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ABSTRACT Differential evolution (DE) is an evolutionary algorithm widely used to solve optimization
problems with different characteristics in fields where actions and decisions depend on numerical data
such as engineering, economics, and logistics. In this paper, an adaptive differential evolution mechanism
with cooperative co-evolution and covariance (A-CC/COV-DE) is proposed to overcome the low efficiency
of differential evolution when solving large-scale numerical optimization problems, especially when the
correlation between the variables of the problem is unknown. An unknown correlation of variables hinders
DE from achieving an optimal search process since different types of correlations ideally require distinct
optimization strategies. According to the separability of variables, the appropriate evolutionary strategy
is selected adaptively. For separable functions, cooperative coevolution is adopted. After using extended
differential grouping to split the problem, the sub-components are optimized by differential evolution. This
reduces the dimensionality and complexity of the problem, improving its convergence speed and global
search ability. For non-separable functions, a covariance matrix is calculated, and then the eigenvector is
used to rotate the coordinate system. This leads to eliminate the correlation between variables and improve
the search efficiency of differential evolution. We evaluated the performance of A-CC/COV-DE on the CEC
2014 test suite and compared it with state-of-the-art differential evolution algorithms. The experimental

results show that our proposal is quite competitive with recent algorithms.

INDEX TERMS Cooperative coevolution, covariance, differential evolution, adaptive mechanism.

I. INTRODUCTION

Differential evolution (DE) is a random search algorithm for
numerical optimization problems inspired by natural species
evolution [1]. In DE, a mutant vector is generated according
to a mutation strategy, and then an experimental vector is
generated according to the crossover operator [2]. Finally,
the mutated vector is compared with the experimental vector,
and the individuals with better fitness function value are
reserved for the next generation. Since DE has an important
influence in the field of evolutionary computing, researchers
have proposed many improvement strategies for DE. For
example, Sun et al. [3] adopted a novel Gaussian mutation
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operator and a modified common mutation operator to
collaboratively produce new mutant vectors. In [4], they
also proposed an elite representative based individual adap-
tive regeneration framework (EIR) that can be incorporated
into any DE variant easily. In [5], Sun et al. proposed a
time-varying strategy-based DE algorithm (TVDE), a novel
simple variant of DE. In [6], Deng et al. designed an adaptive
dimension level adjustment framework (ADLA) to relieve
the premature convergence or stagnation problem faced by
the DE algorithm. In [7], an elite regeneration framework for
differential evolution (ERG-DE) was proposed, where a new
individual is produced from the search space around each elite
individual by sampling Gaussian or Cauchy probability mod-
els. In [8], Zhang and Sanderson proposed an adaptive differ-
ential evolution with an optional external archive (JADE).
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However, variable interactions in objective functions (i.e.
whether the variable is separable or not) has an important
influence on evolutionary operators [9]. The operator of the
original difference algorithm has rotational variability, and
the evolution efficiency will be affected when optimizing the
function of variable correlation. In [10], the CoBiDE (dif-
ferential evolution based on covariance matrix learning and
bimodal distribution parameter setting) algorithm proposed
by Wang et al., combines DE with a crossover operator based
on eigenvector to form a new DE algorithm with rotation
invariance. When some correlations between variables exist,
the covariance matrix of the sample points can be used to
describe them. The feature vector and eigenvalue are used to
map the sample points into the new space to eliminate the
correlation between variables.

In [11], Potter et al. proposed a framework named
cooperative coevolution (CC) combined with the classic
genetic algorithm as an evolutionary approach to function
optimization. In [12], cooperative coevolutionary differential
evolution (CCDE) was proposed to combine CC with Dif-
ferential Evolution for solving large-scale optimization prob-
lems, the optimization problem is decomposed into several
independent subcomponents, and then these subcomponents
are optimized at the same time. The experiments show that it
has a good effect when solving problems with uncorrelated
variables.

