in the anterior is removed sufficiently,
but distant part retains some amount of haze. Additionally,
the haze removal in the anterior is inferior compared to
other algorithms because DEFADE initially calculates the
density of haze with features. Although comfortable results
are produced using these features, the drastic removal of haze
is restricted.

In the case of deep-learning-based algorithm DehazeNet,
the images become darker while removing the haze, as indi-
cated in the third and fourth rows of Fig. 14(e). Additionally,
DehazeNet has a limitation in restoring the haze located
far from the image acquisition device (Fig. 14(e)), and
the multiple scattering hazy images cannot be synthesized
as DehzeNet examines only single scattering samples. This
cause the result of the haze-removed image with blurring
effect like fifth row of Fig. 14(e). The CNN for dehazing
might be improved using the proposed method. And the
other deep-learning-based algorithm, AOD-Net, shows stable
results for the images which artificially generated in the last
two rows of the Fig. 14. This is because most of the learning
based algorithms are learned through a haze set made indoors.
However, due to these characteristics, realness results cannot
be produced for real world haze scenes that lack training
data. As depicted in the first and the third rows of Fig 14(f),
the learning-based methods removes less haze for the dense
haze region or real world image than the prior-based methods
including the proposed method.

This phenomenon also occurs in PMHLD, another
learning-based algorithm. As indicated in the bottom three
rows of Fig. 14(h), PMHLD yields better results than those
of the other conventional methods for synthesized hazy
images even when the road area is included. However, for
a real-world hazy scene with the road area (top four rows of
Fig. 14(h)), the performance is degraded in the dense haze
area, and the road area becomes dark. This is because of the
lack of training set for a real-world hazy scene with road area.

The final conventional method is AMEF which is based
on the artificial exposure and image fusion. As AMEF is
based on the fusion, it’s results depends on the fusion fit-
ting. As depicted in Fig. 14(g), although the AMEF provides
stable results without halo artifacts, the result turns darker
while removing haze (fifth row of Fig. 14(g)). Additionally,
as the AMEF algorithm considers only the single scattering
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FIGURE 14. Qualitative comparison of the different methods on real-world images. (a) the hazy image, (b) results of DCP, (c) results of CAP,
(d) results of DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed
method.

model, it cannot remove the blurring effect caused by haze,
as observed in the trees in the last row of Fig. 14(g).
The proposed method has the purpose of restoring the

area with dense haze by using MSM and deconvolution.
As indicated in the second row Fig. 14, the car that was not
visible in the hazy image is clearly visible in the proposed
method. In addition, the proposed method can also prevent
dark regions from getting darker while removing the haze.
The blue car on the left side of Fig. 14(i) proves that the
dark area is better preserved compared to other algorithms.
As the proposed method utilizes MSM, the blurring effect
caused by haze can be removed during the dehazing process.
Based on the fifth row of Fig. 14, the results obtained using
the proposed method have a sharper edge for the cars on
the road and the people in yellow clothes at the bus stop.
This is observed in the last row of Fig. 14 for trees as well.
Finally, the proposedmethod preserves the colors ofmaterials
such as asphalt and concrete of the road in the process of
removing haze. Based on the first, third and fourth rows of
Fig. 14, the color of the road is best preserved through CAP
among conventional algorithms. DEFADE and DehazeNet
have a limitation in removing haze in the road regions, while
DCP and AMEF are over-saturated. However, the proposed
method sets a prior for the road region using the gradient
and the color component. Therefore, the result of Fig. 14(i)
preserves and restores the road color despite the different
materials.

The synthetic image validates the effectiveness of the pro-
posed algorithm in removing the haze contained in the road
compared to the conventional algorithms. Fig. 15 and Fig. 16
present synthetic images from the virtual KITTI, FRIDA,
and FRIDA2 dataset created using computer graphics. These
synthetic images are used for comparison of results because
acquiring an image without haze and an image contained in
the actual image under the same environment is difficult.
For the virtual KITTI dataset, as indicated in Fig. 15(a),
the cones behind the white sign are covered by haze, unlike
in Fig. 15(j). Among the conventional methods, DCP and
PMHLD (Figs. 15(b) and (h)), restore the cones. However,
PMHLD does not remove haze at a distance. CAP and
DEFADE (Figs. 15(a), and (d)) do not sufficiently remove the
haze, whereas DehazeNet and AOD-Net (Figs. 15(e) and (f))
make the image darker. In contrast, the proposed method
(Fig. 15(i)) restores the hazy image effectively while pre-
serving the road regions and objects on the road, such as
cars, signs, and the cones behind the sign. The FRIDA and
FRIDA2 datasets contain four different haze types: homoge-
neous, heterogeneous and with and without cloud environ-
ments. Among the conventional methods, DCP yields the best
performance in removing the four different types of haze.
For the heterogeneous haze, most of the methods exhibited
good performance in removing the haze; however, except for
the proposed method, all other methods generated artifacts,
indicated by color of the blue crosswalk sign changes in the
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FIGURE 15. Qualitative comparison of the different methods on virtual KITTI image. (a) the hazy image, (b) results of DCP, (c) results of CAP,
(d) results of DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of PMHLD, (i) results of the proposed method,
(j) ground truth images.

