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ABSTRACT Numerous metamorphic and polymorphic malicious variants are generated automatically on
a daily basis. In order to do that, malware vendors employ mutation engines that transform the code of
a malicious program while retaining its functionality, aiming to evade signature-based detection. These
automatic processes have greatly increased the number of malware variants, deeming their fully-manual
analysis impossible. Malware classification is the task of determining to which family a new malicious
variant belongs. Variants of the same malware family show similar behavioral patterns. Thus, classifying
newly discovered malicious programs and applications helps assess the risks they pose. Moreover, malware
classification facilitates determining which of the newly discovered variants should undergo manual analysis
by a security expert, in order to determine whether they belong to a new family (e.g., one whose members
exploit a zero-day vulnerability) or are simply the result of a concept drift within a known malicious
family. This motivated intense research in recent years on devising high-accuracy automatic tools for
malware classification. In this work, we present DAEMON—a novel dataset-agnostic malware classifier.
A key property of DAEMON is that the type of features it uses and the manner in which they are mined
facilitate understanding the distinctive behavior of malware families, making its classification decisions
explainable. We’ve optimized DAEMON using a large-scale dataset of x86 binaries, belonging to a mix
of several malware families targeting computers running Windows. We then re-trained it and applied it,
without any algorithmic change, feature re-engineering or parameter tuning, to two other large-scale datasets
of malicious Android applications consisting of numerous malware families. DAEMON obtained highly
accurate classification results on all datasets, establishing that it is not only dataset-agnostic but also platform-
agnostic. We analyze DAEMON’s classificationmodels and provide numerous examples demonstrating how
the features it uses facilitate explainability.

INDEX TERMS Malware classification, malware families, server-side polymorphism, static analysis.

I. INTRODUCTION
Traditional anti-malware software relies on signatures to
uniquely identify malicious files. Signatures of files are
based on their content. Malware vendors have responded
by developing metamorphic and polymorphic malware.
These malware are generated automatically using mutation
engines that apply one or more obfuscation techniques.
Common obfuscation techniques include subroutine reorder-
ing, dead-code insertion, register renaming, and encryption.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Liu .

These techniques transform the code of a malicious pro-
gram, while retaining its functionality, in order to evade
signature-based detection [1]–[4].

These mechanisms for automatic malware generation
caused the number of malware variants to skyrocket. The
number of new variants created during 2016-2018 alone
is estimated by more than 1.25 billion [5], deeming man-
ual analysis of new variants infeasible. Variants belong to
the same malware family if they show similar behavior
and attempt to exploit the same vulnerabilities. This often
implies that they are metamorphic/polymorphic variants of
the same original malicious program.Malware classification
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is the task of determining to which family a new variant
belongs. Automatic classification of newly discovered vari-
ants helps assess the risks they pose and determine which
ones should undergo manual analysis. Security expert’s anal-
ysis helps determine whether they belong to a new family
or are malware variants indicating a concept drift within a
known malicious family. The process of manual analysis
is time-consuming and costly. Thus, malware classification
is highly beneficial because it can greatly reduce the num-
ber of samples that require manual analysis. Consequently,
high-accuracy automatic tools for malware classification are
a key component in cyber security.

Malware classification is based on features extracted from
analyzed malware samples. Tremendous efforts have been
invested in recent years in classifying malware based on fea-
tures extracted using static analysis (e.g. [6]–[17]), dynamic
analysis (e.g. [18]–[24]), or hybrid techniques that utilize
both static and dynamic features (e.g. [25]–[28]). Whereas
static analysis is based solely on the contents of the sam-
ple under consideration, dynamic analysis executes it in a
controlled environment and studies its run-time behavior.
Although dynamic analysis does not require disassembly
of the executable sample, it consumes much more time
and computing resources in comparison with static analy-
sis [29]. Moreover, malware vendors have found ways of
hindering, impeding, and evading dynamic analysis [1], [2].
In this work, we focus on malware classification using static
analysis.

We say that a classifier is dataset-agnostic if we can apply
it to different datasets without performing any algorithmic
changes, feature re-engineering, or parameter tuning. We say
that a feature derived from an analyzed sample is platform-
agnostic, if it does not rely on any knowledge of the platform
which the sample targets. This implies that the computation
of a platform-agnostic feature must be done without any
knowledge of the sample’s executable-format or the plat-
form’s instruction set architecture. If a feature is not platform-
agnostic, we say it is platform-dependent. When we refer to
the lack of feature re-engineering, we mean that features are
selected according to DAEMON’s feature mining algorithm
which works in exactly the same manner when applied to
different datasets. Obviously, in general, different features
would be selected for different datasets.

Examples of platform-dependent features include the dis-
tribution of instruction opcodes, platform register usage
frequency, strings that appear in a specific header of the
executable, the number of executable sections and their
sizes, etc. Examples of platform-agnostic features include
N -grams, sample size, and features derived from the distri-
bution of byte-values and from the entropy of the sample’s
contents. We call a malware classifier platform-agnostic if
it can accurately classify collections of malware executables,
regardless of the platform they target, without performing any
algorithmic changes or any form of feature re-engineering.
Consequently, platform-agnostic classifiers are classifiers
that only use platform-agnostic features.

II. CONTRIBUTIONS
To the best of our knowledge, no previous effective and
explainable malware classifier was evaluated on several
datasets of executables targeting different computer plat-
forms, let alone, without performing some algorithmic
changes, feature re-engineering1 or parameter tuning.
In this work, we present DAEMON, the first prov-

ably effective and explainable platform-agnostic and
dataset-agnostic malware classifier. We have optimized
DAEMON using Microsoft’s Kaggle Malware Classification
Challenge dataset [30], which consists of 21,741 malware
samples of Portable Executable (PE) format. The dataset
is comprised of x86 binaries,2 belonging to a mix of 9
different families. DAEMON provides classification results
which place it among the top 3 out of more than 370 clas-
sifiers evaluated on this dataset. We then re-trained and
applied DAEMON, without any algorithmic change, feature
re-engineering or parameter tuning, to two other datasets
that are collections of Dalvik bytecode Android applica-
tions. The first is the Drebin dataset [17], [31], consisting
of 5,560 malicious applications from 179 different malware
families. The second is the CIC-InvesAndMal2019 dataset
[32], [33], which consists of 426 malicious files belonging
to 42 malicious families. DAEMON’s classification results
significantly exceed those of all previous classifiers evaluated
on both Drebin and CIC-InvesAndMal2019.

DAEMON’s high classification accuracy of executables
from different platforms stems from the fact that it considers
all N -grams for certain values of N that are much larger
than those typically used by malware classifiers as potential
features. Since for large values ofN the set of allN -grams that
appear in dataset files is huge, the key challenge addressed
by DAEMON is that of efficiently mining a relatively small
subset of effective features from this set. As we describe in
section IV, these features are mined from the initial set of
candidate features in several stages. Specifically, feature min-
ing is done in a manner that attempts to preserve a sufficient
number of high-quality separating features, for every pair of
malware families.

An important advantage which arises from the type of
features used by DAEMON and the manner in which they
are mined is that its classification results are explainable.
Each feature that ‘‘survives’’ the filtering process and is used
by the machine learning algorithm employed by DAEMON
is labeled by the set of family-pairs that it is effective in
separating. Moreover, the long N -grams used by DAEMON
as features are often either readable strings (e.g., strings
identifying imported API functions) or snippets of malicious
code. The combination of information-rich features and the
knowledge of which families they are able to tell apart
facilitates the analysis of a malware family’s behavior and
what distinguishes it from other families. This is in contrast

1As we’ve written previously, this does not mean that the same features
are used for different datasets.

2This is the format used by Windows executables.
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with many malware classifiers, which are based on statistical
features. DAEMON’s code is publicly available.3

The rest of this article is organized as follows. We describe
related work in Section III. We then present the DAE-
MON classifier in Section IV. In Section VI, we describe
the datasets we use in this work. This is followed by a
description of our experimental evaluation and its results
in Section VII. We provide examples of how DAEMON’s
classification results allow gaining insights into the behavior
of malware families in Section IX. We discuss more related
work, limitations and avenues for future work in Section X,
and conclude in Section XI.

