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ABSTRACT Resource allocation has a direct and profound impact on the performance of resource-limited
smart grids with diversified services that need to be timely processed. In this paper, we investigate a joint
communication, computing, and caching resource allocation problem with distinct delay requirement of
services in smart grids. This paper aims to optimize the long-term system utility based on reward and loss
function. Considering the unknown dynamic environment as well as the huge state and action space in smart
grids, a deep reinforcement learning algorithm based on the polling method is exploited to learn the policy
by interacting with the environment. Specifically, the edge nodes (ENs) act as agents to enable the services
to schedule resources appropriately. Then, the agents that are allocated based on the service requirements are
queried according to the polling mechanism and the well-designed reward function is utilized to update the
strategy. Extensive simulation results show that the proposed algorithm outperforms three known baseline
schemes in terms of network performance with decision results. Besides, in the face of a large number of
services in the smart grids, the proposed system still surpasses that of existing several baseline schemes,
especially in the improvement of cache hit rate and the decrease of computing delay.

INDEX TERMS Smart grids, edge computing, deep reinforcement learning, resource allocation.

I. INTRODUCTION
The Internet of Things (IoT) is an emerging domain dedicated
to connecting ubiquitous objects to the Internet, and the num-
ber of connected devices will reach 28 billion by 2021 [1].
With the improvement of IoT requirements, the grid pattern
is also changing, and the distributed concept is forcing the
traditional grids to adapt to the new situation [2]. The smart
grids have replaced traditional networks by using distributed
power control and communication technologies (such as 5G)
to improve operational efficiency [3]. The distributed smart
grids integrate many IoT devices and upload information to
the Internet in time to avoid problems such as failures and
capacity limitations. Many service concepts have been intro-
duced into the smart grids, including smart meters (SMs),
advanced metering infrastructure (AMI), distributed genera-
tors (DG), and so on [4]. The service communication network
can be represented by a hierarchical multi-layer architecture,
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and the architecture can be composed of user local area
network (IAN), neighborhood network (NAN), and wide area
network (WAN) based on data rate and coverage [5].

In smart grids, synchronous power grid monitoring tends
to operate with high precision to realize real-time fault moni-
toring. However, the stringent delay requirements raise sig-
nificant challenge to the communication infrastructure [6].
Some mission-critical applications have tight delay con-
straints, such as the distribution automation deployed in sub-
station requires information transmission within 4ms. How-
ever, some smart meters send data at long intervals, such as
15 minutes [7]. In order to reduce service delay in response
to service-oriented resource allocation in smart grids, edge
computing (EC) and deep reinforcement learning (DRL) are
introduced.

A. SMART GRIDS AND EDGE COMPUTING
EC provides a distributed paradigm for computing and
caching in smart grids by deploying servers at the edge.
In order to reduce the burden from more and more power
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devices, edge nodes (ENs) have been given the ability to
perform computing and caching at the edge by allowing
services to be handled at edge servers distributed close to
users [8]. A multi-layer radio access network in the cloud
is designed and a cooperative resource allocation algorithm
is proposed to reduce service delays in edge networks and
optimize throughput [9]. The heuristic algorithm [10], greedy
algorithm [11] and game theory [12] are applied to optimize
the allocation resource in smart grids.

However, there are still many problems to be tackled
about EC, such as 1) which EN handles tasks; 2) whether
EN offloads tasks to the cloud or receives tasks from the
cloud; 3) how to allocate resources for these tasks in smart
grids. In the resource allocation problem of EN, it is not
only necessary to optimize communication, computing, and
caching resources, but also to select the appropriate EN,
so many researchers describe this problem as an NP problem.
Q. He et al. believed that the edge user allocation (EUA) is
NP-hard, so they proposed a game-theoretic approach to solve
this problem in [13]. In order to meet the delay requirements
of users, T. Ouyang et al. used Lyapunov optimization to
decompose the complex problem into real-time optimiza-
tion problems which were NP-hard and proposed a Markov
approximation algorithm to solve the problem [14]. The state
and action space increases exponentially with the number
of the user’s requests and the devices. In addition, due to
the dynamics of the network environment, e.g., the contents
of the request and locations of the devices, the resource
allocation in smart grids can no more be tackled via the tra-
ditional one-shot optimization algorithms. Therefore, in the
next subsection, DRL is applied to tackle this problem.

