
Received April 6, 2021, accepted May 5, 2021, date of publication May 20, 2021, date of current version June 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082139

An Efficient Secure System for Fetching Data
From the Outsourced Encrypted Databases
SULTAN ALMAKDI 1, BRAJENDRA PANDA2, (Senior Member, IEEE),
MOHAMMED S. ALSHEHRI 1, (Graduate Student Member, IEEE),
AND ABDULWAHAB ALAZEB 1,2, (Graduate Student Member, IEEE)
1Department of Computer Science, College of Computer Science and Information systems, Najran University, Najran 55461, Saudi Arabia
2Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Corresponding author: Sultan Almakdi (saalmakdi@nu.edu.sa)

ABSTRACT Recently, database users have begun to use cloud database services to outsource their databases.
The reason for this is the high computation speed and the huge storage capacity that cloud owners provide
at low prices. However, despite the attractiveness of the cloud computing environment to database users,
privacy issues remain a cause for concern for database owners since data access is out of their control.
Encryption is the only way of assuaging users’ fears surrounding data privacy, but executing Structured
Query Language (SQL) queries over encrypted data is a challenging task, especially if the data are encrypted
by a randomized encryption algorithm.Many researchers have addressed the privacy issues by encrypting the
data using deterministic, onion layer, or homomorphic encryption. Nevertheless, even with these systems,
the encrypted data can still be subjected to attack. In this research, we first propose an indexing scheme
to encode the original table’s tuples into bit vectors (BVs) prior to the encryption. The resulting index is
then used to narrow the range of retrieved encrypted records from the cloud to a small set of records that
are candidates for the user’s query. Based on the indexing scheme, we then design a system to execute
SQL queries over the encrypted data. The data are encrypted by a single randomized encryption algorithm,
namely the Advanced Encryption Standard-Cipher-Block Chaining (AES-CBC). In the proposed scheme,
we store the index values (BVs) at user’s side, and we extend the system to support most of relational algebra
operators, such as select, join, etc. Implementation and evaluation of the proposed system reveals that it is
practical and efficient at reducing both the computation and space overhead when compared with state-of-
the-art systems like CryptDB.

INDEX TERMS Cybersecurity, privacy-preserving, encrypted databases, SQL queries, cloud computing.

I. INTRODUCTION
In the contemporary electronic era, both individuals and orga-
nizations need scalable data storage and high-performance
computing units to process and store their data. Historically,
only large organizations/companies have been able to own
such units, as they were not affordable for most individuals
and small companies. With the rise of cloud computing, how-
ever, this problem has been solved, as users can now rent stor-
age and computational units as needed at an affordable price.
Most cloud providers provide databases as a service, which
allow individual users and companies to outsource their data
and access them at any time, from any location. According to

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan-Hsun Tseng .

the report in [1], the compound annual growth rate (CAGR)
of cloud database market is anticipated to be 46.78% in 2023,
Figure.1. However, given that privacy breaches are one of the
most common threats in the cloud computing environment,
many people have expressed concerns about privacy when
outsourcing sensitive data. For instance, untrustworthy cloud
service providers might steal personal customer information,
such as email addresses, mailing addresses, and phone num-
bers, and sell that information to third parties, who can then
use it to send irritating advertisements to users via email, mail,
and telephone.

More importantly, attackers who target a cloud provider
can gain access to customers’ sensitive personal information,
such as social security numbers (SSNs). This has serious
consequences, as criminals can use these data to impersonate

78474 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2415-7304
https://orcid.org/0000-0001-9471-7720
https://orcid.org/0000-0001-9661-7440
https://orcid.org/0000-0003-2461-8377

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

FIGURE 1. Anticipated market growth in 2023. Source: https://www.marketresearchfuture.com/reports/
cloud-database-market-6847.

customers in situations such as financial transactions (e.g.,
telephone banking). Thus, sensitive data are restricted from
being processed or sold to a third party. Therefore, signif-
icant evolution in the cloud computing environment could
make such services unattractive to consumers if changes
occur without also providing appropriate solutions for privacy
breach issue. Such an issue must be tackled if cloud providers
are to gain the trust of users and organizations so that they
will outsource sensitive data without worrying about data
leakages.

Data encryption effectively solves the problem of privacy
breaches by ensuring that cloud providers cannot learn from
the data they store. The easiest way is to encrypt the entire
table and outsource it. Then to process a query, the entire table
must be retrieved and decrypted. However, the application
of this technique conflicts with purpose of the databases
and the critical functionalities of cloud environments (e.g.,
searching). Other researchers have used a proxy (i.e., a trusted
third-party server), rather than the user, as an additional
component to carry out the encryption and decryption pro-
cesses. To make this approach practical, each datum must
be encrypted with more than one encryption algorithm to
support various query types [2]. However, in the case of very
large data sets, this approach comes with the penalty of a
significant computational burden, as each datum might be
decryptedmore than once. Various researchers have proposed
numerous systems using different encryption techniques to
protect data confidentiality. In the following subsection,
we explore the common encryption algorithms that have
been adopted in state-of-the-art research on cloud database
security.

A. ENCRYPTION ALGORITHMS
1) ORDER-PRESERVING ENCRYPTION
Order-preserving encryption (OPE) is a functional encryp-
tion technique to encrypt data such that range queries (e.g.,
maximum, minimum, and inequality operators) can be imple-
mented on encrypted data without encrypting the operands
or decrypting the data [3], [4]. This type of encryption uses a
function to compare the order of the ciphertexts to allow com-
parison operations of the encrypted numeric data. This type
of algorithm preserves the original data order. For example,
if c1 is the ciphertext ofm1, and c2 is the ciphertext ofm2, then
the comparison of c1 and c2 is as follows: (c1 < c2ifm1 <

m2); (c1 > c2ifm1 > m2); or(c1 = c2ifm1 = m2)
The security of this type of encryption is downgraded if the

adversary infers the ciphertext of a certain plaintext. Also,
this type of encryption is vulnerable to inference attacks as
in [5], [6].

2) DETERMINISTIC ENCRYPTION
In deterministic encryption (DE) schemes, given the encryp-
tion key k and the messages m, the ciphertext of m is always
the same when encrypted with k , even in multiple executions
of DE.While DE can be used in keyword searches, it does not
preserve the order if used with numeric values. AES-SIV is
an example of a deterministic algorithm. DE is widely used
in securing cloud databases. However, privacy can be com-
promised in this scheme if the attacker is able to identify the
ciphertext of a certain plaintext word (e.g., if he establishes
the ciphertext of ‘‘Alice,’’ then he is able to determine which
tuples contain ‘‘Alice’’).

VOLUME 9, 2021 78475

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

3) HOMOMORPHIC ENCRYPTION
Homomorphic encryption (HOM) is a method of encryption
that allows for the performance of certain arithmetic opera-
tions (i.e., addition and multiplication) on ciphertexts without
the need to decrypt them. There are two types of HOM:
partially HOM and fully HOM. Partially HOM supports
either addition or multiplication, while fully HOM supports
both operations. HOM can secure numeric data in cloud
environments; however, encrypting with HOM produces long
ciphertexts, since this type of encryption is based on an asym-
metric encryption system. Also, computation performance on
HOM ciphertexts is downgraded as the volume of ciphertexts
increases [7].

4) RANDOMIZED ENCRYPTION
Randomized encryption intends to produce different cipher-
texts for each plaintext, i.e., no more than one ciphertext has
the same plaintext. Essentially, in this scheme, in addition to
the secret key, an initialization vector (IV) must be XORed
with the first block of the plaintext, and a new ciphertext must
therefore be obtained each time the algorithm is executed [8].
While this encryption technique provides the highest security
level for outsourced databases, it has a major drawback in
cloud databases,namely the inability to execute SQL queries
over ciphertexts.

5) ONION ENCRYPTION
The term ‘‘onion layers encryption’’ was first developed by
the authors in [2]. In onion encryption, cloud servers are able
to execute different SQL statements while data remain secret.
In the onion encryption, each layer is a ciphertext of a specific
encryption methodology (e.g., DET, OPE, HOM, or RAN).
The inner layer is the ciphertext of the algorithm with the
lowest security level, while the outer layer is the ciphertext
with the highest security level (i.e., randomized). The main
flaw of this approach is the intensive computation that results
from decrypting all of the encryption layers, which leads to
slower query processing. In addition, the space required for
the encrypted databases is about 3.75 times that required for
the unencrypted databases [2].

B. SUMMARY OF CONTRIBUTIONS
In this research, we first designed a novel indexing scheme
for randomized encrypted databases, which is based on
defining a partitioning tree (PT) for all domain partitions
for sensitive columns in a table (i.e., dividing each col-
umn into sub-columns where each sub-column represents
a set of values). The PT is then used to encode records
into bit vectors (BVs), wherein each bit position is mapped
to a specific partition and is only set to one if the value
belongs to the set of values represented by that partition.
The BVs are used to retrieve only part of the outsourced
encrypted records. Second, we developed a secure model
based on our proposed indexing technique. In this model,
we use store and handling the BVs on a private cloud

server. Third, we proposed different algorithms to process
most of the relational algebra operators on encrypted data
without revealing the confidentiality of data. Fourth, we con-
ducted several experiments to evaluate different aspects
of the proposed system including computation overhead
and space overhead against three well-known approaches:
CryptDB [2], columns-based fragmentation [9], and one
block-based encryption [10]. Our experiments showed that
the proposed system outperformed most of the competing
approaches in both time and space overhead.

The rest of this document is organized as follow: in
section II, we explain different security enforcement schemes
for the cloud databases, then we survey the state-of–the-
art approaches to secure outsourced databases. Section III
details the proposed system, followed by the implementation
and evaluation details in section IV. Finally, we provided a
conclusion of this research in section V.

II. RELATED WORK
The powerful features of the cloud computing environment,
such as enormous capacity and high-performance comput-
ing units, have attracted database owners in both small and
large companies. These features have made it necessary to
obtain and maintain the incredibly expensive storage and
computation units to process vast databases at affordable
prices. In spite of the advantages of cloud computing, data
security is the main drawback of using cloud services to
outsource databases. The work of securing databases began
when networking and internet technology advanced and were
adopted by major companies. This, in turn, fueled the need
for databases as a service for individuals and entities requir-
ing high storage capacity and computation. Data privacy,
integrity, and confidentiality are in danger when databases are
outsourced, since the database owner loses control over who
can access and read their data.