III. RELATED WORK
Malware classification is one of the key challenges in con-
temporary cyber security research. This task can be addressed
using one of the following approaches: static analysis,
dynamic analysis, or hybrid analysis which is a combination
of the two. Static analysis is based solely on the analysis of an
executable file’s contents, whereas dynamic analysis is based
on the run-time behavior of a program as it executes. Hybrid
analysis is not very common for classification purposes and
is used in a relatively small number of works [26]–[28], [34],
[35]. In the following, we describe several prior works that
presented static or dynamic analysis malware classifiers and
focus on those works that were evaluated on the three datasets
on which we evaluated DAEMON.

A. DYNAMIC ANALYSIS
Most contemporarymalware employs obfuscation techniques
such as encryption and packing in order to make static anal-
ysis difficult [2], [3]. Consequently, many works take the
approach of developing behavior-based malware detection
and classification methods. Dynamic analysis is based on the
run-time behavior of the malware, typically executed inside a
secure sandbox. Therefore, it is unaffected by such obfusca-
tion methods. On the downside, dynamic analysis consumes
more computational resources [29]. Moreover, contemporary
malware often checks whether it is running in a virtual envi-
ronment and exposes its malicious nature only after verifying
that this is not the case. Consequently, it becomes increasingly
difficult to devise virtual environments that seem sufficiently
genuine for the malware to expose its payload [1].

Techniques for evading dynamic analysis have existed for
many years and are utilized not only by malicious programs
that target Windows-based platforms but also by Android
malware. For example, the Android.Adrd Trojan [36], discov-
ered in 2011, executes itself only if either:
• Twelve hours passed since the Android OS was booted.
• The device lost and then re-gained network connectivity.
• A phone-call was received.
In order to aid Android malware researchers, several

datasets consisting of samples belonging to various mal-
ware families were published. A few of these datasets,

3https://github.com/RonsGit/DAEMON-Extraction-Process

such as the Drebin dataset [17] and the Android Malware
Genome Project [37], became benchmarks for the evaluation
of Android malware classifiers and detectors.

Afonso et al. [18] proposed a set of statistical features
regarding the behavior of Android applications. These fea-
tures include frequencies of API-calls and system-calls.
In addition, they compared different machine learningmodels
using these features and established that their random forest
model substantially outperformed the rest.

Dash et al. [22] presented DroidScribe in 2016, a clas-
sifier for Android malware that is based on behavioral
aspects. These include features such as API-calls and ‘‘high
level behaviors’’, representing combinations of traditional OS
operations (such as process creation) and selected Android
methods (such as sending SMS messages). They evaluated
their work on the Drebin dataset [17] and the Android Mal-
ware Genome Project [37] (which was incorporated into
Drebin since then).

Additional works that have taken a dynamic analysis
approach for malware classification and used Drebin include
[19], [23], [24].

Martin et al. [23] combined dynamic analysis and
Markov-chain modeling for malware classification. In
this work, both classical machine learning classifiers and
deep-learning classifiers were used.Massarelli et al. [24] ana-
lyzedmalicious Drebin instances and computed classification
features based on an application’s resource consumption over
time.

Cai et al. [19] observed that most dynamic approaches
rely on characterization of system calls which are subject to
system-call obfuscation. Therefore, their proposed solution,
DroidCat, relies on a set of dynamic features. These features
include method calls and inter-component communication
(ICC), even those defined by user code, third-party libraries,
etc., instead of monitoring system calls. They state that their
solution has superior robustness to obfuscations in compari-
son withmost state of the art Androidmalware detection tools
(both static and dynamic) at the time.

Several works have applied dynamic analysis techniques
for malware classification of PE files. Huang et al. [38] per-
formed dynamic analysis for feature extraction and then used
a deep-learning classifier for malware family classification.
They trained and tested their classifier using a large dataset
comprising 6.5 million files. Tian et al. [39] extracted API
call features via dynamic analysis, devising both a malware
detector and a malware family classifier.

They evaluated their algorithm using a dataset comprised
of 1,368 malicious and 456 clean PE files. We are not
aware of any dynamic analysis work that was done using
Microsoft’s Kaggle dataset because, as we’ve mentioned,
Microsoft removed the headers from the PE executables in
this dataset.

B. STATIC ANALYSIS
In general, static analysis consumes less computational
resources than dynamic analysis, is commonly used, and is
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able to provide good classification results even when mali-
cious programs are obfuscated. In what follows, we focus
on recent works evaluated on common malware datasets
including Microsoft’s dataset and the Drebin dataset. We
start by describing some of the malware classifiers that were
evaluated using Microsoft’s Kaggle Malware Classification
Challenge dataset.4 To the best of our knowledge, all of these
classifiers were evaluated only on this single dataset.

The winning team in the competition was able to train
a powerful model with 99.83% accuracy over 4-folds cross
validation, and an extremely small logloss of 0.00283 on the
competition’s test data [40]. Many works that were published
after the competition has ended tested various static-analysis
based malware classifiers using this dataset and we proceed
to briefly describe a few of them.

Ahmadi et al. [11] designed a classifier that combines
several types of features derived from pixel intensity, op-code
counts, PE metadata, 1-grams, and more. Zhang et al. [13]
devised an ensemble classification model, obtaining a logloss
of only 0.00426 and high cross-validation accuracy of 99.79.
Another interesting technique for improving classification
accuracy is seen in the work of Hu et al. [12], that incorpo-
rated threat intelligence data such as anti-virus labels of the
malware.

We next describe Android malware detectors and classi-
fiers. Avdieenko et al. [8] proposed using the level of dissim-
ilarity between malicious and benign applications in order
to detect malware variants. They developed MUDFLOW,
a tool that uses sensitive data flows as features to describe
the behavior of an application, improving malware detec-
tion quality in comparison with earlier works. They evalu-
ated their tool on malware files from the Android Malware
Genome Project (which was incorporated into Drebin since
then).

Conti et al. [6] presented MaMaDroid, a malware detec-
tor that attempts to statically profile an application’s behav-
ior, in the form of a Markov chain, from the sequence of
abstracted API-calls performed by it. Subsequently, it uses
this behavioral model to extract features and perform detec-
tion. By abstracting API-calls to their packages or fam-
ilies, MaMaDroid gains some resilience to API changes.
They evaluated their work on malware files originating from
Drebin and VirusShare.5

Suarez-Tangil et al. [7] raised the problem of obfuscations,
and suggested using resource-centric features in order to
improve their detector’s ability to mitigate obfuscated mal-
ware. The resource-centric features are diverse, and include
certificates, shared libraries, etc. The authors state that a
combination of resource-centric features along with com-
mon syntactic features such as strings, services, and APIs,
improves their solution’s resilience to obfuscations while
retaining fine performance. They evaluated their malware

4https://www.kaggle.com/c/malware-classification/leaderboard
5https://virusshare.com

detector and family classifier, DroidSieve, on several datasets
including the Drebin dataset.

Only a few works devised classifiers that use only
platform-agnostic features. Kebede et al. [14], Narayanan
et al. [16] and Le et al. [15] all presented deep learning
classifiers based on a feature set including mostly N-grams
and evaluated them using Microsoft’s dataset. DAEMON
obtains better results in terms of both logloss and accuracy
in comparison with these works.

Although the vast majority of previous works did not use
long N -gram features for malware detection/classification,
as done byDAEMON, a few exceptions exist. Dinh et al. [41]
employed the Smith-Waterman DNA sequence alignment
algorithm in order to generate family signatures. They have
found a few interesting sequences in the Ramnit and
Lollipop families of Microsoft’s dataset. However, they
stated that their algorithm took an extremely long time to run
and was thus unable to process all family variants, hence did
not manage to fully construct family signatures. DAEMON
managed to extract parts of the sequences found by their
algorithm efficiently and used them as features for family
classification.