B. SMART GRIDS AND DEEP REINFORCEMENT LEARNING
With the expansion of smart grids scale and the rapid growth
of the number of users, it has led smart grids to operate
in more uncertain, complex environments. Due to the influ-
ence of uncertain factors, traditional methods cannot adapt
to the development of smart grids and the requirements of
the customers. On the other hand, the extensive deployment
of AMI [15], WAMS [16] and power system nodes produces
massive data, which can not only provide data base for DRL
training, but also reduce the impact of uncertain factors. Due
to the robust learning ability and interaction with the envi-
ronment, DRL can collect information from a large amount
of data and make adaptive decisions [17]. The information
from users and devices is often not available in advance, but
DRL can complete the decision to make to uninstall without
prior experience [18]. Agent strategy can be divided into
single agent strategy and multi-agent strategy. Single agent
algorithm relies on an experienced replay buffer, such as
Q-learning and DRL. In the multi-agent system, the agents
update their policies in parallel and enable the use of replay
buffers to train independent learners [19], and a single glob-
ally shared network is trained to output different policies
for homogeneous agents [20]. Both cooperative multi-agent

DRL [21] and non-cooperative methods [22] can be used to
optimize resource allocation strategies.

The uncertainty and complex operation environment of
smart grids bring challenges to the application of DRL. For
example, different control methods and constraints of power
devices make themodel more complex, and there are multiple
entities with different objectives in smart grids, which endows
the reward functions with more difficulties [23]. In view
of the above issues, multiple designs and modifications are
required to adapt to different scenarios, which are as fol-
lows: (1) the reward function determines the efficiency of the
algorithm, so it needs to be designed according to the actual
problem; (2) information sharing between the state space and
the behavior space determines the efficiency of the decision-
making; (3) the scheduling and updating strategies of the
agent need to adapt to the service characteristics of the smart
grids.

This paper focuses on the joint optimization of computing
and caching resources allocation problems which makes the
ENs have communication, computing, and caching capa-
bility to process services independently. A resource alloca-
tion model of smart grids based on EC is proposed. In this
model, the service delay includes network transmission delay
and computing delay. In order to reduce the service delay,
an algorithm based onDRL is proposed to explore the optimal
resource allocation strategy. The main technical contributions
are summarized as follows:
• We first design an EC system framework with three
layers in smart grids that includes the service layer,
edge layer, and cloud layer, where the objective of the
proposed framework is to minimize the total service
delay and obtain the optimal resource allocation strategy
under the varying service requirements.

• An agent polling update deep reinforcement learn-
ing (APUDRL) algorithm is proposed to optimize
the communication, computing, and caching strategy.
It combines the neural network with the DRL-based
polling method and explores strategy with the designed
environment. In the face of a large number of ser-
vices with different delay requirements, such as mil-
lisecond, second, and minute, the constraints in the
optimization function are mapped to the penalty fac-
tors in the reward function. The SumTree sampling
method is used to improve the efficiency of data
sampling, and the separation of value function and
advantage function is used to improve the learning
efficiency.

• The numerous services in smart grids bring huge cache
pressure, so a cache update strategy considering popu-
larity and cache time, namely popularity and cache time
(PACT) is proposed to improve the cache hit rate. The
content popularity represents the frequency of users’
requests for the content, and the cache time represents
the length of time content has been cached.

• The extensive simulations are performed under varying
scenarios in the proposed EC system in order to verify
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the effectiveness of the proposed system model and the
algorithm APUDRL. The numerical simulation results
show that the performance of algorithms outperforms
that of three baseline algorithms by at least 72.85%,
61.65% and 58.84%. The cache hit rate of the PACT is
also surpasses that of the two baseline schemes.

The remainder of the paper is as follows. The systemmodel
is introduced in Section II. Then, in Section III, the APU-
DRL algorithm is proposed. In Section IV, simulation results
prove that the proposed algorithm has excellent efficiency and
adaptability. Finally, the conclusion is drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
The system structure is shown in Fig. 1, and an EC system
framework with three layers in smart grids is considered.
The service layer is composed of users and power devices,
which is used to send and receive services. Based on a vari-
ety of smart grids use cases and selected standards, three
services with delay tolerance of milliseconds, seconds and
minutes are considered, which are expressed as Sser

=

{sser1 , s
ser
2 , s

ser
3 }. The required response time for wide-area

monitoring and closed-loop transient stability control should
be in the range of milliseconds (e.g., <0.1 s) and they
are denoted as sser1 . The required response time for smart
appliance and load control device should be in the range
of seconds and they are sser2 , and automation application
is sser3 [5].

In this paper, delay requirement refers to the acceptable
window of delay from the transmitter to the receiver. It is
assumed that each user can send two types of services with
different delay tolerance in the service layer. The edge layer
represents the ENs with specific communication, computing
and caching capabilities, which are regarded as agents. The
cloud layer represents the network structure of the cloud,
which including the service request list (SRL), the deploy-
ment of EN, and cloud control (CC). They have the capacity
of communication, computing and storage, and can cooperate
to complete cloud services.