To address these issues, researchers began to develop vari-
ous approaches to protect user data from unauthorized access
and data breaches, using data access control, data encryption,
or both [11], [12]. Data access control functions by regulating
what object O a subject S can access and what operations Op
that S can perform on O. Encryption, in contrast, works by
encoding plaintext data into ciphertext (i.e., an unreadable
format). Each method has its advantages and disadvantages.
For example, access control is intended to increase comput-
ing performance, while encryption decreases it. In addition,
encryption protects against data breaches from both internal
and external attacks, whereas data privacy can be compro-
mised in such cases when the access control mechanism is
enforced, since adversaries might bypass predefined access
roles to access data. Regardless of the heavy computational
work required by encryption schemes, encryption is still the
preferred security mechanism for most database users.

1) SECURITY ISSUES IN CLOUD COMPUTING
Despite the powerful features of cloud computing, there are
many issues and vulnerabilities that can be exploited by

78476 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

malicious actors against outsourced data. One type of secu-
rity issues, privileges abuse, involves the use of legitimate
privileges for malicious purposes (e.g., a user in company
A with the privilege to view company A’s sales records who
uses their privileges to fetch sales tuples and pass them to
competitor company B). Another vulnerability in the cloud
environment occurs when a user is assigned privileges that
exceed what is necessary to perform their job. This can create
a potential threat if such privileges are abused, either by
the user or an attacker compromising the user’s account.
Cloud environments may also be vulnerable to SQL injection,
i.e., injecting SQL queries to act against the objective of an
application. The injected SQL statement is inserted into an
executable statement which, in turn, can fetch data that the
attacker wants to obtain (e.g., injecting a query to retrieve all
of the records in a given table). Malicious insider attacks are
a form of attacks that are performed from inside the cloud
organization, with very little chance of detection. The attacker
can access sensitive data and leak ormaliciously process them
in a way that violates system policies.

A data breach is defined as the accessing or obtaining
of sensitive information—such as medical records, student
information, employees’ salaries, and so on—in an unau-
thorized manner. Such problems occur when data access is
not restricted and when API access control is weak. Other
cloud attacks may exploit the following: weak authentica-
tion; unpatched services; or insecure system architecture
(e.g., keeping sensitive and non-sensitive data in the same
database without implementing any form of encryption for
the sensitive data).

One solution to concerns about the above-mentioned vul-
nerabilities is applying data encryption to the sensitive data.
For example, in an SQL injection attack, if the attacker injects
a query to fetch the entire set of the database, the attacker will
learn nothing if the sensitive data are encrypted. However,
security level differs by the type of encryption used. Weak
encryption techniques can be compromised by cryptographic
attacks, which exploit a vulnerability in the cryptographic,
such as a weakness in a cipher, key management scheme,
code, or cryptographic protocol. In this dissertation, we focus
on encryption strategy as amethod of protecting data from the
cloud database vulnerabilities listed above. In the next sub-
section, we survey the most popular encryption schemes that
have been used by state-of-the-art database security systems
in the field of cloud computing.

2) ENCRYPTION-BASED SOLUTIONS TO PROTECT
CLOUD DATABASES
Encryption is defined as encoding plaintext into unreadable
formats, which preserves the confidentiality and privacy of
the data. There are two types of encryptions: symmetric
and asymmetric. In symmetric encryption, only one encryp-
tion key (i.e., the secret key sk) is used to encrypt and
decrypt the data. The sk is known by both the encryptor and
decryptor entities; however, it must be kept secret. The most
popular symmetric encryption algorithms are the Advanced

Encryption Standard (AES) and Blowfish algorithms. In [13],
the authors conducted a comparative analysis of the AES
and Blowfish algorithms and found that AES was faster than
Blowfish by nearly 200 ms when used to encrypt or decrypt
the same file. Asymmetric encryption, on the other hand,
involves using two keys—a public key and a private key—
to encrypt and decrypt the data. To guarantee confidentiality,
the receiver’s public key is used to encrypt the data, while the
private key, associated with the receiver’s public key, is the
only key used in the decryption process and must be kept
secret. Asymmetric encryption systems are computation-
ally intensive and slow down the encryption and decryption
processes [14]. Some examples of well-known asymmetric
encryption systems include RSA, ElGamal, Diffie-Hellman,
and ECC. For more details about asymmetric encryption
algorithms, see [15], [16] and [17].

When choosing an encryption system, a variety of fac-
tors must be considered, including security level, computa-
tion overhead, and complexity, among others. For instance,
the computation overhead of asymmetric encryption is higher
than that of symmetric encryption because, in an asymmetric
system, the usage of CPU cycles is higher than in a sym-
metric scheme. Moreover, the security level in both systems
differs based on the type of algorithm used (e.g., randomized
algorithms are more secure than deterministic algorithms)
and whether a strong sk was used to encrypt the data. In a
symmetric system, the security level is high, and the chance of
compromising the sk (for, e.g., a sk length of 256 bits in AES)
is virtually nonexistent. Accordingly, symmetric algorithms
are more widely used than asymmetric algorithms.

Data encryption is the only solution for protecting out-
sourced databases that prevents data leakage resulting from
any form of unauthorized data access in the cloud. How-
ever, it is challenging to execute SQL queries over encrypted
databases. The existing literature on cloud database secu-
rity offers a variety of techniques to overcome this problem
and deal with outsourced encrypted databases. While most
state-of-the-art systems aim to provide security, efficiency
(i.e., time required to execute SQL queries) varies depending
on the technique used; the higher security level provided,
the lower performance level achieved. In the following sub-
section, we explore each strategy used to deal with outsourced
encrypted databases. We then review the research offering
solutions within each strategy.

3) CURRENT APPROACHES TO PROCESS SQL QUERIES
OVER ENCRYPTED DATABASES
Early attempts to secure databases encrypted the whole
database, with each record encrypted as one block
(e.g., if a table has four sensitive columns before encryption,
the encrypted table will have just one column to store the
encrypted values). However, as mentioned earlier, problems
occur when SQL queries must be executed over the encrypted
data. The simplest solution to this matter is to fetch the
entire outsourced table and decrypt it, then execute the query.
While this approach can work well for small databases,

VOLUME 9, 2021 78477

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

it suffers from higher computation costs when applied to
larger databases (e.g., a table holding millions of records).

Researchers have proposed numerous solutions to avoid
retrieving entire outsourced encrypted databases by classify-
ing records into categories before proceeding to the encryp-
tion process. The encrypted table will have an additional
column(s) to store the category of the record. By using
these categories, the end-user is able to retrieve only part
of the encrypted data. In addition, the amount of fetched
encrypted tuples is impacted by how data are categorized in
the cloud (i.e., the more data categories there are, the fewer
data are fetched). To address the issue of categorizing data,
many authors (e.g., [18], [19]) have proposed approaches
to dividing attributes into categories that can be used to
query encrypted data. The techniques are based on dividing
each attribute into ranges. The main encrypted table in the
cloud will then have additional attributes—as many as the
number of partitions among all attributes—to hold numeric
values. The whole record will then be encrypted as one
block and stored as an attribute value in the cloud. The early
attempts technique was developed by [10], who proposed
different techniques to execute relational algebra operators
over the encrypted records. Their solution assigned an iden-
tifier for each value in the tuple, then used those identifiers
to retrieve only encrypted records whose identifiers matched
the requested identifier. Nevertheless, there are several limi-
tations to using such an approach, including vulnerability to
statistical attacks, as mentioned in [20], and heavy client-side
computation due to decrypting every retrieved record’s data
(because all the fields of each record are encrypted as one
block). The authors in [21] proposed a system to build an
index for the plain data, then encrypt each page of the index
individually. To execute a query, the corresponding page is
loaded and decrypted. However, since all pages are encrypted
with one key, the security of this scheme is downgraded.
In addition, the size of the index will continue to grow, which
could impact performance. To improve the security level,
a unique encryption key could be used to encrypt each page
of the index. In [20], the researchers suggested building a
B-tree index, maintained on the client-side, over the plaintext
data. In [22], the authors introduced a single values level
encrypted index and suggested splitting the index into sub-
indexes, i.e., each sub-index is for encrypted values using
the same key in the column. The authors in [23] proposed
a none–order-preserving index for the encrypted database.
This index does not require interaction with the user once the
query is submitted. The security of this scheme is higher than
that of models based on order-preserving indexes, which may
be vulnerable to statistical attacks. Hahn et al. [24] propose
a system to join encrypted databases. The idea is based on
applying a selection operation first, then enforce the join over
selected data. That only leaks the frequency of use and access
patterns. This method is interesting; however, the delay is
high because of the asymmetric cryptosystem they use.

In [2], Popa et al. developed CryptDB as the first practi-
cal system for executing Standard Query Language (SQL)

queries over encrypted databases. Two attack scenarios were
addressed using onion layers encryption: cloud attack and
proxy attack. Each datum is encrypted by more than one
encryption algorithm in which the outer layer ciphertexts
produced by a randomized encryption algorithm. CryptDB
uses a proxy to perform the crypto operations for the user. One
of the drawbacks of CryptDB is that, because of the excessive
crypto operations andmany layers of decryption, it introduces
a high computational burden. In addition, because it is chal-
lenging to execute an analytical load to encrypted data on a
server, CryptDB was improved in [25] to support complex
queries and large data sets. MONOMI solves this problem
by splitting the execution into two sets: a set of queries
to outsourced encrypted data and a set to be executed on
decrypted data on the user’s side. Authors in [26] proposed an
enhanced version of CryptDB to accelerate query processing.
Instead of using AES, they used AES-NI, which was reflected
in the speed of the query processing time. They also suggested
improvements to the hardware to accelerate query processing
in CryptDB. There are many different systems proposed on
top of CryptDB, such as the one presented in [27].

Liu et al. [28] proposed a fully homomorphic order-
preserving encryption system (FHOPE) to execute complex
SQL queries over encrypted numeric data. This system allows
cloud providers to run arithmetic and comparison opera-
tors over encrypted data without repeating the encryption,
thus helping to resist homomorphic order-preserving attacks.
The downside of that study is that the authors conducted
their experiments using tables with less than 9,000 records.
For improved measurement of the efficiency and scalability
of this system, the tables should have more records (e.g.,
100,000 or more). A variety of studies related to this system
are provided in references [29], [30].