FIGURE 16. Qualitative comparison of the different methods on FRIDA and FRIDA2 data set image. First fifth rows: heterogeneous haze. Second
sixth rows: cloudy homogeneous haze. Third seventh rows: cloudy heterogeneous haze. Fourth eighth rows: homogeneous haze. (a) the hazy image,
(b) results of DCP, (c) results of CAP, (d) results of DEFADE, (e) results of DehazeNet, (f) results of AOD-Net, (g) results of AMEF, (h) results of
PMHLD, (i) results of the proposed method, (j) ground truth images.

first row of Fig. 16. However, the proposed method removes
the haze up to the location where the tree is visible without
changing the color of objects, including signs. The deep-
learning-based methods, DehazeNet and AOD-Net, make the
road darker while removing haze. PMHLD exhibits the sec-
ond best performance among the deep-learning-based algo-
rithms; however, it is not as effective in dense haze areas with
cloudy environments. The CAP algorithm, is based on the
color change, causing the dehazed image to becomes darker
and decreasing the saturation particularly in achromatic areas
with objects such as cars and roads. Finally, the AMEF
method removes haze without generating artifacts; however,
it does not remove dense haze regions. The proposed method
removes all four haze types without generating artifacts or
causing a color change of the objects in the road scene.

Unlike real world data, synthetic data has the original
image. Therefore, the amount of haze effect removed by
the dehazing algorithms can be measured and compared to
the original image. Table 2, presents the quantitative mea-
surements for Fig. 15 and Fig. 16. For the virtual KITTI
dataset, 150 images were selected and all images in FRIDA
and FRIDA2 conducted in the experiment. Three metrics,
namely structural similarity index (SSIM) [46], peak signal to
noise ration (PSNR) and fog aware density evaluator (FADE),
were used to compare the results of the proposed method
with the conventional methods. SSIM is an image quality
metric based on the computation of three terms, the lumi-
nance tern, the contrast term and the structural term. SSIM
is an index that better expresses how similar the original and
processed images are in the human visual system than the
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TABLE 2. Quantitative measurement results of synthetic datasets.

PSNR calculated by simply calculating the mean square error
between pixels. The SSIM has boundary between 0 and 1,
the value near 1 means output image has similar structure
with reference image. FADE is proposed by choi et al. which
calculates the density of haze with features. The smaller value
of FADE means the image contains less haze component.
In Table 2, the numbers highlighted the darkest, second dark-
est, and third darkest denote the highest, second-highest, and
third-highest performances, respectively.

In virtual KITTI dataset, the proposed method showed
the highest and second-highest performances for SSIM
and PSNR, respectively; the DCP and CAP presented the
third-highest and the highest results for the SSIM and PSNR,
respectively. As the SSIM calculates the structural similarity
between the output image and reference image, the proposed
method restores the hazy image effectively among conven-
tional methods. This is also validated by the proposed method
exhibiting the lowest FADE value, which measures the den-
sity of the haze, while the hazy image has the highest FADE
value. In the FRIDA and FRIDA2 dataset, the proposed
method shows at least the third highest for all metrics. This
shows the proposed methods removes haze effectively with
quantitative metrics.

To evaluate the performance of the proposed method quan-
titatively for natural images, several metrics measured the
improvement of the hazy image. We focus on the image qual-
ity into four parts. As the natural images does not have images
with haze, the metrics are almost blind quality measurements.
Initially, we apply a blind assessment metric derived in [47],
which measures the improvement by the ratios of the newly
visible edges and gradient magnitudes. The newly visible
edges and the ratio of the gradient norms over edges are
denoted by the indicators e and r̄ , respectively. The larger
values of e and r̄ indicates a better restoration of haze.
We adopted natural image quality evaluator (NIQE) [48] to
measure whether the results distorted while dehazing. The
NIQE indicator measures the quality of the image using the
features from natural scene statistics (NSS). Low values of
NIQE indicates that the output image has lower distortions
and distributions similar to NSS. The indicator FADE is
calculated using all the experimental images with various

algorithms, as we chose FADE for changing the haze den-
sity. Finally, to measure the improvement of the dehazing
algorithm, we apply the recently proposed indicator to the
overall dehazing quality index (DHQI) [49]. DHQI calcu-
lates the overall dehazing quality of the algorithms with
haze removing features, structure-preserving features, and
over-enhancement features which are the key aspects of
dehazing. High DHQI values indicate better restoration of the
hazy image. Table 3 calculates the five assessment criteria for
the images in Figs. 12 and 13. The numbers highlighted the
darkest, second darkest, and third darkest denote the highest,
second-highest, and third-highest performances, respectively,
similar to Table 2.