The deployment location of the ENs determines the service
they carry out. For example, the nodes deployed in the sub-
station perform services such as transmission line monitoring
and power dispatching automation, while the nodes deployed
on the device side can assume the role of smart meters and
perform services such as data transmission and service anal-
ysis. When the amount of data or services increase, the edge
node may be limited by its own capacity and cannot meet
the service delay, which violates the original intention of
introducing edge computing. Therefore, it is necessary to
optimize the resources of edge nodes to reduce the service
delay in the case of limited resources.

By deploying ENs close to users, services will be handled
by ENs first. There are K ENs within the management area
and let K = {1, 2, . . . ,K } denotes the set of ENs, which are
randomly distributed in the management area. In addition,
the kth EN has its own cache space, computing capabil-
ity, communication states, and deployment location, so the

FIGURE 1. System model with multi-service and multi-EN.

characteristic of kth EN is defined as

Ck = [Ccac
k ,Ccop

k ,Ccom
k ,Cpos

k ]. (1)

A. COMMUNICATION MODEL
There areU users and let U = {1, 2, . . . ,U} denotes the user
set. It is assumed that different ENs share the same spectrum,
the UEs associated with one EN are assigned orthogonal
channels. Therefore, the interference between different ENs
is taken into consideration, and there is no intra-EN inter-
ference [24]. The received signal-to-interference and noise
ratio (SINR) between user u and EN k in time slot t is
expressed as

SINRu,k =
gu,k (t)pu,k (t)

σ 2
u (t)+

∑
i=1,i6=k

gu,i(t)pi(t)
, (2)

where gu,k (t) denotes the average channel gain between user
u and EN k in the time t , and gu,i(t) is the average channel gain
of communication links from other ENs. The transmission
power between user u and EN k in the time t is denoted as
pu,k (t), and pi(t) is the total transmission power for EN i in
the time t . σ 2(t) is the Gaussian white noise power in the
time t .

The total bandwidth of kth EN is Bk , and the number of
subchannel of each channel is M and M = {1, 2, . . . ,M},
so the bandwidth allocated to each subchannel is bu,k,m and
it represents the bandwidth between user u and EN k when
subchannel m is occupied. xsubu,k [m] ∈ {0, 1} is denoted that
whether the subchannel m is allocated to the request between
the user u and the EN k . With the integration of 5G and smart
grids, the characteristics of some delay-sensitive services
are similar to the main characteristics of URLLC, all with
short packet transmission characteristics, which is to ensure
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ultra-low delay. In this case, the law of large numbers is
considered invalid, and the system capacity cannot continue
to bemeasured by Shannon’s capacity, so the short packet and
finite blocklength coding mechanisms can be used [25]–[27].
The maximum transmission rate of each communication link
can be denoted as

ru,k =
M∑
m=1

xsubu,k [m]bu,k,m · [log2(1+ SINRu,k )

−
√
Vu,k/Lu,k f

−1
Q (ε)], (3)

where Vu,k = 1 − 1/(1+ SINRu,k)2 is channel dispersion
and Vu,k ≈ 1 in high SINR scenarios [25]. Lu,k is the
packet size. f −1Q (ε) is the inverse function of the Q, and
Q(ε) =

∫
+∞

ε
1

√
25e−

1
2 t

2 dt , where ε is error rate. If ε ≈ 0.001,

f −1Q ≈ −0.5.

B. COMPUTATION MODEL
The computing capability of kth EN is expressed as the CPU
operation cycles per second, denoted as Ck in (cycles/sec),
and cu,k denotes the computing resource allocated to UE
u from the EN k . Note that delay-sensitive services may
be transmitted to the cloud when ENs not have enough
resources, and delay-insensitive services may be transmitted
to the ENs. Therefore, for the input data from UE u to EN k
generated on the smart devices, the data size is denoted as lIu,k .
The delay of data transmission is dTu,k = lIu,k/ru,k . Let x

cop
u,k

be a binary variable denoting the decision for computation
task from user u to the kth EN, where xcopu,k = 1 means
the EN k decides to execute the computation task from UE
u by computing locally. The computation delay at the edge
is defined as dPu,k = Cu/cu,k , where Cu is defined as the
computing resources for completing the task from UE u.
If xcopu,k = 0, it means that the computation task needs to

be transmitted to the cloud as far as possible. It is assumed
that the computing resources in the cloud are sufficient com-
pared with ENs, so the total delay for processing the tasks
in the cloud is regarded as constant Dcop

u . Comprehensively,
the delay for the computation tasks can be expressed as

dcopu,k = dTu,k + d
P
u,kx

cop
u,k + D

cop
u (1− xcopu,k ). (4)

C. CACHE MODEL
Caching strategy can improve the communication efficiency
among nodes. For example, monitoring, alarm, and control
systems need to communicate with each other among mul-
tiple nodes. Since it needs a large number of signals (infor-
mation) to run the monitoring and alarm system, the signal
transmission has a high signaling cost. If the content based on
popularity is cached in the appropriate node, it can not only
reduce the signaling cost, but also improve the efficiency of
information transmission.