According to the CC framework, if variables are grouped
randomly, the optimization process for some variables may
interfere with the correct evolution of other variables. Ideally,
only interacting decision variables should be assigned to the
same subcomponent.

In reference [13], Yao et al. proposed the differential
grouping method (DG), which was added to the CC frame-
work. This new strategy detects and assigns the relevant
decision variables to the same subcomponent. Since DG can
only detect direct correlations between variables but cannot
detect indirect correlations, the decomposition degree of the
decomposition method is relatively low in some test func-
tions. On this basis, an extended differential grouping (XDG)
method is proposed in [14], which can decompose the vari-
ables of optimization problems appropriately. By embedding
XDG into the CC framework, the optimization problems can
be decomposed into several subcomponents, where variables
are related if they belong to the same subcomponent and
are not related if otherwise. Therefore, this paper proposes
an adaptive mechanism with cooperative coevolution and
covariance for differential evolution. The main contributions
are as follows:

(1) After analysis, we found that cooperative coevolu-
tion is effective when solving problems that separable
variables, but its performance in problems with only
non-separable variables is relatively poor. Differential
evolution with covariance can analyze the characteristics
of samples and rotate the original coordinates accord-
ing to the rotation invariance feature vector to eliminate
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the correlation between variables and improve the algo-
rithm’s performance.

(2) In the case of different correlation of variables, the CC
framework and the rotation method based on covariance
and eigenvector are analyzed, respectively.

(3) A new learning mechanism based on coevolution and
covariance is proposed, which automatically chooses
between the differential evolution algorithm based on
the CC framework (CCDE) and the differential evolu-
tion algorithm based on covariance (COVDE). Under
the premise of unknown correlation of objective function
variables, comparable experimental results are obtained.

The structure of the paper is as follows. Section II presents
the background for this work. Section III presents an adaptive
mechanism with cooperative coevolution and covariance for
differential evolution, called A-CC/COV-DE, which is used
in these experiments. In Section IV experimental results of
the A-CC/COV-DE algorithm on benchmark functions are
presented. Section V concludes this paper with some final
remarks.

Il. RELATED WORK

A. DIFFERENTIAL EVOLUTION

Differential evolution is a population-based metaheuristic
algorithm [15]. Similar to other numerical optimization algo-
rithms, DE uses a set of real parameter vectors x; =
(x1,...,xp),i = 1,2,..., N where D is the dimension of
the optimization problem and N is the population size. At the
beginning of the search, the individuals in the population are
randomly initialized, and the mutant vector v; ¢ is generated
in the evolution process, the test vector u; g is generated
by the crossover operation. Finally, individuals with better
fitness values are retained in the G generation according to
the selection. The three key steps in Differential Evolution
are mutation, crossover and selection:

(1) Mutation: this operation uses the target vector x; g to
generate a mutant vector v; .

Vi, =Xr1,6 + F - (X2,6 — X13,G) (1

The subscripts r1, 72 and r3 are randomly selected from
[1, NJ, but should be different from i, the parameter F is
a positive scaling factor.

(2) Crossover: this operation uses the mutated vector v; g
and the target vector x; ¢ to generate a test vector u; g.
The common crossover operation of DE is binomial
Crossover:

Vj.i,G»
U,iG =
Xj,i,G>

if rand(0,1) < CR or j = jrana
otherwise

©))

where rand(0, 1) represents a uniform random number
between (0, 1), juna is the subscript of decision variables
selected uniformly and randomly from [1, D], CR is the
crossover rate.
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(3) Selection: DE uses greedy selection, which chooses the
individual with the better fitness between the target
vector x; ¢ and the test vector u; G:

uiG, Iif fuic) < f(xi,6)
XG4l = ) 3
X, G, Otherwise

The operation of DE is relatively simple, and it can quickly
find optimal solutions in low-dimensional problems. How-
ever, it becomes poor in high-dimensional problems. There-
fore, to solve this problem, the framework of cooperative
coevolution is proposed.