Another work that employs long N-grams (128-bytes long)
is that of Faruki et al. [42], which presents the AndroSim-
ilar malware detector. AndroSimilar targets the detection of
zero-day Android malware, using what they call ‘‘statistically
improbable features’’. These are long N-grams, whose ran-
dom occurrence is very improbable. They use these features
for generating file signatures. These signatures are then used
in order to search for similar (up to a certain threshold)
signatures in a designated malware database. The system
alerts when a match is found. The most popular 128 features
found are stored in a Bloom filter representing the file sig-
nature. DAEMON also uses long N-grams, but they are used
for family classification rather than for detection. Moreover,
whereas AndroSimilar uses a uniform N-gram length, settles
for partial matches, and uses fuzzy hashing, DAEMON uses
several N -gram lengths and requires exact matches.

IV. THE DAEMON MALWARE CLASSIFIER
The high-level structure of DAEMON’s model generation
process is presented in Figure 1. The number displayed below
each outgoing edge at the bottom of Figure 1 is the number
of candidate features that remain after the corresponding
algorithm stage, when DAEMON is trained on Microsoft’s
Kaggle dataset (see Section VI for a description of this
dataset). DAEMON’s high-level pseudo-code is presented in
Algorithm 1.

The key features used by DAEMON are byte-sequence
N -grams, which are contiguous sequences of N bytes from a
sample’s content. Using a parameter Cmax , DAEMON builds
a set L = {2i|i ∈ {2, 3 . . .Cmax}} of lengths for N -grams that
will be mined by the algorithm. We would like Cmax to be
large enough to capture large snippets of code, strings, etc.,
but not too large, since DAEMON’s memory consumption
and run-time requirements quickly growwithCmax .We chose
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FIGURE 1. DAEMON’s model generation process.

Algorithm 1 DAEMON Model Generation Pseudo-Code
1: // Stage 1: Entropy threshold computation.
2: for N ∈ L do
3: Randomly sample α · |TrainSet| training-set files
4: Randomly select β N -grams from each sampled file
5: AvgEnt← average entropy of selected N -grams
6: tN ← AvgEnt · fact[N ]
7: end for
8: // Stage 2: Family representative N-grams extraction.
9: for each malware family F do
10: for each F ∈ F in training set do
11: for each N ∈ L do
12: for each N-gram s ∈ F s.t. H (s) ≥ tN do
13: Increment Count(F, s)
14: end for
15: FReps(F)← all s s.t. Count(F, s) ≥ bγ |F |c
16: end for
17: Calculate 1-gram vector < c0, . . . , c255 > for F
18: end for
19: end for
20: // Stage 3: Pairwise-separating features selection.
21: for each families-pair < F1,F2 > out of the k families do
22: Select the topmost B/

(k
2

)
stage-2 separating features

23: end for
24: // Stage 4: Feature-vectors computation.
25: for each file f in training set do
26: Use Aho-Corasick to find which n-grams appear in f
27: Construct f ’s feature-vector v, where dim(v) = B+ 256
28: end for
29: // Stage 5: Random forest model generation.
30: Generate initial random forest model
31: Choose C � B most important features
32: Generate final random forest model

to use Cmax = 5, hence DAEMON mines N -grams for N ∈
L = {4, 8, 16, 32}. This value ofCmax was empirically shown
to provide good classification results on Microsoft’s Kaggle
dataset, while requiring reasonable computational resources.

The set of all possible N -grams of these lengths is huge
and its cardinality is �(25632). In order to efficiently mine
a small subset of effectively-separating features, DAEMON
applies a series of stages, each reducing the size of the
candidate-features set. These are described in the following.

V. STAGE 1: ENTROPY THRESHOLD COMPUTATION
DAEMON’s feature mining process starts by computing, for
each length N ∈ L, an entropy threshold. The entropy of a
byte-sequence N -gram S is defined as:

H (S) = −
k=255∑
k=0

P(S, k) · log2 P(S, k), (1)

where P(S, k) is the fraction of the bytes of S that assume
value k . An N-gram’s entropy is a measure of how much
information it stores. For example, if all of its bytes assume
the same value, then H (S) = 0 holds, indicating that S is
unlikely to be a useful feature. If each of its bytes assumes a
distinct value, thenH (S) obtains the maximum entropy value
attainable by anN -gram. For each lengthN ∈ L, we compute
a threshold tN such that all N -grams whose entropy is below
tN will be filtered out.
Threshold tN is computed as follows (see Algorithm 1):

A fraction α of training set files are randomly chosen. Then,
β N -grams from random positions are extracted from each
such file. The average entropy of the resulting set of α ·
β N -grams is computed. Finally, the entropy threshold for
N -grams is obtained by multiplying the average entropy by a
factor fact[N ] > 1. DAEMON uses α = 0.1 and β = 256.
The factors for N ∈ {16, 32} were set to 1.15, whereas the
factors for N ∈ {4, 8} were set to 1.05. The rational for
setting a larger threshold-factor for larger values of N is that
the number of distinct N -grams for N ∈ {16, 32} is orders-
of-magnitude larger than that of N ∈ {4, 8}, hence stricter
filtering is required for larger values of N .

A. STAGE 2: FAMILY REPRESENTATIVE N-GRAMS
EXTRACTION
The key goal of stage 2 is to extract representative N-grams
for each malware family F , for each N ∈ L. An N-gram is a
representative for family F , if its entropy passes threshold
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tN and if it appears in at least a fraction γ of F’s files.
DAEMON uses γ = 0.1. A family’s representative N -gram
appears in a significant portion of its files. Consequently, it is
more likely to characterize the family’s distinctive behavior
than an N -gram that only appears in a negligible fraction of
the family’s files. While scanning the contents of each file,
we also compute the number of occurrences for every file
1-gram (line 17). These features will be candidate features,
together with N -grams for larger values of N , in later stages
of the algorithm.

B. STAGE 3: PAIRWISE-SEPARATING FEATURES
SELECTION
In stage 3, we further reduce the set of candidate features by
selecting a subset S of size B of the family representatives
output by stage 2 (henceforth called stage-2 N-grams). DAE-
MON uses B = 50, 000 as this empirically gave the best
results on Microsoft’s Kaggle dataset. Let k be the number
of dataset families. B is constructed by greedily selecting,
for each of the

(k
2

)
family-pairs, the top B/

(k
2

)
n-grams for

separating between the two families. The effectiveness of
each n-gram is measured according to its information gain
w.r.t. the pair of families, defined as follows.

Let F1, F2 be a pair of families. Let F = F1 ∪ F2, g1 =
|F1|/|F | and g2 = |F2|/|F |. Then the entropy of F w.r.t. F1,
F2 is defined as:

H (F,F1,F2) = −g1 · log2 g1 − g2 · log2 g2. (2)

For a stage-2 n-gram s, let L(F, s) = {f ∈ F |s ∈ f } and
R(F, s) = {f ∈ F |s /∈ f }. Also, let gl1 = |{f ∈ L(F, s)|f ∈
F1}|/|L(F, s)| and gl2 = |f ∈ L(F, s)|f /∈ F1|/|L(F, s)|.
The entropy of L(F, s) w.r.t. F1, F2 is defined as:

H
(
L(F, s),F1,F2

)
= −gl1 · log2 gl1 − gl2 · log2 gl2. (3)

We define gr1, gr2 using R(F, s) and H
(
R(F, s),F1,F2

)
similarly. Let gf1 = |L(F, s)|/|F | and gr1 = |R(F, s)|/|F |.
Then the information gain of s w.r.t. F1, F2 is given by:

H (F,F1,F2)− H
(
L(F, s),F1,F2

)
· gf1

−H
(
R(F, s),F1,F2

)
· gr1. (4)

Note that we do not add the same n-gram multiple times,
even if it is among the top-most features for multiple pairs.
However, we do tag it with all these pairs. A by-product
of selecting pairwise-separating features is the following:
Each n-gram that eventually gets used by DAEMON’s detec-
tion model is tagged by the set of family-pairs for which it
was selected in Stage 3. As we demonstrate in Section IX,
this helps in pinpointing the differences between malware
families.

C. STAGE 4: FEATURE-VECTORS COMPUTATION
After stages 1-3 have been completed, B + 256 feature-
candidates remain: B N -grams, for N ∈ L = {4, 8, 16, 32},
as well as 256 features storing the number of occurrences of
each 1-gram value for each training set file f .