ENs are connected to the cloud through the backhaul link,
and the cache states are shared among the devices. The
caching capacity of kth EN is limited, and it can store at

most P popular contents, expressed as Pk = {1, 2, . . . ,P}.
The requested probability of content p is formulated as

qp =
(
pp
∑P

i=1 i
−p
)−1

, where pω = ω
pop
k,p [αk ] is the popular

factor of content p.
nTp represents that the number of times content p has been

requested in time T , and it can be regarded as an independent
and identically distributed random variable whose expecta-
tion is E(nTk,p). It is assumed that the request arrival rate
follows the Poisson process with an average rate λ, and the
content access follows the Zipf distribution [28]. Therefore,
the requests for content p can be defined as

E(nTk,p) = λ · fk,p(Zipf )

= λ · (pω)
−1
·

p∑
i=1

i[αk ], (5)

where fk,p(Zipf ) is distribution Zipf function, αk is shape
factor.

SMs and AMI have different importance according to their
deployment location, so the centrality of device c(k) is used to
indicate the importance of devices.K is the number of devices
in the network, D(k) is degree centrality, and the f is a sort
function. Therefore, the formula can be described as

c(k) =
f (D(k))
K

. (6)

The parameter τ (p) is used to measure time threshold
of each request and calculate their respective global rank-
ing. It represents the service’s tolerance for cache time. The
threshold of request p is T (p), and f gives a rank of all the
requests, which can be given by

τ (p) =
f (T (p))
P

. (7)

The cache decision is determined by the above the
centrality of devices c(k) and delay threshold τ (p).
It is assumed that the cloud stores all the content and

doesn’t need to be updated. When the cache content of ENs
reaches the maximum capacity, it needs to update the buffer
pool. Considering the requirements of some services on the
time of content cache, such as the intelligent monitoring
of general electric equipment based on video [29], [30],
a method combining popularity and cache time (PACT) is
proposed to update the content. As for PACT, the content pop-
ularity represents the frequency of content being requested,
and the cache time represents the length of time content that
has been cached, which can be expressed as

5cac
= T cac

p

p∑
i=1

ω
pop
k,p [αk ]/ω

pop
k,i [αk ]

p∑
i=1

T cac
i , (8)

where T cac
i and T cac

p are the cache time.
When the UE u requests content from EN k , if the content p

is stored in the memory, it is denoted as xcacu,k = 1. Otherwise,
xcacu,k = 0, and EN needs to get the content first, then send
the content to the user. The multiplication by the content
popularity is used to prefer to cache those contents with
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higher popularity. It is assumed that the time to obtain the
content and the time to return the content to EN is a constant
Dcac, and the cache of popular content p can be expressed as
dQu,k = Dcac(1− xcacu,k )(1− qp). If the upper limit of EN cache
is reached, the cache is updated according to the cache policy
5cac. Therefore, the delay for the cache tasks can be given as

dcacu,k = dTu,k + d
Q
u,k . (9)

D. OPTIMIZATION MODEL
The ENs make decisions for UE scheduling, computing
offloading and content caching to reduce the delay of task
processing. They receive service requests from users, includ-
ing the type of service and SINR. ENs has computing
and caching capabilities, and determines resource allocation,
whether to cache content, whether to update cache, and where
to perform tasks.

The location of UE u is denoted as lu(x, y) and the location
of EN k is lk (x, y). Themaximum coverage of EN k is denoted
by Ru→k , then a communication constraint between UE u and
EN k is expressed as

‖lu(xi, yi)− lk (xj, yj)‖ < Ru→k . (10)

For any service, it can only be allocated to one EN to
process as follows

K∑
k=1

M∑
m=1

xsubu,k [m] ∈ {0, 1}, ∀u. (11)

The delay of service j must be less than a maximum toler-
ance value Di, and we have

(dcopu,k (j)+ d
cac
u,k (j)) < Di, i ∈ Sser. (12)

The allocation of bandwidth needs to be under the con-
dition that the existing resources are sufficient, yielding the
following constraint

U∑
u=1

M∑
m=1

xsubu,k [m]bu,k,m ≤ Bk , ∀k. (13)

The total computing resources allocated to users by the EN
k need to meet its own resource constraints, which is given by

U∑
u=1

cu,k ≤ Ck , ∀k. (14)

The optimization goal of this paper is to minimize the
expected delay of N services, and the above constraints are
fully considered. The optimization objective can be expressed
as

argmin
{d}

E[
N∑
j=1

dcopu,k (j)+ d
cac
u,k (j)],

s.t. : (9)− (13). (15)

III. PROPOSED ALGORITHM
In this part, we model the resource allocation problem among
multiple devices based on DRL. The goal of the algorithm is
to optimize the resource scheduling strategy and reduce the
service delay.