B. COOPERATIVE COEVOLUTION

Cooperative coevolution (CC) is often used to solve large-
scale optimization problems. Many researchers have done a
lot of work on CC [16]-[22], and it has been widely used in
various fields [23]-[25]. CC decomposes a high-dimensional
optimization problem into multiple low-dimensional sub-
problems and then cyclically optimizes those multiple sub-
problems [26]—[28]. As the name implies, the difficulty of
cooperative coevolution lies in the method for decomposing
the optimization problem. There are several decomposition
techniques, such as static grouping [29], random group-
ing [12], [30] and grouping strategies based on variable
interactions [31].

The most common decomposition method is random
grouping, that is, the decision variables are randomly
assigned to subcomponents in each evolution cycle. From
the mathematical point of view, the probability of dividing
two interacting decision variables into the same group in
several evolution cycles is quite large, but when the number
of interactive decision variables is greater than 2, the random
grouping becomes uncontrollable and the evolution perfor-
mance is getting poorer. Delta grouping is similar to random
grouping [32], this method decomposes a high-dimensional
problem into several low-dimensional subproblems. It is nec-
essary to pre-define the decomposition of decision variables
into k-groups. If there are many interacting variables in the
optimization problem, a large k-value will affect the perfor-
mance of the algorithm negatively. However, for a smaller
number of interacting variables, a small k-value will reduce
the performance of the algorithm. In short, once the value of
k is determined, the decision variables will be decomposed
into k groups of a fixed size, which may be disadvantageous
to practical optimization problems.

Differential grouping (DG) is an automatic decomposition
strategy [13], which allocates decision variables to subcom-
ponents, and is derived from the definition of partial additive
separable functions. DG algorithm checks the interaction
between each of the variables. If there is an interaction
between two variables, both are placed into the same sub-
component; if a variable does not interact with any other
variable, it is considered a separable variable. DG method
can detect simple direct variable interactions but it performs
poorly when identifying complex interactions. Therefore,
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Type I

FIGURE 1. Two types of variable interaction.

an extended differential grouping (XDG) method was pro-
posed to solve the shortcomings found in DG.

Extended differential grouping can capture two types of
interaction between variables. As shown in Figure 1, the vari-
ables of Type I interact directly, eg. x; and x, (or x» and
x3) interact directly, and the variables of Type II interact
indirectly, eg. x1 and x3 are linked by x,. The formal definition
of interacting types is listed below:

Definition 1: In an objective function f ()? ), variables x;
and x; interact directly with each other if 3 a candidate
solution Xy, s.t.

of

0x;0x; i

#0 @)

denoted by x; <> x;. Variables x; and x; interact indirectly with
each other if for all candidate solutions,

f

8x,~8xj~ -

)

and 3 a set of variables {xx{, ..., Xpn} C f(, S.t. Xj <> Xp] <

. <> Xgn <> Xj. Variables x; and x; are independent with
each other if for all candidate solutions, (5) holds and 7 a set
of variables {xi1, ..., X} C )} St Xj < Xk < ... <
Xian <> Xj.

XDG decomposes the optimization problem into several
subproblems according to the correlation between decision
variables of the objective function [14]. Algorithm 1 shows
the pseudo-code of the XDG method, which is mainly divided
into three stages. The first stage is to determine direct inter-
actions between variables in lines 3-25. It executes pairwise
comparisons once between each decision variable to detect
the interactions. The detection works by evaluating a series of
vectors with small perturbations of each pair of variables. The
difference in fitness values is checked to decide if the vari-
ables are dependent or independent of each other. The second
stage is aimed to identify indirect interactions between vari-
ables in lines 26-33. It simply searches for overlaps between
the resulting groups from the first stage and merges the
groups with common variables. If two sub-components have
the same decision variable, they will be merged until all the
sub-components do not intersect. The third stage is to group
all separable variables into the same subcomponent in lines
34-40. It is performed by merging every group that contains
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only one decision variable into a single group. The deci-
sion variables contained in each subproblem are interactive
and non-separable, but each group of subproblems can be
separated.