In stage 4, we compute, for each such f , a feature-vector
of length B + 256 to represent f . Whereas the latter 256
features were already computed in Stage 2, in Stage 4wemust
efficiently find which of the B pairwise-separating N -grams
are contained in f . We do so by applying the Aho-Corasick
string-searching algorithm [43], whose complexity is

O
(
|f | +

i=B−1∑
i=0

(|si| + |mi|)
)
, where si is the length of the i’th

n-gram and mi is the number of occurrences of si found in f .
We note that the Aho-Corasick algorithm computes the total
number of occurrences of each n-gram in f . Nevertheless,
the corresponding feature-vector entries are binary: 0 if the
corresponding n-gram is absent from f , or 1, otherwise.6

D. STAGE 5: RANDOM FOREST MODEL GENERATION
Using the feature-vectors output by stage 4, we use Python’s
Scikit-learn (sklearn) ML library’s random forest algorithm
for generating an initial classification model. We set the
number of forest trees to 3,000. With more than 50,000 fea-
tures, the resulting model is large and tends to overfit.
Consequently, we apply to it yet another feature selec-
tion stage using sklearn.feature_selection.SelectFromModel
meta-transformer, for choosing the C initial-model features
that have received the highest importanceweights. DAEMON
uses C = 5, 000. We then retrain the random forest using the
reduced set of features to obtain the final classificationmodel.

VI. DATASETS OVERVIEW
We evaluate DAEMON using three datasets comprised of
malware families of two different platforms. The first dataset
is Microsoft’s Malware Classification challenge dataset
[30], consisting of more than 20K Windows Portable Exe-
cutable (PE) programs. The second is the Drebin dataset [17],
consisting of approximately 130K Android Dalvik bytecode
executables. The third is CIC-InvesAndMal2019 [32], [33],
consisting of 426 malicious Android Dalvik bytecode appli-
cations. In the following, we briefly describe each of these
datasets.

A. MICROSOFT’s MALWARE CLASSIFICATION
CHALLENGE DATASET
This dataset was published in 2015 as part of a Kaggle [44]
competition and became a standard benchmark for Windows
malware classifiers. It consists of 9 Windows malware fam-
ilies whose names, types, and numbers of training samples
are presented in Table 1. In total, there are 10,868 training
samples provided along with their class labels. In addition,
10,873 test files are also provided, but without their labels.
For each sample, two files are provided: a hexadecimal rep-
resentation of the sample’s PE binary file (without the PE
headers) and a disassembly file generated from the binary file
using IDA Pro. After training a classification model using the
training samples, its performance on the test set is evaluated

6This was empirically found to provide better results than using the total
number of occurrences as features.
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TABLE 1. Microsoft’s dataset malware families.

by uploading to the competition’s site a submission file that
contains, per every test sample i and class (family) j, the prob-
ability pi,j that i belongs to j as predicted by the model.
In response, the competition’s site returns the multi-class
logarithmic loss (henceforth simply referred to as logloss) of
the prediction, defined as follows:

−
1
N

i=N∑
i=1

j=M∑
j=1

yi,j log pi,j, (5)

where N is the number of test set files, M is the number of
classes, and yi,j is the indicator variable whose value is 1 if test
instance i belongs to class j or 0 otherwise. The rationale of
using the logloss metric rather than accuracy is that logloss
assesses better model robustness since it takes into account
not only the model’s classification decision but also the level
of confidence with which it is made. It is well-known that
even very accurate random forest classifiers may output class
probabilities of poor quality [45], [46]. Consequently, when
optimizing towards logloss rather than accuracy, we apply a
standard technique for calibrating the probabilities output by
DAEMON’s random forest model [45].7

The number of teams that participated in the competition
is over 370 and the best (smallest) logloss, achieved by the
winning team, is 0.00283. Although the competition was
completed on April, 2015, at the time of this writing, the sub-
mission site still accepts late submissions and returns their
logloss.

B. THE DREBIN DATASET
The Drebin dataset [17], [31] is a collection of 131,611
Android applications, the majority of which are benign.
Applications are in Dalvik executable format. It is widely
used as a benchmark for both malware classification and
detection [6], [7], [17], [19], [22]–[24], [31], [47], [48]. The
majority of the applications were collected fromGoogle Play.
Drebin also includes all samples from the Android Malware
Genome Project [37]. In terms of malware, Drebin contains
5,560 malicious applications from 179 malware families of
widely-varying sizes. Since the majority of these families are
very small (less than 10 samples), we adopt the approach

7A similar calibration technique was applied by the team that finished the
competition in the 7th place.

taken by previous malware classification works that have
used Drebin [22]–[24] and consider only families of mini-
mum size. Table 2 presents the 24 malicious Drebin fami-
lies that contain 20 or more samples, which we use in our
evaluation. These 24 families collectively contain 4,783mali-
cious samples. Families whose names appear in boldface are
SMS-Trojan families. In Section IX, we analyze in detail how
DAEMON succeeds in distinguishing between these families.

TABLE 2. Drebin dataset: malware families of size 20 or more.

C. THE CIC-InvesAndMal2019 DATASET
CIC-InvesAndMal2019 [32], [33] is a dataset of 10,854 sam-
ples, 426 of which are malicious applications found on real
devices. Each of the malicious applications belongs to one of
four different categories: Adware, Ransomware, Scareware,
and SMSMalware, from a total of 42 different malware fam-
ilies. Tables 3-6 present the malicious families of the dataset
in each malware category, which we use in our evaluation. In
addition to the application files themselves, the dataset also
contains a set of pre-computed features extracted from them.
These features include dynamic features such as network traf-
fic features extracted from PCAP files, as well as API-Calls
related features, and static features such as permissions and
intents. Although this dataset is rather small, DAEMON suc-
ceeds in both distinguishing between its malicious families
and in malware categorization.

VII. EXPERIMENTAL EVALUATION
In this section, we present the results of DAEMON’s experi-
mental evaluation on the three datasets. Since we have tuned

78388 VOLUME 9, 2021



R. Korine, D. Hendler: DAEMON: Dataset/Platform-Agnostic Explainable Malware Classification Using Multi-Stage Feature Mining

TABLE 3. CIC-InvesAndMal2019 dataset: Adware families.

TABLE 4. CIC-InvesAndMal2019 dataset: Ransomware families.

TABLE 5. CIC-InvesAndMal2019 dataset: Scareware families.

TABLE 6. CIC-InvesAndMal2019 dataset: SMS families.

DAEMON’s parameters using Microsoft’s dataset, we start
by describing our evaluation results on this dataset.

A. EVALUATION RESULTS ON MICROSOFT’s DATASET
WedescribedMicrosoft’s dataset in SectionVI-A.We remind
the reader that each of the training and test sets comprises
approximately 11,000 files. The test set was further (ran-
domly) partitioned by Microsoft into two subsets: the public
test set (comprising 30% of the test set) and the private
test set (comprising 70% of the test set). At the end of the
competition, contestants were ranked in increasing order of
the logloss (see Equation 5) obtained by their model on the
private test set and results were made public on the private
leaderboard.8 In order to provide contestants with some
feedback on their relative performance on test files while
the contest was ongoing, a public leaderboard was made
available to them, ranking models based on the public test set.
We did not use the public leaderboard in ourmodel generation
process.

8https://www.kaggle.com/c/malware-classification/leaderboard

Microsoft rated contestants only based on the logloss
of their classification models. However, many contestants,
as well as malware classifiers that were trained using this
dataset after the competition was completed (such as DAE-
MON), evaluated their models also (or only) by computing
k-fold cross-validation accuracy on the training set. There-
fore, we evaluated DAEMON using both logloss and (5 fold)
cross-validation accuracy.

Recall that DAEMON uses two sets of features: 1-grams
and N -grams, for N ∈ {4, 8, 16, 32}. In order to mea-
sure the extent to which each of these sets contributes
to DAEMON’s performance, we define and evaluate
two variants: DAEMON-1G uses only the 1-gram fea-
tures, whereas DAEMON-NG uses only the N -grams, for
N ∈ {4, 8, 16, 32}. Table 7 presents the results of the
5 best-performing models on Microsoft’s dataset in terms of
logloss, along with the results of DAEMON’s two variants.
Recall that over 370 teams have participated in the competi-
tion and more than 30 additional models were evaluated on
the dataset afterward, for an overall of more than 400 classi-
fication models.