A. REINFORCEMENT LEARNING ALGORITHM
In the traditional RL algorithm, the Q-value function is solved
by iterative Behrman equation, and the Q-value function is
expressed as

Qi+1(s, a) = Es[r + γmax
a′

Qi(s′, a′)|s, a]. (16)

when i→∞, the state-action value function will eventually
converge through continuous iteration, and the optimized
strategy will be obtained π∗ = argmaxaQ∗(s, a).
In this paper, the channel state, computing resources and

cache state are all dynamic. When the system state changes,
the size of action and state space cannot be estimated and
the cost of solving Q-value function with Behrman equation
is too high. With the rapid development of DQL, complex
high-dimensional data can be used as input, and then deep
Q-network (DQN) makes decisions according to the input
data. For DRL, the space of reward is S×A×S, the space of
Q-value is S×A, the number of neurons is X ∝ S×A×S,
where S is the state space and A is the action space. The
complexity for solving problem (14) is expressed as ODRL =
(E · (S×A×S) ·T ), where E is the number of episodes, T is
the number of steps. When the number of services increases,
the data can be used as the input of neural network to fit
the data, which reduces the computational complexity of the
traditional iterative method.

To avoid the correlation between samples, an experience
replay mechanism (ERM) is introduced. The motivation of
ERM is to break up the correlation within each sample, which
is denoted by (st , at , rt , st+1). st is the state information of
the agent at time t , at is the action at time t , and rt denotes
the reward value under st and at . The ERM uses a limited
memory to store previous experiences, and randomly selects
a fixed number of experiences to update the neural network.
By mixing the recent experience with the old experience to
update the network, the temporal correlations existing in the
replay experience is avoided [31].

B. AGENT POLLING UPDATE DEEP REINFORCEMENT
LEARNING
The requirements of services in smart grids for ENs are often
different. The states and actions of all agents are centrally
stored by the traditional multi-agent algorithms that are con-
ducive to global optimization, but in the face of a large num-
ber of unknown services, some ENs need special operations
such as computing offloading, so the traditional method has
high limitations. We use an Agent Polling Update Deep Rein-
forcement Learning (APUDRL) to store the agent’s action
separately and store the agent’s state centrally. The APUDRL
can increase the flexibility of the network on the premise of
sharing resources among multiple ENs. For example, in a
physical environment with K ENs, the service with delay
tolerance of milliseconds is jointly processed by k1 ENs,
and the service with delay tolerance of seconds is jointly
processed by k2 ENs. This method can reduce the complexity
of the network, reduce the waste of computing resources
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caused by the joint update, and make the algorithm more
suitable for smart grids scenarios.

When the service needs to be processed by a single device,
each EN can be regarded as an independent learner, only
need to apply the APUDRL algorithm to explore the best
strategy, update operation and reward. If the service needs to
be processed by multiple devices, the APUDRL algorithm is
used to observe its states and the states of other agents, and
the operation is selected according to the joint states. When
the APUDRL algorithm learns the best strategy or reaches the
maximum number of times, the network can get the expected
cumulative return. Markov Decision Process (MDP) is a
general framework to solve DRL. By mapping optimization
problems to MDP, DRL is used to solve MDP problem. The
multi-service resource optimization problem in this paper is
described as an MDP, which contains several key elements,
including state, behavior and reward, and the details are as
follows.

1) STATE
The state is the observation of the current environment, and
the agent can make action decisions (see below) based on
the environment. The observation includes the information
of devices and the cache storage. The information of devices
includes the location of kth agent lk (x, y), the computing
capacity Ccop

k , and the state of subchannel xsubu,k [m]. The infor-
mation of the cache storage includes the cached content %conk,p
in the cache pool of kth agent and the popularity of the content
ω
pop
k,p , they are combined as the cache space Ccac

k of agent k ,
and the cache space is denoted as

Ccac
k = [[%conk,1 , %

con
k,2 , . . . , %

con
k,P], [ω

cac
k,1, ω

pop
k,2 , . . . , ω

pop
k,P]].

(17)

For some delay-sensitive services, the high requirements
on the agent make a single agent unable to meet the service
demand, so multiple agents are required to handle services
cooperatively. To improve the observation information of the
system, it is sensible for an agent to observe some information
about the results of other involved agents. If all states infor-
mation can be regarded as a vector, the states can be expressed
as

s = [[l1,C
cop
1 , xsubu,1 [m],C

poo
1 ],

[l2,C
cop
2 , xsubu,2 [m],C

poo
2 ], . . . ,

[lK ,C
cop
K , xsubu,K [m],C

poo
K ]]. (18)