Algorithm 2 shows the pseudo-code of the CC framework.
The algorithm is mainly divided into two stages: the group-
ing stage and the optimization stage. The grouping stage is
performed by XDG (Algorithm 1). The optimization stage
optimizes the subcomponents formed in the grouping phase.
For simplicity, the optimization process uses differential evo-
lution. However, even if XDG is added to the CC frame-
work, optimizing non-separable intragroup variables remains
a problem. Therefore, an adaptive selection mechanism with
two different methods is proposed. The first method is to add
XDG to the CC framework, and then use the DE mutation
operation to optimize; the other method is to add covariance
to the DE process for optimization, which can make up for
the limited performance of CC in the optimization process of
non-separable problems.

C. COVARIANCE
It is usually difficult to determine the optimal search direc-
tion in the evolution process by using Differential Evolution
by itself, especially when the variables are related. In this
section, we use the covariance matrix to analyze the features
of the sample points. Additionally, we use the eigenvector to
transform the points in the original Cartesian coordinate sys-
tem to a new coordinate system and eliminate the correlation
between variables according to the rotation invariance [33].
According to the best N/2 individuals in the popula-
tion after differential evolution, the covariance matrix is
calculated:

cov(Py:n2) = [cov(i, Dlpxp (6)

where cov(i, j) is the covariance of the ith and the jth dimen-
sions of the first N/2 individuals in the current population,
which is calculated as:

, 1 N/2 _ _
cov(k,j) = N2—1 Zi:l (xik — Xp)(xij — %)
k=12,....,D; j=12,....,D (7)
cov(P1.y2) is decomposed as follows:
cov(Piy/2) = RA*R’ ®)

where R is the D x D orthogonal matrix coordinate system
representing the features, and each row of R is the covariance
matrix cov(Py.n/2), R’ represents the transformation from the
characteristic coordinate system to the original coordinate
system, and A is a diagonal matrix composed of eigenvalues.

An individual x; in the original Cartesian coordinate system
is expressed in the feature coordinate system as follows:

x; = xR 9

Using the search equation of differential evolution,
the candidate solution v; is generated in the characteristic
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Algorithm 1 XDG Algorithm
1:Input: f: objective function

2: D: dimension

3: ub: upper bounds of decision variables

4: Ib : lower bounds of decision variables

5: &: the threshold to identify direct interaction between

decision variables.

6: IM < zeros(D — 1, D) // IM: Interaction Matrix
7: sep_var < [] /] sep_var: separable variables
8:fori=1toDdo

9: . grgz)dps(l)j {i}

10: )i; <~ ﬁ))

11: )ﬁg <— X]_) .

12: Xp(i) <« u_lz(l) N

13: Ay < f(X1) — f(X2)

14: forj=i+1toDdo

15: if_I)M(i,j) =_9 then

16: X\G) < b))+ B ()2

17 30) < @b() + ()2

18: Ay < f(X1) —f(X2)

19: if|A; — As| > € then

20: IM(i,j) < 1

21: groups(i) < groups(i) U {j}

22:  end if

23: else

24:  groups(i) < groups(i) U {j}

25: end if

26:end for

27: for p, g € groups(i)&p < g do

28: IM(p,q) <1

29: end for

30: end for

31: while the number of variables in groups is not D do
32: for p, g € {1 : num(groups)}&p < g do
33: if groups(p) N groups(q) # ¥ then

34: groups(p) <— groups(p) U groups(q)
35: delete groups(q)

36: end if

37: end for

38: end while
39: for i = 1 to num(groups) do
40:  if length(groups(i)) = 1 then

41: sep_var < sep_var U group(i)
42: delete groups(i)

43:  endif

44: end for

45: groups < groupsU{sep_var}
46: Output: groups

coordinate system:

where rl, 12 and r3 are randomly selected from [1, N]. The
candidate solutions in the characteristic coordinate system
are then transformed into the original Cartesian coordinate
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Algorithm 2 CC Framework

1: Input: N: population size.