TABLE 7. Comparison of DAEMON with top classifiers on Microsoft’s
dataset.

Focusing first on logloss, DAEMON is ranked 3rd out
of all models with a logloss that exceeds that of the win-
ning team by only approx. 0.001. We note that the vast
majority of classifiers are not platform-agnostic. Moreover,
to the best of our knowledge, none of the first 10 most
highly-ranked classifiers except DAEMON are platform-
agnostic. For example, the classifier of the winning team
uses features such as op-code counts and segments count
and that of the second-ranked team used features such as the
number of lines in each PE section. Turning out attention to
DAEMON’s variants, we see that the model based on the
N -grams set of features (ranked 18) is more powerful than
that based on the 1-gram features (ranked 86). Nevertheless,
both are required for DAEMON to perform as well as it does.

DAEMON’s cross-validation accuracy is 99.72 which is
very high, but slightly lower than that of the winning team’s
model and that of the models of [11], [13]. The team ranked
2nd did not report on cross-validation accuracy. Out of all the
contestants and later works9 that reported on classification
accuracy, DAEMON’s accuracy is ranked 4th. The N-grams

9Ronen et al. [30] reports on more than 50 research papers published
during 2015-2018 that have used the Kaggle competition’s dataset.
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FIGURE 2. DAEMON’s 5-Fold CV Confusion Matrix on Microsoft’s dataset.

(for N > 1) used by DAEMON are stronger than 1-grams
also in terms of accuracy, but it is their combination that
performs best.

Figure 2 presents DAEMON’s confusion matrix on the
dataset. Although the dataset is very imbalanced, even the
smallest family – Simda – is classified with high accuracy
(97.6%).

We remind the reader that two files are provided for each
sample in Microsoft’s dataset: the sample’s PE binary file
and a corresponding disassembly file. The evaluation results
reported above were obtained by inputting both files to the
classifiers. Disassembly files are constructed from binaries
based on knowledge of a platform’s instruction-set and the
binary’s structure and semantics. Consequently, one may
argue that although DAEMON does not directly use any
platform-dependent features, its power as a platform-agnostic
classifier would be better assessed when applied to
binary files only rather than receiving also disassembly-
file. Thus, we have also trained DAEMON using only
binary files.

Table 8 presents the logloss and accuracy results of DAE-
MON and the few classifiers that received as their input
the dataset’s binary files only [14]–[16]. Like DAEMON,
all these 3 classifiers only use platform-agnostic features.
Unlike DAEMON, they all employ deep learning archi-
tectures. As can be seen, DAEMON obtains very high
accuracy and very low logloss also when trained on and
applied to binary files only. It also significantly outperforms

TABLE 8. Comparison of DAEMON with platform-agnostic classifiers
using binaries only on Microsoft’s dataset.

all other platform-agnostic classifiers in terms of both accu-
racy and logloss.

B. EVALUATION RESULTS ON THE DREBIN DATASET
As we’ve described in Section VI-B, the Drebin dataset is
very imbalanced and the majority of its 179 families are too
small for classification purposes, as they contain less than
10 samples. Consequently, as done by previous works with
which we compare DAEMON [22]–[24], we have conducted
our evaluation by using only families that contain at least
20 samples and have randomly divided the dataset consist-
ing of these families into a training set (consisting of 70%
of the samples) and a test set (consisting of 30% of the
samples).

Figure 3 presents DAEMON’s confusion matrix on
Drebin based on its classification results on the test set.
As can be seen, even though very small families have been
removed, the remaining dataset is still very imbalanced.
Nevertheless, DAEMON achieves high accuracy even on
small families. For instance, it achieves 100% accuracy on
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FIGURE 3. DAEMON’s Drebin’s confusion Matrix.

both the YZHC and Boxer families, that have only 7 and
8 test-set samples, respectively.

Table 9 compares the accuracy of DAEMON with that of
previously published malware classifiers that were evaluated
using DREBIN. DAEMON obtains high accuracy of 98.74%
on the test set. DAEMON’s accuracy is almost 15 pp. more
than the 2nd best classifier for which this experiment was
conducted [22]. We note that DroidSieve [7], a static-analysis
based Android malware detector, achieved 98.12% accuracy
in family identification on a subset of files it detected as mali-
cious. These files belong to 108 families out of the 176 fam-
ilies of the Drebin dataset. Unlike DAEMON, DroidSieve
uses domain-specific knowledge and platform-dependent
features.

TABLE 9. Comparison of DAEMON with other classifiers on the Drebin
dataset.

We emphasize that we have optimized DAEMON using
Microsoft’s dataset and that it has been applied to the
Drebin dataset without any algorithmic changes, fea-
ture re-engineering, or parameter tuning. Thus, these
results establish empirically that DAEMON is an effec-
tive dataset-agnostic, as well as platform-agnostic, malware
classifier.
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C. EVALUATION RESULTS ON THE CIC-InvesAndMal2019
DATASET
As shown by Tables 3-6, the malicious part of the CIC-
InvesAndMal2019 dataset is quite balanced in comparison
with DREBIN. On the other hand, it is much smaller and
contains only 426 malicious executables. Three experiments
were conducted on this dataset by the researchers of the
Canadian Institute for Cybersecurity (CIC) [32], [33]. They
evaluated the performance of their method on the tasks of
malware detection, malware category classification, and mal-
ware family classification.

Since DAEMON is a malware classifier rather than a mal-
ware detector, we compare its performance with that of the
CIC method in terms of malware categorization and fam-
ily classification. This is done by comparing DAEMON’s
results with the results reported by [32], [33], in their sec-
ond and third experiments. All tests conducted by [32], [33]
were based on classifiers that use popular machine learning
algorithms.

In their first work [32], they suggested a dynamic malware
classifier and used it in their second and third experiments,
testing it with the tasks of malware categorization and family-
classification, using 80 different network-flow features. In
their second work [33] they added dynamic features based
on API-calls as well, and also improved the performance of
their malware detector.

Imtiaz et al. [9] presented DeepAMD, a deep learning
basedAndroidMalware Detector, whichwas evaluated on the
CIC-InvesAndMal2019 dataset. Similarly to the CICmethod,
they chose to train their model on the features (both static and
dynamic) provided with the dataset. They didn’t use any addi-
tional features extracted from the applications. They evalu-
ated their model on the tasks of malware categorization and
family classification using similar experiments to the ones
performed by CIC. We compare DAEMON with both these
classifiers.

1) CIC - EXPERIMENT 2 (Malware Categorization)
In this experiment dataset executables that were classified as
malicious in a previous experiment are classified into their
respective categories:

Adware/Scareware/Ransomware/SMSMalware. The rese-
archers randomly split the dataset into 80% training set
and 20% test set, and evaluated their performance on
the test set. More recently, In [33], they tested sev-
eral machine learning algorithms trained using only the
dynamic features provided with the dataset. Their results
show that the random forest based model outperforms
the rest of the models. This model obtained a precision
of 83.30 and a recall of 81.00 in this experiment. DAE-
MON, tested on all the malicious files in the test set, with-
out using any of the static or dynamic features provided
with the dataset, obtained a precision of 92.21 and recall
of 91.74.

2) DeepAMD - MALWARE CATEGORIZATION
DeepAMD was evaluated using an experiment similar to
experiment 2 performed by the CIC. In this experiment,
the researchers attempted to categorize the entire dataset,
including benign applications. We remind the reader that the
dataset contains 5,065 benign applications and 426 malicious
applications. After splitting the dataset as done by the CIC,
they categorized each application as one of the following:
Benign/Adware/Scareware/

Ransomware/SMS Malware/Premium SMS.
In this test they used the static features provided with the

dataset and achieved a precision of 92.2 and recall of 92.5.
In an additional experiment, DeepAMD was evaluated in

categorization using only the files classified as malicious
in their malware detection experiment. In this experiment,
the researchers trained a model using only the dynamic
features provided with the dataset. Therefore, this experi-
ment fits the exact setting of experiment 2 performed by the
CIC. DeepAMD achieved a precision of 82.2 and a recall
of 80.3 in this experiment. Hence, DAEMONmanaged to out-
perform DeepAMD in this task, even without using dynamic
features.