2) ACTION
The action means selecting the appropriate agent to process
the service. If the action of offloading to ENs or cloud is
selected, the resources will be allocated to these services.
If the resources of the ENs are insufficient, the ENs or the
cloud can provide help. In the proposed model, the agent will
select the appropriate ENs for the arriving service. Accord-
ing to the caching information and remaining computing
resources, each agent chooses an action from the action space

under the current observed state s, and it is discrete. The
action matrix can be expressed as

a = [acomu,1 , a
com
u,2 , . . . , a

com
u,k , . . . , a

com
u,K ,

acopu,1 , a
cop
u,2 , . . . , a

cop
u,k , . . . , a

cop
u,K ,

acacu,1, a
cac
u,2, . . . , a

cac
u,k , . . . , a

cac
u,K ], (19)

where
acomu,k denotes the service fromUE u communicates with the

EN k .
acopu,k denotes that the EN k will process a computation

service from UE u.
acacu,k denotes that the EN k will process a cached service

from UE u.

3) REWARD
The reward function is the reward brought by the selected
action in the current state, then the agent adjusts the explo-
ration policy according to the reward. In the APUDRL algo-
rithm, the agent interacts with the environment to obtain the
state s, selects the action a according to the input state s,
and gets the real-time reward. Finally, it gets the current
cumulative reward by accumulating the previous real-time
reward. The objective of this paper is to reduce the service
delay, so the value of the reward function has a convergent
minimum. The agents learn many times to find an optimal
strategy to minimize the service delay. The reward function
is related to the optimization objective and it is defined as
follow:

rt=α1α2dTu,k+α3[d
P
u,kx

cop
u,k +D

cop
u (1−xcopu,k )]+ α4d

Q
u,k − κ,

(20)

where
α1,α2,α3 and α4 are the penalty factors of the con-

straint(10), constraint(11), constraint(13) and constraint(14).
When the constraint condition is not satisfied, the penalty
factor is a larger value. Otherwise, the penalty factor is 1.
κ is the penalty factor of the constraint(12). It indicates

whether the current policy meets the delay requirement of
the service. When the constraint condition is not satisfied,
the penalty factor is a larger value. Otherwise, the penalty
factor is 0.

The long-term accumulative reward is defined as the sum
of all rewards ever obtained by the agent, but the discounted
is in each step of reward. In order to achieve the goal of
minimizing task delay, the long-term cumulative reward is

defined as Rt =
T∑
t=0

ξ trt with a discount factor ξ ∈ [0, 1].

ξ represents the impact of past rewards on current status.

4) NETWORK
The structure of APUDRL is shown in Fig. 2. The algorithm
collects different services characteristics from the environ-
ment and transmits the observation values to each agent.
Each agent achieves its interaction with the environment
and selects actions from the action space trying to minimize
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FIGURE 2. Network model of APUDRL.

the cumulative reward. An experience replay buffer D is
used to store the training data, and a minibatch from D are
sampled for training the network to promote development.
The proposed algorithm keeps exploring until D reaches the
upper limit, then stores the current states, actions, rewards
and successor states of the agent, and they are defined by
the tuple {s, a, r, s′}. The weight of data is added to measure
the standard of data update, and the tree-based SumTree is
introduced to improve the sampling efficiency. The weight w
of the samples is affected by the time difference (TD) error,
representing the difference between the value function Qval

and the target value Qtar, and the TD error is defined as

δ = r + γQtar
− γQval. (21)

A high TD error indicates that the samples have a high
update efficiency for the network. The principle of the expe-
rience replay mechanism is as follows. First, we use the
absolute time difference TD error of experience to evaluate
the learning value of experience, which has been calculated
in reinforcement learning algorithms such as SARSA [32].
Then, by ranking the experiences in the replay buffer through
the absolute value of their TD errors, we more frequently
replay those with high magnitude of TD errors. The change
of accumulated weight is defined as

1w← 1w+ wcurδ · ∇Qval, (22)

where 1w is the change of accumulated weight and it needs
to be reset to zero after the weight is updated and wcur is
the current weight value. The structure of SumTree is shown
in Fig. 3 and the update function of the network is expressed
as

f loss =
1
K

K∑
i=1

wi · δ2, (23)

where f loss is a residual model that represents the square of
the difference between the true value and the predicted value.

The state-action value function Q(s, a) of APUDRL is the
result of the output of two streams in the full connection layer,
namely state value function V and advantage function A. The
state-action function is expressed as

Q(s, a) = V (s)+ A′(s, a), (24)

where Q(s, a) is the parameter estimation for the network
function, and the V (s) provides an estimate for the state-value
function. The A′(s, a) = A(s, a) − 1

a
∑

a′ A(s, a
′) plays an

important role in advantage estimation, and it makes the
network model to implement forwarding mapping to ensure
that V (s) and A(s, a) can be recovered when Q(s, a) is given.

Therefore, the APUDRL algorithm can be expressed as
Algorithm 1.