2: D: dimension.

F: scaling factor

CR: crossover rate

FESmax: maximum number of function evaluations
6: groups <— grouping(f, D, Ib, ub, ¢) // grouping stage

7: pop < rand(popsize, N) // optimization stage

8: (best, best_val) < min(f (pop))

9: for i <— 1 to number of generations do

10: for j <— 1 to size(groups) do

11:  indices < groups|j]

12:  subpop < popl:, indicies]

13: subpop < optimizer(best, subpop, FES)

14:  popl:, indices] < subpop

15:  (best, best_val) <— min(func(pop))

16: end for

17: end for

18: Output: take the current best solution as optimal solution
output.

nokw

system to be evaluated against the current population:

vi =VvR (11)

lll. A-CC/COV-DE

A. MOTIVATION

Differential evolution has clear advantages in some optimiza-
tion problems, but it is known that the performance of dif-
ferential evolution in large-scale optimization problems will
get more complicated. The most popular methods to solve
large-scale optimization problems are based on grouping and
dimensionality reduction, with the CC framework being one
of these approaches. We observe that the performance of the
cooperative coevolution algorithm is better for optimization
problems with separable variables, but the performance of the
CC algorithm is relatively poor in optimization problems with
non-separable variables. For example, if a 10-dimensional
problem is fully separable, CC will decompose the individ-
uals into 10 one-dimensional ones, and then each portion
of the original individuals are solved separately. When the
dimensionality increases, CC can accelerate the convergence
speed of the algorithm when solving this kind of problems.
For non-separable problems, CC will split the individuals,
allocating related variables into the same subcomponent.
Therefore, during the evolution, the convergence speed and
global search ability of the algorithm will be affected, espe-
cially when the dimensionality is increasing.

Figure 2 shows the process of generating a mutant vec-
tor v; g4+1 in the two-dimensional cost function. As shown
in Figure 3, the construction of the characteristic coordinate
system is used to release the correlation between variables.
In the characteristic coordinate system, the mutant vector is
closer to the global optimal solution, which helps to improve
the convergence of the algorithm.
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X, * NP Parameter vectors from generation G
* Mutated parameter vector

* Global optimal vector

X

FIGURE 2. An example of the process of generating v; ¢, in the
two-dimensional cost function.

L) * NP Parameter vectors from generation G
* Mutated parameter vector
* Global optimal vector

FIGURE 3. The search equation of DE in the Eigen coordinate system.

In differential evolution, the covariance matrix is added to
analyze the characteristics of sample points. According to the
eigenvector, the points in the original Cartesian coordinate
system are transformed into the feature coordinate system to
eliminate the correlation between variables. Our experiments
show that for the optimization problem with non-separable
variables, using covariance to analyze variables in differential
evolution can improve the performance of the algorithm. For
the problems with separable variables, the performance of the
algorithm is poor. In practical optimization problems, it is
difficult to know beforehand whether variables can be com-
pletely separated or not. Therefore, to improve the optimiza-
tion performance of the algorithm, we propose an adaptive
evolutionary mechanism based on cooperative coevolution
and covariance.