Cui et al. proposed P-McDb [31], a privacy-preserving
search approach that allows users to execute queries over
encrypted data. To avoid inference attack, this system
requires two cloud servers, one for database re-randomizing
and shuffling and one for data storing and searching. Instead
of a total search, P-McDb supports partial searches of
encrypted records that are described as a sub-linear manner.
Further, P-McDb is a multi-user system. In the case of a
user revocation, the data cannot be re-encrypted. Another
limitation of this system is that communication with two
cloud providers will add more latency when compared to
other systems such as those described in [2]. More proposed
systems related to P-McDb are described in references [9],
and [32], [33].

Osama et al., in [34], proposed different approaches for
partitioning attributes of tables into multiple sub-columns
based on the attribute’s domain values. The methods
were tested and introduced various delays. They use an
order-preserving mapping function, which enables cloud
servers to run different types of SQL-queries. The major dis-
advantage of this research is that only attributes with numeric
values but not with string values were considered. Moreover,
such a system only supports select statements.

78478 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

In [35], the researchers proposed a secure database (SDB)
approach, a system that divides data into sensitive and non-
sensitive, with only sensitive data being encrypted. The initial
idea was to split the sensitive data into two shares. The data
owner (DO) keeps one share, and the second share is kept
by the cloud service provider (CSP). Assuming the CSP is
curious, the CSP can learn nothing from its share unless
it obtains the DO’s share. Also, the SDB allows different
operators to share the same encryption, thus providing secure
query processing with data interoperability. Similar studies
can be found in [25], [36], and [37].

As presented in [38], some researchers used a technique
called ‘‘Bucketization,’’ in which the tuples are mapped to
more than one bucket. This technique enables a ‘‘database
as a service’’ (DAS) server to execute SQL-style queries
over encrypted data. Each bucket contains a set of encrypted
records ranging from the minimum to maximum value and
assigned an identification (ID). Several studies based on this
approach have been conducted [39], [40].

Some researchers [31], [41], and [42] have addressed cloud
database privacy by adopting what is called a hybrid cloud.
The technique is based on dividing data into sensitive and
non-sensitive. Then, the sensitive data or attributes are out-
sourced to the user’s private cloud while the non-sensitive
data are migrated to the public cloud. The problem is that,
because most users consider their data to be sensitive, this
scheme is not practical for users of non-sensitive data. Also,
the complexity of integration for this solution is high.

On the other hand, Amjad et al. [9] proposed a technique
to prevent untrusted and suspicious cloud service providers
from being able to learn from private data. This technique
is based on vertical fragmentation, in which each sensitive
encrypted column is outsourced to a different cloud server
(slave cloud). In contrast, while the whole encrypted table
is stored at the central server (master cloud). Because the
encryption algorithms [2] and the proxy were used in this
system, the proxy performed all the work of interpreting
queries, encryption, and decryption. One of the limitations
of this work is more communication delays, especially if
the query condition contains more than one clause. Another
example of research that uses this technique is [43].

Bouganim et al. [44] introduced a hardware/software sys-
tem to address the problem of confidentiality leakage in the
outsourced databases. The idea is that the user maintains and
controls a mediator smartcard that is plugged in on the side.
This smartcard is responsible for encrypting the data before
putting them into the database and decrypting data before
sending them to the user. The major disadvantage of this
technique is that the user is limited by the capacity of the
smartcard and cannot benefit from the storage provided by
the cloud services. Similar studies can be found in [44], [45].

SafeBox [46] is a system based on an approach called
access security broker (CASB). This approach allows users
to search and share encrypted data while protecting sensitive
information from being leaked if an attacker gains access to
the cloud server (CS). This technique can be applied over

encrypted databases or files and supports keyword-based
searches within the encrypted contents. Several studies that
use CASB can be found in [47]. Also, a detailed survey about
the use of brokers in the Cloud can be found in [48].

III. METHODOLOGY
A. INTRODUCTION
The primary goal of this research, as stated in our previous
work [49], [50] is to address the significant drawbacks of
some of the state-of-the-art research in the field of cloud
database security. They are described below.

Onion layers encryption means encrypting each datum
using different encryption algorithms. The inner layer is the
ciphertext of the algorithm with the lowest security level,
while the outer layer is the ciphertext of the algorithm with
the highest security level (i.e., randomized encryption algo-
rithm) [2]. When it comes to search for a value, the whole
column’s values must be updated to the next layer (take off
layers) This process might be executed more than once to
achieve the desired result. For a large encrypted table, more
excessive crypto operations are performed, leading to sub-
stantial computational overhead. To enable the cloud server
to remove and adjust layers, the secret key is passed to
the server, making the system vulnerable to an in-session
attack. Also, the trusted but curious cloud provider(s) could
learn about the data if the security layer is adjusted to a
low-security level layer. To overcome this limitation, our
proposed approach was designed to encrypt each datum
in the table using only a randomized encryption algorithm
(AES-CBC). Also, we fetch only those encrypted rows
from the cloud server that are related to the query of the
user, which reduces undesirable computations. We eliminate
passing the secret keys to the cloud server to ensure that
curious cloud provider(s) cannot learn from the outsourced
database.

In systems that use vertical fragmentation (i.e., column-
based fragmentation), the table is fragmented throughout a
multi-cloud. So, each column is outsourced to a different
cloud to preserve privacy and speed up the query process-
ing [9]. This approach might be practical for tables that have
a few attributes but not for tables that have hundreds of
attributes. The reason is because the table owner must have
multiple accounts with more than one cloud server. If two or
more cloud providers collude, privacy will be compromised.

Communication delay is another concern when using such
systems. To address this issue, the developed system requires
only one server to outsource the encrypted table, a feature
that will minimize communication costs, improve privacy,
and accelerate query processing.

Homomorphic encryption (HE) is a technique in which
SQL queries can be executed over the ciphertexts as if the data
were not encrypted. HE is used to encrypt only numeric val-
ues and support arithmetic operators over encrypted numeric
data. However, the space required to store the ciphertexts is
too large. Also, the integrity of encrypted data is not preserved

VOLUME 9, 2021 78479

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

FIGURE 2. An example of the partitioning tree (PT) of the students table, see Table.1.

in such systems because the attacker can change the cipher-
texts undetected. To date, this type of encryption supports
only addition and multiplication over encrypted digital data.
To overcome this, we use a symmetric randomized algorithm
AES-CBC to preserve integrity because the modification of
a ciphertext leads to an incorrect decryption result.

B. ENCRYPTION STRATEGY
To provide privacy and a high level of security, our approach
used AES-CBC to encrypt sensitive data. Only the query
manager (QM) keeps and maintains the secret keys (SKs).
We used a symmetric algorithm rather than an asymmetric
algorithm to gain a higher level of security and faster crypto
processing.

C. THE QUERY MANAGER (QM)
In our work [49], we defined the query manager (QM) as a
trusted server that resides in an organization’s or company’s
private cloud. It works as an intermediary between users
and the Cloud and is responsible for processing queries and
encoding BVs for each table (we explain this step in detail in
the discussion of partitioning trees). Also, the proposed sys-
tem supports individuals’ cases in which QM would be light
software residing in the end user’s system. For an organiza-
tion, it performs the same functions as the QM server. While
we assume that the user can encrypt only columns that have
sensitive data, the proposed approach even supports encrypt-
ing all of a table’s attributes.

D. PARTITIONING TREE (PT)
As stated in our previous work [49], [50], the PT is the
primary element of proposed system in which the query is
appropriately rewritten for execution by the cloud server. The
owner of the table participates in the construction of the
PT by specifying which columns are sensitive and should
be encrypted. Then, the table owner defines the possible

partitions for each column and indicates whether the par-
titions are ranges of values or non-ranges of values. Thus,
the values in each column are partitioned into multi-partitions
in which each partition includes a set of values. Then, the QM
builds the PT based on these specifications. As shown in
Figure.2, the name of the table is the root of the tree, and the
second-level nodes are the sensitive columns that have to be
encrypted. Nodes in the third level, each of which is assigned
an ID, represent the partitions of all the sensitive columns.

The second-level nodes are assigned a color of either white
or gray. Gray nodes imply that the partitions of the column
are ranges of values (e.g., the Name column must have range
partitions based on the first letter of the name, while students
Visa Type have non-range partitions, such as F-1, F-2, etc.).
The PT is stored locally in the QM. We encourage the data
owner to define as many as possible partitions for each SC,
which can narrow the range of retrieved encrypted records
from the outsourced table and, in turn, increase the perfor-
mance of the proposed systems, and achieve faster query
processing.

We are not concerned about memory consumption in our
solutions because the sensitive information in every row is
encoded into bits (i.e., the smallest computation unit). Based
on the PT, this does not consume memory or searching time.
In section III-F, we explain in detail how and where to store
bit vectors in each proposed system. Algorithm 1 shows how
the QM constructs the PT of the students’ table (Table.1) and
Figure.2 shows the PT of the students’ table.

E. ENCODING APPROACH
The encoding process is an essential step in the proposed
systems. The proposed scheme is used to encode records’ sen-
sitive data into bit vectors (BVs), which can be exploited to
retrieve the required encrypted records (i.e., candidate records
for the user’s query without the need for decrypting data).
The QM parses each record to get the names of the sensitive

78480 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

Algorithm 1 PT Construction
1: Input: file.txt containing the name of the table, sensitive

columns, and partitions;
2: Create a tree and add a node, represent the table name

(TN), as the root of the tree;
3: int Id=0;
4: for each sensitive SCi do
5: Nodei = TN .addchild(the name of the SCi)
6: if SCi contains range of values then
7: Nodei.AssignColor (‘Gray’)
8: else
9: Nodei.AssignColor (‘White’)
10: end if
11: while partitions! = null do
12: Nodei.addchild(‘partition value’)
13: end while
14: end for

columns and their values. It then uses the PT to encode the
tuples before proceeding to the encryption process, to bit
vectors (BVs). Each bit position in the BV is mapped to a
partition node from the third level nodes (e.g., the first bit
in the BV is mapped to the node having the ID =1). The
encoding process is accomplished as follows:

1) 1) For each record Rj in the main table T, the QM
creates a BV having a length equal to the number of
nodes in the third level of the corresponding PT. It then
initializes all its bits to zeroes (e.g., if the bit vector has
10 bits, the number of nodes at the third level of the PT
is 10).