3) CIC - EXPERIMENT 3 (Malware FAMILY Classification)
In this experiment, dataset executables were classified into
their respective families. As in the previous experiments,
the dataset was randomly split into 80% training set and 20%
test set. In [33], they trained a random forest model using
dynamic features provided with the dataset and evaluated it
on the test set. Their model obtained a precision of 59.70 and
recall of 61.20..10 In this exact task, DAEMON obtained a
precision of 83.56 and a recall of 77.64.

4) DeepAMD - MALWARE FAMILY CLASSIFICATION
DeepAMD conducted several experiments regarding mal-
ware family classification. One of these experiments is essen-
tially the same as experiment 3 performed by the CIC. In
this experiment, they achieved a precision of 65 and a recall
of 59. Hence, DAEMON significantly outperformed Deep-
AMD as well. We remind the reader that in accordance with
the previous experiments, DAEMON uses only the applica-
tions themselves as inputs. Thus, unlike DeepAMD, it doesn’t
use any feature (static or dynamic) provided with the CIC-
InvesAndMal2019 dataset.

VIII. TIME COMPLEXITY
An important factor in assessing a practical malware classifier
is the extent towhich it can scale to large sample collections in
terms of time-complexity. We now report on the time it takes
DAEMON to learn a model and to classify new samples on
the three datasets. All of our experiments were conducted on

10Note that classification accuracy is drastically lower than that of Exper-
iment 1, because classifying into families is harder than classifying into
categories, each consisting of multiple families
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a 2.00 GHz 24-core Xeon E5-2620 server, with 256GBRAM,
running the 64-bit Ubuntu 14.04 operating system.

A. MICROSOFT’s DATASET
Tables 10 and 11 respectively present DAEMON’s
model generation times on binaries only and on both
binary/disassembly files. The tables present the time it takes
to perform each of DAEMON’s model generation stages
based on all of the dataset’s 10,868 training samples. Focus-
ing first on the model generated from binaries only, we see
that the most time-consuming stage is that of extracting
family-representative N -grams (stage 2). This stage takes
slightly over 7 hours to complete. Totalmodel generation time
is approximately 11 hours. The time required for generating
a model using both the binary and the disassembly files is
naturally longer. In this case as well, stage 2 is the most time
consuming and takes slightly less than 11 hours. The total
model generation time is approximately 16 hours.

TABLE 10. Model generation times: Microsoft’s binaries.

TABLE 11. Model generation times: Microsoft’s binaries + disassembly
files.

As for DAEMON’s classification times, we have measured
themwhen using only binary files andwhen using both binary
and disassembly files. The overall time it took DAEMON to
classify all of the dataset’s 10,873 test files on a single core
was approximately 176minutes, translating to a classification
rate of approximately 62 files per minute.

B. THE DREBIN DATASET
The Drebin dataset is considerably smaller than Microsoft’s
dataset in terms of both the number of dataset files and
their average size. Consequently, the time it takes to train a
DAEMONmodel or to classify a new sample is much smaller
as well. The time it took to perform each of DAEMON’s
model generation stages is presented in Table 12. The total
time it took to build and train the model, in this case, was
slightly less than 2 hours. The classification rate on a single
core was approximately 240 files per minute.

C. THE CIC-InvesAndMal2019 DATASET
The CIC-InvesAndMal2019 is rather small. Nevertheless,
some of the families in it contain many candidate strings and

TABLE 12. Model generation times: DREBIN.

thus were harder to process in comparison with most of the
Drebin dataset families. As can be seen in Table 13, the most
time-consuming part for this dataset was the computation of
the pairwise-separating features, since there are 42 families
in the dataset. This required mining features for many more
family-pairs in comparison with our experiments with both
the Drebin dataset and Microsoft’s dataset. Category classifi-
cation times are shown by Table 14. The classification rate on
this dataset on a single core was approximately 84 files per
minute.

TABLE 13. Model generation times: CIC-InvesAndMal2019 family
classification.

TABLE 14. Model generation times: CIC-InvesAndMal2019 malware
categorization.

Model generation times for all 3 datasets range between
2-16 hours, which allows even daily re-training. Detection
times on a single core range between 62 files per minute
(on Microsoft’ dataset) and 240 files per minute (on the
DREBIN dataset). This rate scales linearly with the number
of available cores, since every test sample can be classified
independently of other samples. Thus, on our 24-core server,
classification rates for Microsoft’s dataset, the DREBIN and
the CIC-InvesAndMal2019 datasets are, respectively, 1,488,
5,760, and 2,016 files per minute.

IX. LEVERAGING DAEMON’s FEATURES FOR
EXPLAINABILITY
The vast majority of DAEMON’s features are relatively long
N -grams extracted from a malicious sample’s contents. As
such, they are often much more useful than statistical fea-
tures for gaining insights into the behavior of malware fam-
ilies. Specifically, they can be used for gaining insights into
which vulnerabilities are exploited by the malware and how
it attempts to avoid detection. These features are often strings
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FIGURE 4. Features identifying SMS-Trojan variants (simplified).

that reveal which dynamic-link libraries and API-calls are
used by a malware. Other common types of features, seen
in Android malware datasets, include permissions that are
requested by malicious applications and the URLs or IPs they
communicate with. In other cases, N -grams represent binary
code snippets that serve as effective family signatures.

These N -grams are extracted by DAEMON in a
platform-agnostic manner, without any knowledge of the
executable’s format. Moreover, as it turns out, they can also
be extracted from malware families that are encrypted and/or
packed. Let us also recall that a by-product of DAEMON’s
feature mining process is that each N -gram is tagged by the
family-pairs for which it obtained relatively high informa-
tion gain. This makes it remarkably easier to identify the
key distinguishing features of each family. In what follows,
we demonstrate DAEMON’s explainability via examples
from the three datasets on which we evaluated it.

A. THE DREBIN DATASET
1) SMS-TROJANS
We’ve evaluated DAEMON using Drebin’s 24 malware
families that contain at least 20 samples. Six of these
families are different types of SMS-Trojans (see boldface
names in Table 2): FakeInstaller, Opfake, Kmin,
MobileTx, Yzhc, and Boxer. SMS-trojans use the SMS
services of an Android device for sending and/or intercepting
SMS messages for malicious purposes. They differ, however,
in their goals and attack tactics. In our first example of DAE-
MON’s explainability, we describe the key features it uses for
effectively telling SMS-Trojans apart from other families and
for differentiating between different types of SMS-Trojans.

Figure 4 depicts a decision-tree-like structure (which is a
simplification of the actual model) showing some (but not all)
of the features we describe below that are used by DAEMON
for classifying SMS-Trojans. A ’+’ sign indicates that the
correspondingN -gramwas found in the classified sample and
a ’−’ sign indicates it is absent from it.

Kmin

In addition to sending SMS messages to premium-rate num-
bers, variants of this family also download and install other
applications onto the victim’s device. Moreover, as stated in
Microsoft’s report on this family [49], its variants send the
following data to their C&C server: ‘‘Device ID’’, ‘‘Sub-
scriber ID’’ and ‘‘Current Time’’. DAEMON extracted all
these strings as top-most separating features between Kmin
and other SMS-Trojan families. The names of the functions
used in order to obtain this data, such as ‘‘getSubscriberId’’
and ‘‘getDeviceId’’, were extracted as well. Collectively,
these features identify Kmin variants by revealing the type
of data they aim to exfiltrate. Another strong feature used
by DAEMON for identifying Kmin variants is the string
‘‘http://su.5k3g.com/’’, which is a URL of a remote server
with which only variants of this family communicate.