B. ALGORITHM FRAMEWORK
The flow chart of the proposed algorithm is shown in Figure 4,
consists of two parts. The left part is cooperative coevolution
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gen=0
ccCount=0
covCount=0
p=0.5

»
!

| ccCount=ccCount+1 |

v

The variables are grouped by
extended differential grouping

1
v v v v
group group
1 2 k

I I I |
v

P=optimizer(groups)

p1=CCDE_successes/(N*ccCount*
number of subpopulations)

f

(gen !=1 AND p>0.5)

/I\No

es<FESmax

OR

| covCount=covCount+1 |

Population evolution by
differential evolution

Covariance is used to analyze the
feature of variables

'

P=optimizer(variables)

p2=COVDE_successes/(2N*
covCount)

v

p=p1/(pl+p2)

FIGURE 4. Flow chart of the proposed algorithm.

with differential evolution as optimizer (CCDE). Firstly,
in the framework of CC, extended differential group-
ing (XDG) is used to group variables according to the corre-
lation between the variables, and then differential evolution
is used to evolve the sub-components after grouping in a
cyclic manner. The part on the right is COVDE. Firstly, dif-
ferential evolution is used to evolve the population, and then
covariance is used to analyze the characteristics of variables
(to describe the correlation between variables). DE operator
with covariance has rotation invariance. According to the
characteristic vector of samples, the points in the coordinate
system are transformed into a characteristic coordinate sys-
tem, which eliminates the correlation between variables and
is conducive to improving the performance when evolving
non-separable problems. Finally, the two algorithms are adap-
tively selected according to the success rate of each evolu-
tionary algorithm (the ratio between the generated offspring
that is successfully selected for the next generation in all
generations and the total number of functions evaluations
used by each algorithm), so that the proposed method can
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end

have better optimization performance for variable dependent
or unrelated optimization problems.

C. AN ADAPTIVE EVOLUTIONARY SELECTION
MECHANISM
According to the experimental observations, using XDG
along with CC and differential evolution, has a good effect on
problems with separable variables, but the results of functions
with partially separable as well as non-separable variables
are far from ideal, especially when compared with COVDE.
To improve the performance of the algorithm, adaptive selec-
tion is conducted between CCDE and COVDE. After each
generation, a probability p is calculated as follows:

P= _r (12)

pl +p2

where P represents probability for CCDE as selected for
the next generation, which is calculated by its relative suc-
cess rate. The overall success rate of CCDE and COVDE
are depicted as pl and p2, respectively, and are calculated
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TABLE 1. The statistical results (Mean (Std)) of A-CC/COV-DE vs. CCDE, COVDE, DE, ADLADE, CSDE, TVDE over 50 independent runs on the
CEC2014 benchmarks with 30D.