2) For each record Rj, the bit bm that mapped to the
partition node PNm under SCi is set to one if the datum
equals the values represented by PNm. Then, the QM
assigns an index to the newly created BV.

For the sake of clarity, the encoded BVs of the records
in Table.1 are as in Figure.3. In section III-F, we present
the details of how and where to store the BVs. Algorithm.2
delineates the process of the encoding step.

TABLE 1. The Students Table.

F. PROPOSED SYSTEM: BIT VECTORS AS A MATRIX (BVM)
In this section, we explain in details the proposed system.
Please note that we have published part of this work in [49].

1) SYSTEM DESCRIPTION
In this system, we store and process the BVs of each out-
sourced table locally at the QM. We assume that the QM
is a trusted server residing in either the end user’s machine

FIGURE 3. The BVs of Records in Table.1.

Algorithm 2 PT Construction
1: Define a vector V ;
2: for each record Rj in Table-T do
3: Parse Rj to get the value(s) of the sensitive columns
SCs;

4: Define a bit vector BVj of length n where n = the
number of nodes in the 3rd level of the T

5: for each SCi in Rj do
6: if value v = value of the nth sub-node of the SCi || v
∈ value of the nth sub-node of SCi then

7: Set nth bit in BVj to 1
8: else
9: Set nth bit in BVj to 0

10: end if
11: end for
12: end for

as an application or in the private cloud, Figure. 4. Because
the only thing outsourced in this prototype is the encrypted
table, the highest level of security is provided. The outsourced
encrypted table preserves the structure of the original table.
However, we add a column (used as a foreign key) to store the
rows’ indices (during the encoding process, the QM assigns
a unique index number to every encrypted row and its BV).
Further, we need these indices to fetch the encrypted records.
To process a query, the QM needs to load the BVs to the main
memory from the hard disk drive (HDD) and perform a rapid
look-up to find which records are candidates for the user’s
query. Then, it pushes their indices into a list and rewrites the
query to fetch any record whose index is on the list. In the
following sub-sections, we present the supported statements
for the relational algebraic operations.

2) BASIC OPERATIONS
The basic operations in database applications are insert,
select, update, alter, and delete statements. We extended this
prototype to support these operations, as explained below.

Insertion statements are straightforward. The QM receives
the insert query, creates a new BV for the newly inserted
record, appends it to the corresponding bit vectors matrix
(BVM), and then encrypts sensitive data and sends it to the
Cloud.

Select is an essential statement in all database applications.
In our approach, it is also part of the execution of other

VOLUME 9, 2021 78481

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

FIGURE 4. BVM Architecture.

statements like update and delete. In the QM, the process of
executing the select statement algorithm is to check which of
the following cases is applicable and then enforce it.

• Case 1: None of the column(s) in the query condition
is sensitive, so they are not stored in encrypted form in
the Cloud. In this case, the QM directly searches and
retrieves the data corresponding to the query condition
from the Cloud. For example, in Table.1, Figure.1 and
Figure.2, if the query condition is ‘‘WHERE ID = 03’’,
the QM retrieves the records directly from the Cloud that
satisfy this condition.

• Case 2: All column(s) in the query condition are sensi-
tive, so they are stored in encrypted form in the Cloud.
In this case, for each column that appears in the query
condition, the QM retrieves the indices of corresponding
bit vector(s) (BVs) from the BVM. Then it performs
logical AND/OR operations based on conditions among
indexes returned for each column. For example, if the
query condition is ‘‘Name = Mark AND visatype =
F1′′, the QM will find any BV having the bit that
mapped to the node representing the values of the PD
‘‘Q-Z.’’ Because ‘‘Mark’’ belongs to this group (i.e.,
PD ‘‘Q-Z’’), any BV has the bit mapped to this partition
is set to one will be added to a list L[]. The QM will
do the same for visa type, then perform the logical
operation AND between the two lists and rewrite the
query accordingly to fetch the candidate records.

The update process is one of the functions provided by the
QM. Through this function, the user issues a query to update
record(s). The QM identifies record(s) using our select algo-
rithm. Then based on the results of select algorithm, the QM
issues a query to retrieve encrypted record(s) from the Cloud,
decrypts them to find the exact records that match the query
conditions, and issues a query to update the encrypted record
and its BV. The steps are shown in Algorithm.4.

The delete process is used to delete a record from a table.
In this case, the QM uses the search algorithm to find the
candidate record(s), then removes the record(s) from the out-
sourced encrypted table and deletes the corresponding BVs
from the BVM. Algorithm.5 outlines the steps in the deletion
process.
Alter is one of the fundamental operations in any database

that allows users to drop/add columns from/to relations. How-
ever, in this model, the QM first determines whether the
dropped or added column is a sensitive column. In the case
of ‘‘drop,’’ the QMwill look at the corresponding partitioning
tree (PT) and drop all partition nodes of the predecessor node
that represents the dropped column. It then deletes all bits
mapped to the deleted nodes from the BVM. The QM then
forwards the alter query to the Cloud, which will execute the
query to drop the encrypted column. In the ‘‘add column’’
case, the QM asks the user if the column is sensitive. If it is
sensitive, then it will add it with its partitions to the PT after
receiving information from the user.

3) RELATIONAL ALGEBRA OPERATORS
Join Most current research in database security does not
support the join operator because dealing with encrypted
databases it is not a straightforward task, especially if
AES-CBC is the encryption algorithm. The simple solution
for such a task is to retrieve all encrypted tables from the
Cloud and perform the join operator after decrypting them.
However, this is not the optimal choice when it comes to
massive tables. In this model, to avoid unnecessary computa-
tion, we need to move as much of the join computation as
possible to the cloud site without decrypting data, leaving
minimal work for the QM. To make BVM both practical
and efficient in the join operator, we need to consider the
following cases for the join condition: 1) The join condi-
tion has only non-sensitive columns. 2) The join condition

78482 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

Algorithm 3 Select
1: Receive user query < Table name, List of columns
c1, c2, c3 . . ., list of values v1, v2, v3 . . .>

2: Check query columns used in search condition
3: CASE 1:
4: if none of columns mentioned in query is sensitive then
5: Search the corresponding table in cloud
6: Return data.
7: end if
8: CASE 2:
9: if each column Ci is sensitive then

10: for each value v being searched for under column Ci
do

11: Search the column representing that domain value
in PT then for each BVj entry under domain value in Ci

12: if bit = 1 then
13: Add the index of BVj to List Li []
14: end if
15: Define list F where F [] is the final list that con-

tains the indices from the lists (L1[],L2[], . . . ,Li[]) after
performing AND or OR (based on query conditions)
operations between them.

16: end for
17: Return F
18: Retrieve encrypted records from the cloud based on the

list F [].
19: Decrypt and return data
20: end if
21: CASE 3:
22: if mixed columns (Sensitive and Non-sensitive) then
23: Do Case 1 AND Case 2
24: Remove duplication if found
25: Return data
26: end if

involves only sensitive columns having limited distinct value
partitions such as USA visa types. 3) The join condition
contains only sensitive columns that have range partitions
such as salary. 4) The join condition has at least two of the
previous cases. So, we design an algorithm to enable the cloud
provider to implement a join operator over encrypted tuples
without decrypting the encrypted attributes.

To solve the first case, in which the join condition involves
only non-sensitive attributes (i.e., unencrypted attributes),
the QM will first determine if the attributes are sensitive or
not. If they are non-sensitive, it will forward the query to
the cloud database, which will implement the join query and
return the join result to the QM. The QM then decrypts the
join result and removes duplication if found. In the second
case, the join condition contains only sensitive attributes that
are not ranges of values. In this case, the QM creates a list Li[]
for every partition of the attribute mentioned in the join con-
dition, where Li[] will have the index of any record having its
bit that mapped to partition nodei is set to 1, before searching
the BVM. Then the QM will rewrite the query to join all the

Algorithm 4 Update
1: Receive user query < Table name, List of columns
c1, c2, c3 . . ., List of values v1, v2, v3 . . .>

2: Use search Algorithm.3 to find the candidate record(s)
3: Fetch the record(s) from the encrypted table
4: Decrypt and find the exact record(s)
5: for each update value uv in record Rj do
6: if uv falls under non-sensitive column then
7: Update the old value with uv in the outsourced table
8: if uv falls under a sensitive column SCi then
9: for each SCi in the update query do
10: if the uv falls under a PD other than the previ-

ous PD then
11: Set the bit that mapped to this PD to 1 and

unset the rest of bits that mapped to other PDs for this
SCi.

12: end if
13: end for
14: end if
15: end if
16: end for
17: Encrypted the updated values
18: Send data back to the cloud

Algorithm 5 Delete
1: Use Algorithm 3 (select algorithm) to find the required

record.
2: Add the index of each fetched record satisfying the delete

condition into list L [].
3: Generate a delete query to delete any record from the

outsourced encrypted table its index is in L [].
4: Delete the BVs of the deleted records from the corre-

sponding BVM.

tuples from both tables based on the indices of these lists. For
example, there are two tables, A and B, both having the same
attributes: ID, name, rank, department, salary. Now, assume
that the query was to join them where A.rank = B.rank.
Then let us say that the partition domains for rank attributes
are manager, secretary, and employee. Now, the QM will
create three lists for each table. The first list will contain the
indices of the bit vectors in the corresponding BVM that have
their bits mapped to the PD‘‘manager’’ set to 1. The second
list will hold the indices that have the bits mapped to the
PD‘‘secretary’’ set to 1, and the third list will contain the
indices that have the bits mapped to the PD‘‘employee’’ set to
1. In the next step, the QM rewrites the query to join the tuples
that have their indices in list Li[] from Table A with the tuples
that have their indices in list Li[] from Table B. In the third
step, the Cloud will execute the query and return the result
to the QM, which will decrypt and remove any duplications
before sending the result back to the user.