Another example of a behavioral feature that can be
used for identifying Kmin variants is the string ‘‘tele-
phony.sms_SMS_RECEIVED’’. This feature indicates that
the application requests to be notified when an SMS is
being received. This mechanism is used by family vari-
ants as an evasion mechanism, to block messages from
the mobile operator regarding phone charges that are being
made. This way smartphone users are being kept in the dark
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w.r.t. their charges [37]. Another indicative feature is the
‘‘vnd.wap.mms-message’’ feature, that is also a top-most
separating feature between Kmin and all other SMS-Trojan
families. It indicates that Kmin variants send MMS mes-
sages (in addition to SMSs) to premium-rate numbers. The
combination of all these features (as well as others) allows
DAEMON to classify Kmin variants with high precision.

MobileTX

The MobileTx family also steals data from the compro-
mised device in addition to sending SMS messages to
premium-rate numbers. Stolen data is sent to an account
hosted by the following remote server URL, extracted
by DAEMON as a top-most separating feature between
MobileTX and all other SMS-Trojans: ‘‘mobile.tx.com.cn’’
[50]. Stolen data includes the smartphone’s IMEI and
phone-number and DAEMON designates strings identify-
ing these types of data as top-most features separating the
MobileTX family from other SMS-Trojan families as well.
Another helpful feature extracted by DAEMON is the string
‘‘com/tx/bean/TxMenu’’, which contains the name of a pack-
age used exclusively by variants of the MobileTX family,
most probably for communication with its remote server.

YZHC

YZHC variants send premium-rate SMS messages and
block all incoming messages that inform the user
about it. Another malicious behaviour of this family is
the exfiltration of private information from the device.
One feature that was designated by DAEMON as a
top-most separating feature between YZHC and all other
SMS-Trojan families, except Kmin, is ‘‘PackageInstaller’’.
A top-most separating feature between YZHC and Kmin is
ACCESS_NETWORK_STATE. This feature is the name of a
permission used by YZHC variants for obtaining data regard-
ing the communication network, which is used by them (in
order to decide when to send premium SMS messages) [51]
but is not used by Kmin variants.

FakeInstaller

Unlike most other SMS Drebin Trojan families, variants of
FakeInstaller collect data regarding the cellular opera-
tor [52]. DAEMON uses the ‘‘getNetworkOperator’’ N-gram
as a top-most separating feature for this family, which is
indicative of this behavior.

Boxer

Boxer is a family of malware that pretends to be an installer
or application downloader, but in reality, sends premium-rate
SMS messages without the user’s acknowledgement. A dis-
tinguishing feature of Boxer variants is that they use
Android Cloud to Device Messaging (C2DM) services for
communicating with a cloud-based C&C server. Indeed,
DAEMON uses the ‘‘C2DM’’ and C2DM_INTENT features
(not shown in Figure 4) for identifying them. In addition,
variants of this family are able to target multiple countries.

In order to do so, they call (among other functions) the
‘‘InitActivationSchemes’’ function, an N-gram feature used
by DAEMON. This function is used to match the Mobile
Country Code they previously read to a proper identifier so
that SMS messages can be correctly sent from each such
country.

Opfake

The Opfake family mostly targets Russian smartphones [53].
After being downloaded to the device, variants display a ser-
vice agreement message to the user in Russian that describes
the usage of paid SMS messages. Consequently, one of the
top-most separating features between this family and all other
SMS-Trojans is a short Unicode Russian text taken from the
bytecode that is part of this agreement’s text.

Plankton

Moving on from SMS-Trojans, we next discuss the
Plankton malware family, discovered in June 2011 [54].
Plankton variants download their malicious payload from a
remote server, unlike most other Drebin families.

Since family variants communicate with their remote
server using ‘‘HTTP POST’’ messages, DAEMON is
able to extract top-most separating HTTP-related features.
An Example of such a feature is ‘‘apache/http/post’’.

Moreover, DAEMON also extracted features identifying
which data is collected by family variants, such as ‘‘getIMEI’’
for exfiltrating the device IMEI, ‘‘getDisplayMetrics’’ for
discovering the user’s display resolution, etc.

Some of the family variants require access to the Internet
and to the WiFi state as well. This is used for accessing the
list of contacts, the history of calls and browser bookmarks
that are then communicated to the remote server. DAEMON
extracts features revealing this behavior, such as ‘‘WifiMan-
ager’’, ‘‘WiFi’’, and many more. The combination of these
features allows DAEMON to accurately classify Plankton
variants.

GoldDream

GoldDream is a family of Android Trojans that monitor an
infected device and collect sensitive data over time. After the
malware has collected sufficient data, it sends it to a C&C
server, whose hostname has also been extracted by DAE-
MON: ‘‘lebar.gicp.net’’. This was designated by DAEMON
as a top-most separating feature between GoldDream and
all other families.

B. MICROSOFT’S MALWARE CLASSIFICATION
CHALLENGE DATASET
We remind the reader that this dataset consists of 9 malware
families of different types (Worms, Adwares, Backdoors,
Trojans, etc). We note that due to the fact that Microsoft
has removed the headers from the PE executables in the
dataset, it is difficult to decipher the meaning of many
N-grams extracted from packed/encrypted content. In the fol-
lowing, we examine some of the top-most separating features
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extracted by DAEMON for a large family, W32.Ramnit, and
explain how these features shed light on the behavior of this
family.

Ramnit (W32.Ramnit)
Ramnit is a worm that spreads through removable drives
on Windows x86 systems, infecting EXE and DLL files.
The primary goal of its polymorphic variants is stealing
information such as cookies, in order to hijack online ses-
sions with banking and social media websites. Moreover,
family variants open a connection to a C&C server in order
to receive commands instructing them to perform various
operations. Examples of such operations include capturing
screenshots, uploading stolen cookies, deleting root registry
keys, preventing the PC from starting up, etc. Although
most of their content is encrypted, DAEMON manages to
extract from Ramnit files high-quality separating features.
For instance, it appears that there are some encrypted/packed
parts of the malware which can be found in all of its dataset
variants, such as the byte-sequences ‘‘C9C35651538D9920’’
and ‘‘C71083C11039D175C9’’. Combining these features
creates a perfect family signature, identifying its variants with
perfect accuracy.

Another top-most separating feature is ‘‘GetCurrentPro-
cess’’, an API call used by Ramnit to walk the stack
and suspend threads of ‘‘rapportgp.dll’’, a lightweight secu-
rity software designed to protect confidential information
from being stolen by malware. DAEMON also extracts
the features: ‘‘LoadLibraryA’’ and ‘‘GetProcAddress’’ from
PE files. Both features are a maliciousness indicator since
malware often uses these API-calls in order to load DLL
files whose names do not appear in their PE header, often
containing the malicious payload. This is rarely done by
benign applications. As stated in Symantec’s detailed report
on Ramnit [55], its variants use these API-calls as part of
their client infection process.

C. CIC-InvesAndMal2019 DATASET
Similarly to Drebin but unlike Microsoft’s dataset,
applications’ headers were not removed in the CIC-
InvesAndMal2019 dataset, which facilitates explainability.
In what follows, we shortly analyze the FakeAV family
(which belongs to the Scareware category) and explain how
the features extracted by DAEMON from its files shed light
on its malicious payload.

FakeAV is amalware family that spreads under the disguise
of popular Android applications. After installation, the mal-
ware alerts victims regarding security threats that do not exist
on their Android device and recommends that they visit a
website where they will be asked to pay for cleaning these
threats. Additionally, it can be used by a C&C server to
perform many actions: send messages, make calls, open a
URL, install applications, etc [56]. Moreover, upon receiving
a command, the malware sends information about contacts,
call history, current location, and account information details.

Many of DAEMON’s top separating features for this
family expose this behavior. For instance, the features
‘‘Android/telephony/CellLocation’’ and

‘‘Android/telephony/gsm/GsmCellLocation’’ expose the
malware’s attempts to obtain the current location of the
device. In addition, the features

‘‘action.NEW OUTGOING CALL’’ and
‘‘Android.intent.extra.PHONE NUMBER’’ further indi-

cate the application’s intent to obtain the phone number and
monitor when outgoing calls are being made. DAEMON
also selected ‘‘telephony/SmsManager’’ as a top separating
feature for FakeApp, shedding light on the real intentions of
FakeAV variants.