Algorithm 1 Agent Polling Update Deep Reinforcement
Learning Algorithm
1: Initialize the scenario and services.
2: Initialize the number of ENs K , the location of ENs l,

agent attributes.
3: Initialize action-value function Fact and target

action-value function F tar, and batch size Cbat.
4: for episode = 1 to episodemax do
5: Initialize a series of random actions and receive a

series of initial state s.
6: for k = 1 to K do
7: for step = 1 to stepmax do
8: Select the action and keep exploration.
9: Acquire the action a, reward r and the next

state s′.
10: Store (s, a, r, s′,w) in the SumTree until the

batch size Cbat.
11: Get mini-batch date from the SumTree based

on p.
12: Activate part of the agents, and get Fact

=

V (s)+ C(s, a).
13:

yj =
{
rj, if episode terminates at j+ 1
rj + γmaxF tar, otherwise

14: Use the loss function f loss = 1
k

∑K
i=1wi ·

(yj − Fact)2 to update the network.
15: Use the δ = yj − Fact to update the w in the

SumTree.
16: if the number of agents is not enough then
17: k = k + 1.
18: else
19: break.
20: end if
21: end for
22: end for
23: end for
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FIGURE 3. The Structure of SumTree.

TABLE 1. Hyper parameters in algorithmic networks.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, we conduct extensive simulations to verify the
performance of the proposed scheme. In particular, we pro-
vided simulation settings in Part A, including model parame-
ters and network parameters. Part B demonstrates the impact
of network structure and sampling method on performance.
Part C analyzes the performance of the resource allocation
strategy from two aspects of computing offload and cache hit
rate.

A. SIMULATION SETTINGS
The important parameters in performance evaluation are
listed in Table 1, and the specific parameters are analyzed as
follows.

The system environment of a single macro cell with a
radius of 5km is considered. It is assumed that the maximum
communication distance of ENs is 100m [5]. The ENs are ran-
domly located in the system environment according to a uni-
form distribution. The wireless transmission capacity (WiFi)
and wired transmission capacity (power line communication)
are set to 2.5Mbps and 15Mbps respectively. The maximum
amount of cache capacity is Ccac

= 20 and the request
list capacity is C list

= 100. The probability of computing
task generation is 0.6, and cache task generation is 0.4. The
distribution of content popularity is often Zipf distribution,
and the shape factor of the is 0.56 [33].

The initial value of the importance of the sample is 0.4,
and its growth rate is 0.001. The agent is composed of two
neural networks, namely the target network and the evalua-
tion network. The target network keeps random exploration

and trains the network. The evaluation network evaluates
the results of the target network. The parameters of both
networks are replaced with the rate vrep = 0.001 once every
200 iterations. For training the neural network, the size of the
experience replay buffer is 3000, and it returns a mini-batch
of experiences, the size of the mini-batch is 32. The learning
rates of several algorithms all are set as vlea = 0.01.

B. TRAINING PERFORMANCE EVALUATION
In this part, we focus on the network performance of the
algorithm and compare the performance of the proposed
algorithm with that of three baseline algorithms, namely
Double DQN [34], Prioritized Replay DQN [35] and Duel-
ing DQN [36]. The algorithm converges approximately after
several iterations, and the performance is evaluated by reward
function and loss function. For these three baseline algo-
rithms, their network structures and sampling methods are
different, but they are usually used to deal with the resource
allocation problem of discrete actions.

1) DOUBLE DQN
Double DQN has the same structure of two Q-networks.
Through decoupled the choice of target Q-value action
and the calculation of target Q-value, it can resolve the
over-estimation of DQN.

2) PRIORITIZED REPLAY DQN
Prioritized replay DQN with SumTree uses priority sampling
to improve prediction accuracy.

3) DUELING DQN
The Dueling DQN tries to optimize the algorithm by opti-
mizing the structure of the neural network. By dividing the
Q-network into two parts, one is the state value function V (s)
and the other is the advantage function A(s, a).

Fig. 4 shows the total reward per episode of the proposed
algorithm and three other algorithms in the same environ-
ment. The total rewards per episode of all algorithms first
decrease with the increase of the episode, and then due to
the influence of random learning strategy, the rewards have
some small fluctuations, but finally converges. It can be
seen that the gain of the APUDRL algorithm in terms of
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FIGURE 4. Total rewards achieved by different algorithms.

FIGURE 5. Total losses achieved by different algorithms.

reward value is approximately 72.85%, 61.65% and 58.84%
compared with Double DQN, Prioritized Replay DQN and
Dueling DQN. The convergence value under the Double
DQN algorithm reaches 266.35 which has the worst perfor-
mance, and the best performance is 72.24 from the proposed
algorithm. The reasons are as follows. First, the two algo-
rithms rely on different neural network structure. Specifi-
cally, the neural network of Double DQN uses a uniform
sampling method which has poor adaptability to newly taken
actions, resulting in extremely unsatisfactory returns from
the algorithm. In contrast, the neural network of the pro-
posed algorithm introduces SumTree to optimize data stor-
age, and employs an advantage function to evaluate currently
taken actions. Furthermore, the sampling method of the algo-
rithm is efficient, and the advantage function improves the
accuracy of decision-making. For the newly added actions,
the network can learn quickly and estimate the reward in
advance.