In the third case, the join condition contains only sensitive
columns that are ranges of values. This case is similar to

VOLUME 9, 2021 78483

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

the second case. However, in this case, the mapping between
joined partitioning lists can be one toomany. To illustrate this,
consider Figure 3.4. Assume we want to join tables A and B
by equality of salary. The salary column in Table A has
three PDs that are [(10,000 to 20,000), (20,001 to 30,000),
(30,001 to 40,000)], and the salary column has two PDs
that are [(10,000 to 25,000), (25,001 to 40,000)]. We need
to make sure that the QM rewrites the join query in a way
that it maps the PDs from Table A to the corresponding
PDs from Table B. To do that, the QM will create n lists
for each table where n is the number of PDs in the table
that has the fewest PDs in the joining column. So, in the
above example, n = 2 since Table B has the least PDs. In the
first list L1[] in table A, the QM adds indices with bits that
represent PD1, or PD2 is 1. In the second list L2[] of table
A, the QM adds indices with bits that represent PD2 or PD3
as 1. The following figure, Figure 3.4, shows how the PDs
are mapped. The QM rewrites the query before forwarding
it to the Cloud. After getting the join result back from the
Cloud for each tuple, the QM decrypts only the encrypted
column’s value (only the encrypted columns involved in the
join condition) and enforces the join condition. If the join
condition is satisfied, the QM proceeds to decrypt all of the
tuple’s values before moving to the next tuple. If the join
condition is not met, the QMwill not decrypt the entire tuple’s
values and will move to the next tuple. We do so to avoid
unnecessary decryption processes for those tuples that do
not meet the join condition. The last case is when the join
condition involves two or more of the previous cases. In that
case, the QM might rewrite the query. Algorithm.6 below
shows how the QM performs the join.

Union is one of the widely used operations in database
systems in which tuples from two or more tables are merged.
However, to execute a union operator, the number of attributes
and datatype of both tables must be compatible. Even though
the union operation removes the duplication from the union
results, dealing with encrypted data complicates this step.
To accomplish this, we could enable the cloud server to
execute the union operator over encrypted tables and then
send the result back to the QM. Doing so will move the union
computation to the cloud server leaving only decryption and
duplication removal to the QM. The QM will decrypt each
tuple in the union result set and add it into a LinkedHashSet
as soon as it receives it from the Cloud. Note that both tables
must be encrypted with the same secret key to execute the
union algorithm. Algorithm.7 delineates the processes.
Intersection is the process of finding the common subset

out of two or more sets. However, executing intersection over
encrypted databases is not easy without decrypting the data.
If the tables to be intersected have a large number of records,
the user is going to add a significant computational overhead
by decrypting the whole set of the encrypted tuples from the
intersected tables before executing the intersection operator.
As a result, we cannot benefit from the cloud services because
the computation is moved to the user’s side rather than on
the cloud side. Some of the previously proposed systems in

Algorithm 6 Join
1: Input: the QM Parses user’s query to get tables’ names,

attributes, and values.
2: QM checks the PT of each table in the join and performs

the following:
3: Case:1
4: if join column(s) is non-sensitive (not present in the PT)

then
5: Forward the query to the cloud server (CS)
6: Define LinkedHashSets
7: for every fetched recordi do
8: decrypt all values in i
9: push i to s
10: send s to the user
11: end for
12: end if
13: Case:2
14: if join column(s) is a sensitive AND not ranges then
15: for each PDj under the node that represent a SCi in PT

of Table x do
16: Create a list Lxj []
17: for each BV in BVMx do
18: if the bit mapped to PDj is not 0 then
19: Push the BV’ index to Lxj[]
20: end if
21: end for
22: for each PDj under the node that represent a SCi in

the PT of Table x1 do
23: if the value v of PDj of SCi from table x1 equals

to the v of PDj of SCi from Table x2 then
24: PDj of x1 join PDj of x2
25: end if
26: end for
27: Rewrite the query and send it to the cloud
28: Define LinkedHashSet s
29: for every fetched record i do
30: decrypt all values in i
31: push i to s
32: end for
33: Send s to the user
34: end for
35: end if
36: Case:3
37: if join column(s) is a sensitive AND ranges then
38: for each PDj under the node that represent the SCi in

PT of Table x do
39: Create a list Lxj[]
40: for each BV in BVMx do
41: if the bit mapped to PDj is not 0 then
42: Push the BV’ index to Lxj []
43: end if
44: end for
45: for each PDj under the node that represent the SCi

in PT of Table x1 do
46: if the PDj of SCi from table x1 contains at least one value

v where v ∈ PDj from table x2 then

78484 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

47: PDj of x1 join PDj of x2
48: end if
49: end for
50: Rewrite the query and send it to the cloud
51: Define LinkedHashSet s
52: for each fetched record i do
53: Decrypt only the join columns’ values
54: if the join condition satisfied then
55: Decrypt the whole tuple’s values
56: Push i to s
57: else
58: Proceed to the next encrypted tuple
59: end if
60: end for
61: Send s to the user
62:

63: Case:4
64: The query involves two or more of the above cases.

[2], [9], [10] can process queries over encrypted databases
but will experience delays if the tables to be intersected have
large numbers of tuples.

In this model, our goal is to move the computation as much
as possible to the cloud side while eliminating unnecessary
decryption processes at the QM. Moreover, we want to exe-
cute the intersection operator partially in the cloud database
server leaving only the elimination of duplication at the QM.
In this way, we exploit the high computational speed provided
by a cloud database server to accelerate the query processing
time. We explain the simulation of intersection as follows:

• The user sends the query to the QM, which is going to
parse it to remove the headers of tables and columns.

• If the intersect operation involves k columns out of n
columns, where n denotes the total number of columns
in a table, the QM uses our join algorithm to join both
tables by k columns and then rewrites the query. Other-
wise, the QM chooses all SCs that are not in ranges to
join the tables using our join algorithm before rewriting
the query.

• The QM sends the translated query to the cloud database
server, which will execute the query and send back the
join result to the QM.

• Before returning the intersecting result to the user,
the QM decrypts the encrypted join set and pushes it to
a hash list to remove duplicates, if found.

Difference To execute the difference in this prototype,
the intersection is first enforced between the tables to find
the common tuples. Second, the QM sends a query to retrieve
all tuples except the join result set. Third, the QM decrypts
the result and sends back the result.

Duplication Removal Enforcing duplication removal over
a query result (encrypted tuples) at the Cloud is impos-
sible because we use a non-deterministic encryption algo-
rithm (AES-CBC). Therefore, we leave the execution of

Algorithm 7 Union
1: Forward the user’s query to the cloud server
2: Define a vector v
3: for each fetched recordi in the union result set do
4: Decrypt i
5: Add i to v
6: end for
7: v.distinct()
8: Send v to the user.
9: v.clear()

Algorithm 8 Duplication Removal
1: execute steps 1-9 of Algorithm.3
2: if distinct keyword is present in the original query then
3: define LinkedHashSets
4: for each fetched tuplei do
5: decrypt values of i
6: push i to s
7: end for
8: send s to the user.
9: end if

this operator to be accomplished at the QM before sending
back the user’s result. That means the QM will decrypt the
encrypted tuples retrieved from the Cloud. If the query con-
tains the duplication elimination keyword distinct the QM
will define a LinkedHashSet data structure that does not allow
duplicated elements in the set. It will then add each decrypted
tuple to the set. Note that the translated query to be executed
by the cloud server will not have the ‘‘distinct keyword. Fur-
ther, the keyword distinct usually appears in select queries,
in which case the algorithm to eliminate duplication is the
select algorithm, and we add three more steps to execute the
distinct operator. See Algorithm.8.
Aggregation and Sort To implement the aggregation and

sort operators (max, min, and count) over encrypted tables
in the Cloud, we consider two cases for sensitive columns,
ranges, and non-range columns. In non-range columns,
we can process the query locally at the QM with no need to
communicate with the Cloud. In such a case, we avoid the
decryption computation that results from retrieving encrypted
records from the Cloud. Consequently, we will achieve faster
query processing. Specifically, the QM searches the BVM
after looking up the corresponding PT using our search algo-
rithm to obtain a list of all BVs’ indices that satisfy the
query condition. Note that the QM might not need to do
further computations such as decryption processes and will,
therefore, send the query result back to the user. For the sake
of clarity, consider Table 3.1, Figure 3.1, and Figure 3.2,
suppose a user send the following query:
select count(name) from students where department =

‘computer science’; then, the query is processed as below:

• The QM will search the PT and find that Dept is a
non-range column (node’s color is gray). Then it will

VOLUME 9, 2021 78485

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

search the BVM (Figure 3.2) and push the index of
any BV having the bit representing the PD ‘‘computer
science’’ is not zero into a list L[].

• The QM counts the number of the elements in L[] and
returns the number to the user.

On the other hand, the query process is divided into two
phases. The first phase is accomplished at the QM, while
the second phase is handled in the Cloud. The QM exe-
cutes the aggregation or sort operators over decrypted records
after the QM processes the query to retrieve only candidate
encrypted tuples that are related to the query. For example,
the query Select count (‘name’) from student where the
name = ’Alice’; is processed as follows:
• TheQM looks up the PT andwill find the name is a range
column (node’s color is not gray). It will then search the
corresponding BVM and add to the list L[] the indices
of all BVs that have the bit assigned to the PD ‘‘A-F’’ is
one.

• The QM then looks for any encrypted record in which its
index is present in L[] from the Cloud using this query
syntax: select name from the student where index in
(‘‘elements of L[] separated by commas ‘‘).

• The QM decrypts every fetched tuple’s name and incre-
ments the count value only if the decrypted name value
equals ‘Alice.’

• The QM returns the value of the count variable to the
user.

The SUM and AVERAGE functions are processed simi-
larly as a count, but we sum the decrypted numbers. If the
operation is average, we divide the sum over the number
of decrypted values that meets the query conditions. The
sorting operator can be executed similarly to the aggregation
operator. However, we need to run the sort operator over
decrypted data before sending the result back to the user.
Algorithm.9 shows the process.
Project In project queries, the QM does a column-based

retrieval; it will select all tuples for specific column(s). Fur-
ther, we do not need to perform a PT lookup in the project.
However, we need to decrypt the whole set of retrieved tuples
at the QM.We do not need to remove duplication of doing any
filtration at the QM.