X. DISCUSSION
Being dataset-agnostic is a significant advantage of a mal-
ware classifier, as it allows successfully applying it out-of-
the-box to new malware collections. Such collections may
result from the availability of new data and/or the appear-
ance of new malware families. In addition, new malware
collections may also result from the emergence of new
computing platforms or new executable formats, although
this event is rare. While platform-agnostic malware clas-
sifier can be applied to such collections out-of-the-box,
platform-dependent classifiers cannot. Classifiers that rely
heavily on platform-dependent features will likely require
extensive feature re-engineering, optimization, and tuning.

DAEMON was trained and optimized using a dataset
consisting of Windows executables and was then success-
fully applied to two datasets of Android applications. This
process was done without any algorithmic changes, feature
re-engineering, or parameter tuning. Although it establishes
that DAEMON is platform-agnostic, there is obviously no
guarantee that DAEMON will provide top-notch perfor-
mance for all existing or future such datasets. Consequently,
in future work, we plan to try to obtain additional malware
datasets (possibly also of additional platforms) in order to
evaluate DAEMON’s performance and ascertain that it can
be successfully applied to them with no (or at least with
minimum) changes.

DAEMON can be deployed by malware analysts of large
organizations or anti-malware vendors in order to quickly
classify new malicious variants, assess the risks they pose,
and determine whether further manual analysis is required.

Recent work on malware detectors focuses on their sus-
tainability [57]–[64]. The first provably sustainable mal-
ware detector was introduced by Mariconti et al. [63], [64],
although the term ‘‘detector sustainability’’ was introduced
in a later work by Jordaney et al. [57]. The work defines a
malware detector as sustainable if, once trained on a dataset,
it can continue to effectively detect new malware without
retraining for an extended period of time. Avoiding retraining,
or at least reducing the frequency in which themodel has to be
re-trained, is advantageous, because retraining requires new
training instances that typically have to be labeled manually.
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The key idea of the sustainable Android malware detector
presented byMariconti et al [63], [64],MaMaDroid, is to cap-
ture an Android application’s behavior using the sequence of
abstractedAPI calls that it performs. API calls are abstracted
to their Java class name, Java package name or source, and
these sequences are modeled by Markov chains. Their eval-
uation shows that MaMaDroid is more robust to changes
in Android malware samples and APIs that occur over an
extended period of time11in comparison with previous state-
of-the-art Android malware detectors.

Later works presented sustainable detectors whose clas-
sification quality degrades more slowly in comparison with
MaMaDroid, using several techniques. Examples of such
techniques are selection of more stable statistical features
[58], [59], using online learning and pseudo labeling [60],
and capturing semantic similarity of API calls by automat-
ically extracting information from official API documen-
tation [62]. While the majority of these works investigate
malware detectors (binary malware classifiers), experiments
done by Zhang et al. [62] show that their framework is
also able to improve the sustainability of malware family
classifiers.

Cai [19] defines sustainability in terms of two metrics:
Reusability, that measures the extent to which a classifier
is able to adapt to changes in the instances population with
retraining, and stability that measures the extent to which the
accuracy of a classificationmodel that is not re-trained decays
over time. DAEMON achieves excellent classification results
when applied to several unrelated datasets, i.e., it is dataset-
agnostic. Reusability requires that a classifier maintain fine
performance when re-trained on datasets that evolve from one
another. Hence, it is likely that DAEMON will fair well in
terms of reusability. Since we did not evaluate the perfor-
mance of DAEMON models over time without retraining,
we cannot assess the extent to which it provides stability.
Empirically evaluating DAEMON’s stability and optimizing
it is left for future work.
Limitations and Future Work:
Our empirical evaluation establishes that DAEMON pro-

vides high-quality classification when trained on instances
from a set of malware families and used for classifying new
instances from the same set of families. Nevertheless, even
under this assumption, the evolution of malware over time
may cause concept drifts and thus reduce DAEMON’s predic-
tions accuracy. This can be prevented by frequent retraining
of DAEMON, but frequent retraining requires many labeled
instances. This limitation of DAEMON can be mitigated by
using existing frameworks that identify aging classification
models [57], [65].

Jordaney et al. [57] presented Transcend, a statisti-
cal approach for identifying the aging of classification
models during deployment. Their experimental evaluation
shows that Transcend effectively identifies concept drifts in
both binary and multi-class classifiers. Barbero et al. [65]

11Their dataset consists of malware collected over a period of 6 years.

proposes novel measures for detecting concept drift that can
significantly reduce the computational cost of Transcend.
Transcend is agnostic to the classification algorithm to which
it is applied. In future work, we plan to investigate the extent
to which Transcend can identify the concept drift of DAE-
MON models over time so that redundant retraining can be
avoided.

Degradation in the performance of malware classifiers can
stem not only from the evolution of previously known mal-
ware families, but also from the emergence of new malware
families, possibly representing zero-day attacks. Integrating
Transcend intoDAEMON’s detection pipelinemay also facil-
itate the detection of new families, since drifting instances
(that is, instances that are identified by Transcend as likely
to be erroneously classified by the model) would typically be
sent to manual analysis.

As previously mentioned, sustainability of a classification
model is a function of the model’s re-usability and stability.
In future work, we plan to evaluate DAEMON’s stability by
conducting a longitudinal performance study. We also plan
to investigate how DAEMON model aging can be slowed
down. Observing that existing techniques for increasing sus-
tainability [58]–[60], [62]–[64] rely on platform-dependent
features, whereasDAEMONuses only platform-agnostic fea-
tures, the latter research question seems challenging.

As we have discussed in Section VIII, model generation
times take several hours but are sufficiently short to allow
daily re-training on a commodity server for all the 3 datasets
we experimented with. Classification rates on our 24-core
machine ranged between 1,488-5,760 samples per minute.
In deployment scenarios that require larger throughput, more
cores may be used for classification. In future work, we plan
to investigate ways of increasing DAEMON’s classification
rate. One possible way of doing so is the following: DAE-
MON employs the Aho-Corasick string-searching algorithm
[43], which finds all the occurrences of each of the N-gram
features within a classified sample. However, DAEMON
models only require finding whether an N-gram appears
in the sample or not. Optimizing the algorithm so that it
only meets this weaker requirement may result in increased
throughput.

An additional avenue for future work is to evaluate DAE-
MON’s ability to classify families of related benign executa-
bles, such as drivers for different types of devices, multiple
versions of the same software, etc. It would also be interesting
to evaluate its performance on non-executable files, such as
different families of mutually-related documents. Although
we believe that DAEMON’s feature mining is sufficiently
generic to succeed also in this latter case, this may require
tuning of DAEMON’s parameters, such as the set of N-gram
lengths.

Finally, a natural avenue for future work is to use DAE-
MON’s effective and efficient feature mining capabilities as
the basis for a novel explainable static-analysis based mal-
ware detector (that is, a binary classifier that decides whether
a file is malicious or benign).
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XI. CONCLUSION
We presented DAEMON, the first provably effective and
explainable platform-agnostic (as well as dataset-agnostic)
malware classifier. We evaluated it on three datasets con-
sisting of families of malicious executables targeted to two
different computing platforms: The Drebin Dataset and CIC-
InvesAndMal2019, consisting of Android applications, and
Microsoft’s Kaggle Classification Challenge dataset, consist-
ing of PE x86 executables. DAEMON obtained an excellent
classification accuracy of 99.72% in a 5-fold cross validation
applied to Microsoft’s training set and came out 3rd in terms
of logloss out of more than 370 different classifiers evaluated
using this dataset. We then applied DAEMON, without any
changes, to the Drebin dataset, where it obtained an accuracy
of 98.74%, significantly outperforming all previously pub-
lished malware classifiers that were evaluated on it. As for the
CIC-InvesAndMal2019 dataset, DAEMON improved greatly
over prior classifiers evaluated on this dataset in terms of
accuracy, precision, and recall.

Furthermore, by analyzing DAEMON’s classification
results and selected features, one can gain powerful insights
regarding the behavior of different malware families andwhat
differentiates a malicious family from other families.

As we have shown in our analysis of DAEMON’s features
for different SMS-Trojan families (in Section IX), DAEMON
is able to accurately classify variants even for families whose
payloads are very similar. DAEMON’s code is publicly avail-
able in the project’s GitHub.
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