Table 3 shows that in most cases, the proposed method
exhibits the highest performance for all four haze types.
While DCP presents the highest performance for e, PMHLD
shows the best results among the conventional methods. This
indicates that the DCP-based method and PMHLD perform
better than other conventional methods in terms of new vis-
ible edges and haze density. However, Table 3 also vali-
dates that the results of the conventional methods exhibit
lower quality in terms of NSS after dehazing, except for the
proposed method. The PMHLD method exhibits the highest
performance among the conventional methods for the DHQI
index in Figs. 12 and 13. The proposed method exhibits
the second highest performance in the overall quality mea-
surements except r̄ . This indicates that the newer algorithms
are performing better and the newer metrics may be suitable
for recent algorithms. This result reveal that the proposed
algorithm not only aids in improving the performance of
the vision algorithm, but also demonstrates high dehazing
performance quantitatively.

As presented in Table 4, the highest performance among
dehazing methods depends on the input image. The image
set in Fig. 14 is composed of the road scenes with different
image acquisition angle, railroad scene, and sidewalk with
people. DCP shows better performance for the new visible
edges, with less haze density. However, DCP exhibits low
quality with NIQE and DHQI, caused by the over-saturation
and noise boosting at the sky region of the DCP. Despite
CAP presents a stable result and high value in DHQI, it does
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TABLE 3. Quantitative measurement results IN terms of e, r̄ , NIQE, FADE, DHQI, and SSIM on the Fig. 12 and Fig.13.

TABLE 4. Quantitative measurement results IN terms of e, r̄ , NIQE, FADE, and DHQI on the Fig. 14.

not produce a higher result than other algorithms in the new
visible edge. However, it performs better than other meth-
ods in scenes that include railroads. DEFADE performs the

best among conventional methods, in which the visible edge
increases, the NIQE does not increase compared to the hazy
image, and the haze density decreases in real-world image.
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TABLE 5. Quantitative measurement results IN terms of e, r̄ , NIQE, FADE, and DHQI on various image sets.

However, it does not produce better performance than the
proposed method because the restoration of the area where
dense haze exists is low. Despite Dehazenet exhibiting high
performance in DHQI, image darkening worsens the perfor-
mance compared to other conventional methods in terms of
the new visible edge and contrast. PMHLD exhibits a good
performance for FADE and DHQI, but it has a limitation in
dense haze removal. The metric for new visible edges is not
high for PMHLD. Although AMEF does not generate artifact
such as halo, the quantitative measurements of AMEF are not
higher than those of the conventional methods. The proposed
method demonstrates a better performance for images with
haze acquired from the top view of the road and sidewalk with
people. However, the proposed method has a lower quality
index for the scene with a railroad because it has a prior with
road scenes.

Finally, we select 150 haze images from dataset and
real-world images mentioned in IV and restore all images
using the conventional methods including the proposed meth-
ods. Table 5 shows the average of each quality metrics to
measure the dehazing performance. Table 5 indicate that the
proposed method outperforms the conventional methods in
terms of new visible edge, blind image quality from NSS,
density of haze, and the overall dehazing quality. The exper-
imental results validate that the proposed method can be
extended to general haze images as well as haze with road
images.

V. CONCLUSION
In this paper, we propose a novel haze removal algorithm
using a multiple scattering model. Unlike the most of the
existing approaches are based on the single scattering model,
or spatially invariant blur kernel, we proposed a spatially
variant atmospheric point spread function with superpixel
algorithm. Moreover, the generalized normal distribution is
employed to model the physical blur kernel caused by multi-
ple scattering, atmospheric point spread function. We define
the blur kernel of each region with three different prior for
characteristics of the road scenes: the angle norm factor, gra-
dient value, and the modified angle norm factor. To prevent
artifacts from edges and remove noise, the total variation
regularization is adopted. Experimental results indicate that
the proposed method can be applied to improve the perfor-
mance of the vision based algorithm for road scenes. The
proposed method evaluated using subjective assessment as
well as objective measures. The comparison results indicates
that the proposed method can achieve better results than the

other state-of-the-art dehazing algorithms quantitatively and
qualitatively.
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