Algorithm 9 Aggregate Functions

1: Do steps 1 to 6 of Algorithm.3.
2: if all SCs are non-ranges then
3: if the operator is count then
4: Do steps 9 to 12 of Algorithm.3
5: Let x = Count the number of Li []
6: Return x
7: end if
8: if the operator is max then
9: Let m = the value of right most PD of the SC

predecessor node in the PT
10: Return m
11: end if
12: if the operator is min then

13: Let n = the value of left most PD of the SC prede-
cessor node in the PT

14: Return n
15: end if
16: end if
17: if all SCs are ranges then
18: if the operator is count then
19: Do steps 9 to 15 of Algorithm.3
20: Define List Lk []
21: for each fetched record i do
22: Decrypt i
23: if i meets the query condition then
24: Add it to Lk []
25: end if
26: end for
27: end if
28: Return size of Lk [] to the user.
29: if the operator is max then
30: for the right most PD of the SC do
31: Do steps 10 to 15 of Algorithm.3
32: Define a variable x
33: for each fetched record i do
34: Decrypt i
35: if i > x then
36: x = i
37: end if
38: end for
39: end for
40: end if
41: Return x to the user
42: if the operator is min then
43: for the left most PD of the SC do
44: Do steps 10 to 15 of select algorithm
45: Define a variable x
46: for each fetched record i do
47: Decrypt i
48: if i < x then
49: x = i
50: end if
51: end for
52: end for
53: end if
54: Return x to the user.
55: end if

IV. EXPERIMENTS AND EVALUATION
A. EXPERIMENTAL SETUP
We used a PC with 6GB of RAM, 1TB HDD, and a Core
i5 processor with 2.8 GHz to conduct all the experiments for
all the systems (BVM, OBT, CBF, and CryptDB). To imple-
ment the functions of theQM in the proposed system, we used
Java to simulate each task as a java class or method. MySQL
server was used on the user’s machine and we used Java
Database Connectivity (JDBC) as a connector from Java to
the MySQL engine. All the experiments were performed

78486 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

on the local machine; therefore, the communication delay
variable was removed from all the reported delays.

We implemented the OBT and CBF because their imple-
mentations are not available online unlike CryptDB, which is
available for public use on GitHub [51]. While implementing
the CBF, we adopted the implementation in [52] to encrypt
numerical values in a way that preserves the order (OPE) and
in [53] to support the additive homomorphic property. In our
models, we used the randomized version of the AES-CBC to
encrypt sensitive data. In our systems, each tuple’s data are
transmitted to the encryptor class as soon as the encoding
step has been accomplished. The encryptor and decryptor
classes call numerous cryptographic packages, including the
‘‘javax.crypto’’ package offering the classes and interfaces
for crypto tasks; more information can be found in [54],
and the table owner’s secret key (SK) and the pre-generated
initialization vectors (IVs) can be used to encrypt or decrypt
each tuple. The SK is 256 bits, and each IV is 128 bits (the IV
size equals the block size in the AES). To store the bit vectors
(BVs), we stored them locally at the QM, and we wrote them
in a text file for future use (in the future, the QM just reads the
BVs set from the file.txt and loads them to the data structure).

B. DATASETS AND PARTITIONING TREE
We randomly generated four tables. We defined a list of
values for each attribute and let a java program constructs
tuples by randomly picking values from the lists. The sizes
of the tables (i.e., the number of records) were 10k, 20k,
50k, and 100k records. We had 24 attributes in total for all
tables, and we considered all of them, except ID attributes,
as sensitive attributes. In our study, although we could use
the proposed models with small tables, we focused on the
large tables since it is easier to test the penalties introduced by
each scheme. Table.2 presents the structure of themain tables.
For each table, we created a table in the cloud according to
the created algorithm for each model. We built a partition-
ing tree (PT) for all the tables based on Table.3 Table 4.2.

TABLE 2. The Structure of the Original (Plaon) Students’ Table.

TABLE 3. The sensitive attributes and the number of partitions for
students table.

TABLE 4. The delay of the original database encryption comparison
among all systems in minutes.

We generated the tables so that they were fairly distributed
to the PT. For example, for the attribute (Name), not all the
records were mapped to the first partition (node #1) under the
name predecessor; instead, approximately 33% of the records
were mapped to the first node, 33% assigned to the second
node, and 34% assigned to the third node. We considered the
same technique for the rest of the attribute partitions.

C. EVALUATION
The evaluation consisted of the following:

1) Testing and evaluating basic database operations (cre-
ate, select, insert, update, and delete statements) execu-
tion cost

2) Testing and evaluating aggregation operations (sum,
average, count, max, and min) execution cost

3) Testing and evaluating joining and setting operations
(join, union, and intersection) execution cost

For each part, we considered different factors that play
a role in the efficiency, such as the number of clauses in
the query conditions, what the logic operation (AND/OR)
is in the condition, and what encrypted attributes to retrieve
for the tuples. In the discussion, we explore the factors that
make the proposed models more efficient and what makes
them inefficient. In addition, we discuss the impact of the PT
size on the efficiency of the proposed model.

1) EXECUTION DELAY COMPARISON
a: ORIGINAL DATABASE ENCRYPTION AND INSERT
STATEMENTS
In the proposed model, the original database encryption step
involves parsing records, generating indices, building BVs,
encrypting sensitive data, and inserting the encrypted data
into the encrypted table in the cloud server. In Table.4,
we compare the time taken by each system to encrypt each
table. As seen in Table.4, the OBT is the most efficient system
followed by BVM. On the other hand, the CBF experienced
the highest delay since the encryption process required N
insertion (N = number of columns + 1) into N different
tables in different cloud servers. The second slowest model
is CryptDB in both the creation and insertion processes due
to heavy computation results from the onion layer encryption
as seen in Figure.5. In summary, the proposed model is faster
than the CryptDB and CBF models in both the creation and
insertion processes.

Experiment 1: In this experiment, we calculated the
average percentage of fetched encrypted tuples from the
encrypted tables for the proposed system. We also studied

VOLUME 9, 2021 78487

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

FIGURE 5. The delay comparison of insert statements for all systems, in milliseconds.

FIGURE 6. The percentage of retrieved encrypted tuples for the proposed model.

how the number of clauses in the query condition can con-
tribute to narrowing the range of the fetched set. Figure.6
illustrates how our model dramatically drop the average
retrieved encrypted candidate records for select statements
to about 31% when only one clause is present in the query
condition, while it fetched the least percentage when the
condition clause had three clauses. On the other hand, with-
out using the proposed system to manage the randomized
encrypted database (i.e., no indexing), we must retrieve the
entire outsourced encrypted table.

Experiment 2:
• Select (*) Latency: Table.5 presents the total runtime
for all systems when executing select statements to

retrieve single column values. The runtime we mea-
sured was the time from query parsing until the final
query result was formed in milliseconds (ms). In the
first case, we measured the average runtime when the
condition clause of the queries features only one clause.
The delay is the average delay of executing a select state-
ment on each sensitive column. Furthermore, we tested
select∗ statements when the condition had two and three
clauses. Figure.7, Figure.8, and Figure.9 present the total
execution time of select∗ statements for each model.
As seen in the figures, the proposed system (BVM)
performed better for databases with more than 50k rows,
and the main factor that affects the performance of the

78488 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

TABLE 5. Delays in milliseconds of executing (select∗). The average required records are 8% for one clause, 5% for two clauses, and 3% for three clauses.

FIGURE 7. The delay comparison of executing select all statements
(select∗) for all models in ms when the query condition contains only one
clause.

BVM is the time for loading the BVs from the hard drive
to the main memory and then searching them. Forming
the final lists of the candidate record indices is another
factor that affects the delay in this model.
In terms of comparing the proposed system with the
other approaches, as seen in Table.5, Figure.7, Figure.8,
and Figure.9 the proposed system is faster than all the
competing systems except for the OBT for select state-
ments with two or three clauses. The OBT experienced
the least delay since the amount of decrypted data was
less than in our approaches (all values are stored as
one block leading to fewer bytes to decrypt for each
row). Cell-based encryption produces longer ciphertexts
(i.e., the blocks less than 16 bytes will be padded) and
then higher decryption overhead. However, when the
select query is not to select all (select∗), our system
performs better than the OBT because we eliminate

FIGURE 8. The delay comparison of executing select all statements
(select∗) for all models in ms when the query condition contains two
clauses.

decrypting whole rows in our models, whereas the OBT
does not. When the query condition involved a single
clause, the CBF system experienced delays comparable
to our system, but when the number of clauses in the
select statements was two or three, its delay was almost
double that of our system’s delays since two or three
tables are searched to form the final select query (the
query that retrieves the records from the main encrypted
table in the master cloud). Finally, the CryptDB incurs
the highest delay among the systems as a result of the
decryption of the onion layers overhead. The delay also
increases when the statement condition has two or three
clauses because more onion layers are required to be
slipped off in different columns.

• Throughput: Throughput is defined as the amount of
data transferred at a given time. By measuring the
throughput, we can tell which system is more responsive

VOLUME 9, 2021 78489

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

FIGURE 9. The delay comparison of executing select all statements
(select∗) for all models in ms when the query condition contains three
clauses.

to user’s queries when the requested data are increased
since the end user is the one who will be affected
by the system slowdown. To measure the throughput,
we executed a set of queries to retrieve 25% then 50%
of the records from a table holding 100,000 records.
Then, we measure the amount of plain data (records’
data after decryption) and divide it by the time taken by
each system to deliver the required data to the user [55].

Throughput

=

n∑
k=0

(unencrypted record ′s size (in bytes))

Total time taken to deliver the data (MS)
(1)

As seen in Table.6, the proposed system achieved a
higher throughput when compared with CryptDB and
CBF systems which makes it the best choice for end
users who seek a faster responsive system. OBT has the
highest throughput and that is because it requires the
least bytes requirements among all systems to encrypt
data.
In Figure.10, we show the percent of the throughput
for each system and we compare the systems with the
throughput of MySQL when dealing with unencrypted
data. To calculate the percent, we multiply the system
throughput by 100 and divide it by the unencrypted

TABLE 6. The amount of plain data in kB that each system can deliver to
the user per second.

FIGURE 10. The percent of throughput of all system compared with the
throughput of MySQL when requesting unencrypted data. Note,
the requested data are fetched by a select query from a table with
100,000 records.

FIGURE 11. Comparison of the average delay of update statements for all
models to update a number of existing tuples (100, 200, 500, and
1,000 tuples).

throughput.