In Fig. 5, the loss function of the algorithms decreases
with the increasing episode. For Double DQN, the fluctu-
ate is unsatisfactory and it does not reach the convergence
value in the end, because the sampling method and network
structure lead to inaccurate strategy. As can be seen in the
figure, the proposed algorithm can obtain the total losses
per episode fluctuates around 5 and it gives a lower bound
to the other algorithms. As expected, the fluctuation range
and convergence value of the loss function of the proposed
algorithm significantly outperform the other three algorithms
since the agents in proposed algorithm have efficient sam-
pling methods and accurate decision-making.

FIGURE 6. Cache capacity versus cache hit ratio under the three cache
update policy.

C. PERFORMANCE OF COMPUTING AND CACHING
In this part, we evaluate the performance of computing and
caching based on the proposed algorithm. Considering the
different requirements of service delay in smart grids, we ana-
lyze the service delay of three kinds of services in different
proportions. The ratio of milliseconds and seconds to min-
utes is 1:1:1, 1:1:3, 1:3:1 and 3:1:1 respectively. As shown
in Fig. 6, the number of ENs is set from 0 to 20. When the
network resources are sufficient, the total processing delay
approximately presents a linear downward trend with the
increase of the number of ENs. The delay rapidly decreases
with the increasing number of milliseconds services and
delay slowly decreases with the increasing number ofminutes
services and seconds services. The results show that the
proposed algorithm can adapt to the service with different
delays, and change the strategy adaptively according to the
service delay requirements to ensure the convergence of the
results.

Fig. 7 shows the total delay of the proposed algorithm
with different number and proportion of services, the three
different computing offloading modes including [37]
• ENs Computing: All services are delivered to ENs for
processing. This is suitable for the situation that the ser-
vice load is light and the ENs have abundant resources
to finish the task in time.

• Cloud Computing(CC): All services are delivered to CC
for processing. Compared with ENs computing, CC has
more resources and is suitable for services with lower
latency requirements because this transmission costs
more resources and time.

• ENs and CC: All services can choose to process in
ENs or deliver to the cloud for processing, which is
suitable for a variety of services with different delay
requirements.

As shown in Fig. 7, the delay of the single service is always
lower than that of mixed service the number of services.
The single service refers to that the service requested by the
user is composed of one type of service in Sser, while the
mixed service refers to that the service requested by the user
is composed of multiple types in Sser. When the number of
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FIGURE 7. System delay versus the number of services with different computing offloading and service ratios.

FIGURE 8. Cache hit rate of OT, OP and PACT caching schemes for
different cache capacity.

services is less than 300 and the proportion of services is the
same, the delay of all services delivered to ENs is lower than
that of the other two. This is because the resources of ENs
can handle a small number of services. However, with the
increase in the number of services, this method is limited
due to resource constraints. On the whole, the combination
of ENs and CC in this paper can adapt to the calculation
of multiple types of services under different traffic volumes.
It not only ensures that the ENs has enough resources to deal
with delay-sensitive services, but also makes effective use
of the characteristics of CC, alleviating the dual computing
pressure of ENs and CC.

Fig. 8 shows the comparison of cache hit rates among OT,
OP, and PACT, where OT only considers cache time and
the OP only considers content popularity. As can be seen
from Fig. 8, the OT has the lowest cache hit rate, which is
always lower than the other two strategies. It is illustrated
that the OT can only adapt to the caching requirements of
a few services, such as power monitoring video. The cache
hit rate of PACT is always higher than that of OT and OP.
The obtained shows that considering the content popularity
and content cache time, the cache hit rate has a significant

improvement under different cache capacity. Compared with
OT and OP, the cache hit rate of the PACT is improved by
34.42% and 18.71%.

V. CONCLUSION
We design an EC system framework with three-layer in
smart grids combining EC and CC to allocate computing
and caching resources, which is suitable for a large number
of services in smart grids with different delay requirements.
ADRL algorithm based on a pollingmethod that adapts to the
smart grids is proposed, which allows the agent to perform
the polling mechanism according to the requirements of the
service to optimize the neural network and the constraints
in optimization problems are mapped into penalty factors of
reward functions. Numerical experiments show that, com-
pared with the baseline algorithm, the proposed algorithm
can achieve superior long-term utility performance, which
is reflected in the smaller convergence value of the reward
function and loss function. In the face of the growing number
of services with different delay requirements, the algorithm
is also surpassed that of the baseline schemes in delay and
cache hit rate.
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