Throughput Percent

=
(System throughput ∗ 100)
(Unencrypted throughput)

× 100 (2)

By examining Figure.10, we can say that our system
achieved a reasonable throughput percent and as the
amount of required data increased (up to 50% of the
rows), the throughput dropped slightly and still outper-
form CryptDB and CBF.

Experiment 3:
• Update and Delete Statements: Figure.11 depicts the
average time cost taken by each system to execute update
statements. In this experiment, we executed update state-
ments with only one predicate. As seen in Figure.11,
the update time cost is high in all systems and is the result
of updating an encrypted field in the database systems.

78490 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

FIGURE 12. Comparison of the average delay of delete statements for all
models to delete a different number of tuples (100, 200, 500, and
1,000 tuples).

The x-axis represents the number of rows affected by the
update statements, which means selecting the required
data and then issuing 100 insert statements in the first
case, 200 insert statements in the second, and so on. The
OBT system has an update delay (7,130 ms), however,
the update process is risky when two or more substrings
in the decrypted block match the updated value (i.e., any
substring from the updated record that matches the new
substring will be updated to the new substring). Thus,
update in the OBT is not practical. By zooming to the
delays of our system, it experienced a slightly higher
delay than the OBT but still performed faster than CBF
and CryptDB. In CryptDB, the update cost is the highest
of the compared systems.
Figure.12 demonstrates the time taken by each model
to delete different numbers of records (100, 200, 500,
and 1,000 tuples) when the delete condition has only one
clause. The delete process selects the required rows and
then deletes them. The delete is efficient in the proposed
system since the deletion is performed after executing
the select operation to retrieve the needed tuples. Instead
of sending a single query to delete each record, wemain-
tain the index of the record and then issue one query at
the end to delete any record of its index in the delete
query, that is, delete from TABLE_NAME where index
in (). On the other hand, CryptDB is the slowest system
to execute delete statements for the same reasons we
mentioned earlier (i.e., onion layers decryption).

• Join, Union, and Intersection: In this study, we report
the delay of the proposed system for join and union
queries. In join queries, we did not include the com-
peting systems in this experiment because the join has
not been implemented in CryptDB (as the author stated
in [51] and the CBF. Therefore, we excluded all the
competing systems from this experiment, and we per-
formed the experiment on tables with the specifications
displayed in Table.7.
We joined two tables by the equality of the encrypted ID,
and their structures are in Table.9 and Table.8 below. The
ID column in both tables is partitioned into 10 partitions

FIGURE 13. Join delay.

FIGURE 14. Union delay growth for different table sizes.

FIGURE 15. Union delay growth for different table sizes.

based on the last digit in the ID as (0, 1, 2, 3, 4, 5, 6,
7, 8, and 9). Figure.13 demonstrates that the delay of
the proposed system (BVM). The high delays in the join
queries is due to the nature of the join calculation and the
amount of the decrypted data. Then, after enforcing the
join condition (at the QM), the decrypted tuples were
pushed into a LinkedHashSet to remove the duplica-
tion. In conclusion, although we experienced high join
delays, we succussed to execute the join statements in
our system over databases encrypted with a randomized
encryption algorithm, such as AES-CBC.
Figure 14 demonstrates the average total time of pro-
cessing the union queries of the proposed system.

VOLUME 9, 2021 78491

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

TABLE 7. Specifications of the joined tables.

TABLE 8. The structure of original international students table.

TABLE 9. The structure of TA students table.

The delay we measured is from the time the QM
intercepts the query until the final query result is
formed. To remove the duplications, we pushed the
decrypted tuples from both tables to a LinkedHashSet,
which ensures no duplicated records exist. As seen in
Figure.14, our system experienced a linear delay growth
as the sizes of the tables increased.
In Figure.14, we show the latency, in milliseconds, of the
intersection operator when executed on different tables
with a different number of records. To perform this
experiment, we reduced the tables’ sizes because we
experienced execution failures due to the lake of mem-
ory. Moreover, the leading cause to get this kind of
error is the massive join computations that result from
implementing the intersection operator. Note that the
intersection queries were to intersecting tables based on
all columns (i.e., not a partial intersection).
In Figure.15, we show the latency, in milliseconds, of the
intersection operator when executed on different tables
with a different number of records. To perform this
experiment, we reduced the tables’ sizes because we
experienced execution failures due to the lake of mem-
ory. Moreover, the leading cause to get this kind of
error is the massive join computations that result from
implementing the intersection operator. Note that the
intersection queries were to intersecting tables based on
all columns (i.e., not a partial intersection)

V. CONCLUSION
Cloud computing is an attractive computing environment for
all kinds of users and companies. But, privacy breaches, not
only by malicious attackers but also by curious providers,
is the downside of this type of service, because users lose

access control over outsourced data. There are many solution
for this problem and data encryption is the effective one.
However, executing SQL queries over encrypted data is chal-
lenging, especially if a randomized encryption algorithm, like
AES-CBC, is used for the encryption. In this research, we first
introduce the QM, a trusted server, which works as an inter-
mediate between the cloud server and user(s) and performs all
the crypto processes. In addition, we design a novel indexing
technique based on predefining partitions for each sensitive
attribute, and then encode each tuple to bits, accordingly.
The bits are used to retrieve candidate tuples for a specific
query that minimize the range of the retrieved encrypted
tuples. Based on this encoding scheme, we proposed a secure
systems to stores and maintains the index data (i.e., the bit
vectors [BVs]) locally at the QM, i.e., in the private cloud.
Besides, we design different algorithms to accomplish query
execution of different SQL relational algebra operators, and
we make it resistant to diffrent attack scenarios, such as infer-
ence attacks. We test the proposed system by implementing it
and comparing its performance against some of well-known
state-of-the-art systems like CryptDB.We evaluate it in terms
of execution time and space requirements. We find that the
proposed system require both less execution time and space
when compared with most other competing systems.

REFERENCES
[1] Online. (1999). Cloud Database Market. [Online]. Available:

https://www.marketresearchfuture.com/reports/cloud-database-market-
6847

[2] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
‘‘CryptDB: Processing queries on an encrypted database,’’Commun. ACM,
vol. 55, no. 9, pp. 103–111, Sep. 2012.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, ‘‘Order preserving encryp-
tion for numeric data,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD), 2004, pp. 563–574.

[4] Y.-D. Jang and J.-H. Kim, ‘‘A comparison of the query execution algo-
rithms in secure database system,’’ Int. J. Electr. Comput. Eng., vol. 6, no. 1,
p. 337, Feb. 2016.

[5] M. Naveed, S. Kamara, and C. V. Wright, ‘‘Inference attacks on property-
preserving encrypted databases,’’ in Proc. 22nd ACM SIGSAC Conf. Com-
put. Commun. Secur., Oct. 2015, pp. 644–655.

[6] D. Pouliot and C. V. Wright, ‘‘The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 1341–1352.

[7] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, ‘‘Exploring the fea-
sibility of fully homomorphic encryption,’’ IEEE Trans. Comput., vol. 64,
no. 3, pp. 698–706, Mar. 2015.

[8] F. Oggier and M. J. Mihaljević, ‘‘An information-theoretic security eval-
uation of a class of randomized encryption schemes,’’ IEEE Trans. Inf.
Forensics Security, vol. 9, no. 2, pp. 158–168, Feb. 2014.

[9] A. Alsirhani, P. Bodorik, and S. Sampalli, ‘‘Improving database security
in cloud computing by fragmentation of data,’’ in Proc. Int. Conf. Comput.
Appl. (ICCA), Sep. 2017, pp. 43–49.

[10] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, ‘‘Executing SQL over
encrypted data in the database-service-provider model,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), 2002, pp. 216–227.

[11] M. Nabeel, E. Bertino, M. Kantarcioglu, and B. Thuraisingham, ‘‘Towards
privacy preserving access control in the cloud,’’ in Proc. 7th Int. Conf. Col-
laborative Comput., Netw., Appl. Worksharing (CollaborateCom), 2011,
pp. 172–180.

[12] Y. Zhu, H. Hu, G.-J. Ahn, D. Huang, and S. Wang, ‘‘Towards temporal
access control in cloud computing,’’ in Proc. IEEE INFOCOM, Mar. 2012,
pp. 2576–2580.

78492 VOLUME 9, 2021

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

[13] J. Raigoza andK. Jituri, ‘‘Evaluating performance of symmetric encryption
algorithms,’’ in Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI),
Dec. 2016, pp. 1378–1379.

[14] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and
Y. Khamayseh, ‘‘Comprehensive study of symmetric key and asymmetric
key encryption algorithms,’’ in Proc. Int. Conf. Eng. Technol. (ICET),
Aug. 2017, pp. 1–7.

[15] M. Chakraborty, B. Jana, T. Mandal, and M. Kule, ‘‘An performance
analysis of RSA scheme using artificial neural network,’’ in Proc. 9th Int.
Conf. Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2018, pp. 1–5.

[16] T. P. Innokentievich and M. V. Vasilevich, ‘‘The evaluation of the crypto-
graphic strength of asymmetric encryption algorithms,’’ in Proc. 2nd Rus-
sia Pacific Conf. Comput. Technol. Appl. (RPC), Sep. 2017, pp. 180–183.

[17] A. Boicea, F. Radulescu, C.-O. Truica, and C. Costea, ‘‘Database encryp-
tion using asymmetric keys: A case study,’’ in Proc. 21st Int. Conf. Control
Syst. Comput. Sci. (CSCS), May 2017, pp. 317–323.

[18] O. M. B. Omran and B. Panda, ‘‘Efficiently managing encrypted data
in cloud databases,’’ in Proc. IEEE 2nd Int. Conf. Cyber Secur. Cloud
Comput., Nov. 2015, pp. 266–271.

[19] O. M. B. Omran and B. Panda, ‘‘A new technique to partition and manage
data security in cloud databases,’’ in Proc. 9th Int. Conf. Internet Technol.
Secured Trans. (ICITST), Dec. 2014, pp. 191–196.

[20] E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati,
‘‘Balancing confidentiality and efficiency in untrusted relational DBMSs,’’
in Proc. 10th ACM Conf. Comput. Commun. Secur. (CCS), 2003,
pp. 93–102.

[21] B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu, ‘‘A framework
for efficient storage security in RDBMS,’’ in Proc. Int. Conf. Extending
Database Technol. Berlin, Germany: Springer, 2004, pp. 147–164.

[22] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes, ‘‘Designing secure
indexes for encrypted databases,’’ in Proc. IFIP Annu. Conf. Data Appl.
Secur. Privacy. Berlin, Germany: Springer, 2005, pp. 54–68.

[23] W.-K. Wong, K.-W. Wong, H.-Y. Yue, and D. W. Cheung, ‘‘Non-order-
preserving index for encrypted database management system,’’ in Proc.
Int. Conf. Database Expert Syst. Appl. Cham, Switzerland: Springer, 2017,
pp. 190–198.

[24] F. Hahn, N. Loza, and F. Kerschbaum, ‘‘Joins over encrypted data with
fine granular security,’’ in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE),
Apr. 2019, pp. 674–685.

[25] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, ‘‘Processing analyt-
ical queries over encrypted data,’’ Proc. VLDB Endowment, vol. 6, no. 5,
pp. 289–300, Mar. 2013.

[26] Y.-F. Zhuang, C.-Z. Wei, J. Li, and W.-G. Li, ‘‘Performance enhanced for
CryptDB based on AES-NI acceleration,’’ DEStech Trans. Comput. Sci.
Eng., Jul. 2017.

[27] A. Kumar and M. Hussain, ‘‘Secure query processing over encrypted
database through CryptDB,’’ in Recent Findings in Intelligent Computing
Techniques. Singapore: Springer, 2018, pp. 307–319.

[28] G. Liu, G. Yang, H. Wang, Y. Xiang, and H. Dai, ‘‘A novel secure scheme
for supporting complex SQL queries over encrypted databases in cloud
computing,’’ Secur. Commun. Netw., vol. 2018, pp. 1–15, Jul. 2018.

[29] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in
Proc. 41st Annu. ACM Symp. Symp. Theory Comput. (STOC), 2009,
pp. 169–178.

[30] K. Li, W. Zhang, C. Yang, and N. Yu, ‘‘Security analysis on one-to-many
order preserving encryption-based cloud data search,’’ IEEE Trans. Inf.
Forensics Security, vol. 10, no. 9, pp. 1918–1926, Sep. 2015.

[31] S. Cui, M. R. Asghar, S. D. Galbraith, and G. Russello, ‘‘P-McDb: Privacy-
preserving search using multi-cloud encrypted databases,’’ in Proc. IEEE
10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017, pp. 334–341.

[32] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, ‘‘Dynamic searchable encryption in very-large databases: Data
structures and implementation,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[33] E. Stefanov, C. Papamanthou, and E. Shi, ‘‘Practical dynamic searchable
encryption with small leakage,’’ in Proc. NDSS, vol. 71, 2014, pp. 72–75.

[34] O. M. Omran, ‘‘Data partitioning methods to process queries on encrypted
databases on the cloud,’’ Ph.D. dissertation, Univ. Arkansas, Fayetteville,
AR, USA, Tech. Rep. 1580, 2020.

[35] S. Shastri, R. Kresman, and J. K. Lee, ‘‘An improved algorithm for query-
ing encrypted data in the cloud,’’ in Proc. 5th Int. Conf. Commun. Syst.
Netw. Technol., Apr. 2015, pp. 653–656.

[36] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, ‘‘Supporting complex
queries and access policies for multi-user encrypted databases,’’ in Proc.
ACM Workshop Cloud Comput. Secur. Workshop, Nov. 2013, pp. 77–88.

[37] W. K.Wong, B. Kao, D.W. L. Cheung, R. Li, and S.M. Yiu, ‘‘Secure query
processing with data interoperability in a cloud database environment,’’ in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2014, pp. 1395–1406.

[38] T. Raybourn, ‘‘Bucketization techniques for encrypted databases: Quanti-
fying the impact of query distributions,’’ Ph.D. dissertation, BowlingGreen
State Univ., Bowling Green, OH, USA, 2013.

[39] B. Hore, S. Mehrotra, and G. Tsudik, ‘‘A privacy-preserving index for
range queries,’’ in Proc. 30th Int. Conf. Very Large Data Bases, vol. 30,
2004, pp. 720–731.

[40] J. Wang, X. Du, J. Lu, and W. Lu, ‘‘Bucket-based authentication for
outsourced databases,’’Concurrency Comput., Pract. Exper., vol. 22, no. 9,
pp. 1160–1180, 2010.

[41] J. Li, Y. K. Li, X. Chen, P. P. C. Lee, andW. Lou, ‘‘A hybrid cloud approach
for secure authorized deduplication,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 5, pp. 1206–1216, May 2015.

[42] M. Tao, J. Zuo, Z. Liu, A. Castiglione, and F. Palmieri, ‘‘Multi-layer
cloud architectural model and ontology-based security service frame-
work for IoT-based smart homes,’’ Future Gener. Comput. Syst., vol. 78,
pp. 1040–1051, Jan. 2018.

[43] V. H. Hacigumus, B. R. Iyer, and S. Mehrotra, ‘‘Query optimization in
encrypted database systems,’’ U.S. Patent 7 685 437, Mar. 23, 2010.

[44] L. Bouganim and P. Pucheral, ‘‘Chip-secured data access: Confidential
data on untrusted servers,’’ in Proc. 28th Int. Conf. Very Large Databases
(VLDB), 2002, pp. 131–142.

[45] C. Priebe, K. Vaswani, and M. Costa, ‘‘EnclaveDB: A secure database
using SGX,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 264–278.

[46] G. Wang, C. Liu, Y. Dong, H. Pan, P. Han, and B. Fang, ‘‘SafeBox:
A scheme for searching and sharing encrypted data in cloud applications,’’
in Proc. Int. Conf. Secur., Pattern Anal., Cybern. (SPAC), Dec. 2017,
pp. 648–653.

[47] C. Liu, G. Wang, P. Han, H. Pan, and B. Fang, ‘‘A cloud access security
broker based approach for encrypted data search and sharing,’’ in Proc. Int.
Conf. Comput., Netw. Commun. (ICNC), Jan. 2017, pp. 422–426.

[48] S. S. Chauhan, E. S. Pilli, R. C. Joshi, G. Singh, and M. C. Govil,
‘‘Brokering in interconnected cloud computing environments: A survey,’’
J. Parallel Distrib. Comput., vol. 133, pp. 193–209, Nov. 2019.

[49] S. Almakdi and B. Panda, ‘‘Secure and efficient query processing tech-
nique for encrypted databases in cloud,’’ in Proc. 2nd Int. Conf. Data Intell.
Secur. (ICDIS), Jun. 2019, pp. 120–127.

[50] S. A. A. Almakdi, ‘‘Secure and efficient models for retrieving data
from encrypted databases in cloud,’’ Ph.D. dissertation, Univ. Arkansas,
Fayetteville, AR, USA, 2020.

[51] R. A. Popa. (2014). CrypDB. [Online]. Available: https://github.com/
CryptDB/cryptdb/

[52] A. Madkour. (2018). Ope. [Online]. Available: https://github.com/
aymanmadkour/ope/

[53] Paillier. Accessed: Oct. 2019. [Online]. Available: https://www.csee.
umbc.edu/~kunliu1/research/Paillier.html/

[54] Package Javax Crypto. Accessed: Oct. 2019. [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-
summary.html#package_description/

[55] J. Douglas, ‘‘Querying over encrypted databases in a cloud environment,’’
M.S. thesis, Boise State Univ., Boise, ID, USA, Tech. Rep. 1520, 2019.

SULTAN ALMAKDI received the B.S. degree in
computer science from King Khalid University,
Abha, Saudi Arabia, in 2010, the M.S. degree in
computer science from the University of Colorado
Denver, Denver, USA, in 2014, and the Ph.D.
degree in computer science from the University
of Arkansas, Fayettiville, USA, in 2020. He is
currently working as an Assistant Professor with
the Department of Computer Science and Infor-
mation Systems, Najran University, Saudi Arabia.

His research interests include cloud security, fog security, edge computing
security, the IoT security, and computer security. He received a Graduate
Certificate in cybersecurity from the University of Arkansas, in 2020.

VOLUME 9, 2021 78493

S. Almakdi et al.: Efficient Secure System for Fetching Data From Outsourced Encrypted Databases

BRAJENDRA PANDA (Senior Member, IEEE)
received the M.S. degree in mathematics from
Utkal University, India, in 1985, and the Ph.D.
degree in computer science from North Dakota
State University, USA, in 1994. He taught math-
ematics in a four-year college in India. In 1988,
he came to USA to pursue higher education in
computer science. He taught undergraduate com-
puter science at the College of West Virginia,
Beckley, from 1993 to 1994. After completion of

his Ph.D., he joined the Department of Computer Science, Alabama A&M
University and he moved to the University of North Dakota, as a faculty
of computer science, in 1997. He worked as a Research Fellow with the
Rome Research Site of the Air Force Research Laboratory, from Summer
1997 to 1998. He joined the Computer Science and Computer Engineer-
ing Department, University of Arkansas, as an Associate Professor Fall
Semester, in 2001. His research interests include database systems, computer
security, and information assurance. He has published extensively in these
areas and has received almost 2.5 million dollars in research funding. His
research has been mostly supported by the National Science Foundation,
Department of Defense, Air Force Office of Scientific Research, and Air
Force Research Laboratory.

MOHAMMED S. ALSHEHRI (Graduate Student
Member, IEEE) received the B.S. degree in com-
puter science from King Khalid University, Abha,
Saudi Arabia, in 2010, the M.S. degree in com-
puter science from the University of Colorado
Denver, Denver, USA, in 2014, and the Ph.D.
degree in computer science from the University of
Arkansas, Fayettiville, USA, in 2021. He received
a Graduate Certificate in cybersecurity from the
University of Arkansas, in 2020.

ABDULWAHAB ALAZEB (Graduate Student
Member, IEEE) received the B.S. degree in com-
puter science from King Khalid University, Abha,
Saudi Arabia, in 2007, and the M.S. degree in
computer science from the Department of Com-
puter Science, University of Colorado Denver,
USA, in 2014. He is currently pursuing the Ph.D.
degree with the University of Arkansas, USA.
His research interests include cybersecurity, cloud
and edge computing security, and the Internet of
Things.

78494 VOLUME 9, 2021