Functions CCDE COVDE DE ADLADE CSDE TVDE A-CC/COV-DE
Fl 7.77E+02 + 1.49E+05 + 534E+04+  6.65E+04+  230E+05 + 1.16E+05 + 1.89E-02
(3.50E+03) (8.04E+04) (4.18E+04) (7.06E+04) (1.58E+05) (1.92E+05) (1.26E-01)
F2 1.31E-05 + 2.10E-14 + 1.76E-14 ~ 1.65E-14 ~ 2.56E-14 + 0.00E+00 - 1.48E-14
(1.50E-05) (1.38E-14) (1.51E-14) (1.42E-14) (8.61E-15) (0.00E+00) (1.43E-14)
F3 6.96E-05 + 5.12E-14 + 3.00E-10 + 7.96E-14 + 4.89E-14+ 2.05E-14 ~ 1.36E-14
(5.98E-05) (3.49E-14) (2.12E-09) (8.67E-14) (1.99E-14) (2.76E-14) (2.45E-14)
F4 9.52E+00 ~ 1.05E+01 ~ 9.22E+00 - 3.18E+00 - 4.87E+00 ~ 1.26E+00 - 9.87E+00
(2.06E+01) (2.38E+01) (2.16E+01) (1.24E+01) (1.58E+01) (5.47E+00) (2.25E+01)
F5 2.10E+01 + 2.07E+01 - 2.10E+01 + 2.04E+01 - 2.02E+01 - 2.05E+01 - 2.09E+01
(5.36E-02) (6.74E-02) (6.45E-02) (1.89E-01) (8.29E-02) (6.90E-02) (6.41E-02)
F6 1.06E-01 ~ 5.14E+00 + 8.14E-01 ~ 7.64E-01 + 1.47E+00 + 2.64E-01 + 1.73E-01
(2.26E-01) (7.16E+00) (1.05E+00) (6.92E-01) (1.01E+00) (6.27E-01) (3.86E-01)
F7 3.59E-01 + 1.67E-03 - 6.90E-04 - 1.63E-03 - 1.86E-08 - 0.00E+00 - 1.53E-01
(1.07E-01) (4.49E-03) (2.44E-03) (3.84E-03) (8.88E-08) (0.00E+00) (1.31E-01)
F8 5.14E-13 + 5.27E+01 + 1.26E+01 + 1.50E+01+  7.06E+00+  3.81E+00+ 4.21E-13
(1.20E-13) (8.88E+00) (4.03E+00) (4.28E+00) (2.14E+00) (1.69E+00) (2.02E-13)
F9 3.96E+01 + 6.41E+01 + 1.02E+02 + 2.59E+01 - 3.22E+01 ~ 2.72E+01 - 3.15E+01
(5.13E+00) (9.98E+00) (6.75E+01) (8.25E+00) (8.68E+00) (9.02E+00) (7.97E+00)
F10 3.04E-02 ~ 2.91E+03 + 3.71E+02 + 1.19E+02 + LISE+02+  7.93E+01+ 2.71E-02
(2.35E-02) (4.01E+02) (6.84E+02) (1.28E+02) (1.12E+02) (8.66E+01) (2.46E-02)
Fl1 1.92E+03 ~ 3.57E+03 + 6.60E+03 + 1.34E+03 - 2.72E+03+  2.80E+03 + 1.91E+03
(1.79E+02) (3.04E+02) (3.75E+02) (5.74E+02) (4.94E+02) (6.53E+02) (3.71E+02)
F12 2.61E+00 + 1.06E+00 - 2.17E+00 + 6.52E-01 - 3.41E-01 - 6.83E-01 - 1.28E+00
(2.88E-01) (1.66E-01) (4.84E-01) (2.93E-01) (9.97E-02) (1.42E-01) (1.98E-01)
F13 3.43E-01 + 3.18E-01 ~ 2.95E-01 ~ 2.51E-01 - 1.57E-01 - 2.27E-01 - 3.01E-01
(4.55E-02) (4.95E-02) (3.52E-02) (4.42E-02) (3.69E-02) (3.48E-02) (5.67E-02)
Fl4 3.45E-01 + 2.34E-01 - 2.87E-01 - 2.67E-01 - 1.75E-01 - 2.40E-01 - 3.06E-01
(6.54E-02) (3.04E-02) (7.29E-02) (5.51E-02) (4.09E-02) (5.00E-02) (3.82E-02)
F15 1.55E+01 + 7.16E+00 ~ 1.42E+01 + 6.17E+00 - 3.76E+00 - 6.01E+00 - 7.48E+00
(1.20E+00) (1.05E+00) (1.82E+00) (2.71E+00) (1.37E+00) (1.78E+00) (1.06E+00)
F16 1.24E+01 + 1.17E+01 ~ 1.22E+01 + 1.02E+01 - 1.07E+01 - 9.98E+00 - 1.17E+01
(2.81E-01) (3.11E-01) (2.50E-01) (7.38E-01) (6.27E-01) (6.46E-01) (3.23E-01)
F17 8.49E+03 + 4.02E+02 + 277E+03+  343E+03+  2.09E+03 + 8.72E+03 + 2.74E+02
(1.40E+04) (1.75E+02) (3.89E+03) (3.59E+03) (1.22E+03) (1.97E+04) (1.13E+02)
F18 4.07E+01 + 2.35E+01 + 1.29E+01+  5.15B+01+  2.17E+01+  7.53E+02+ 1.17E+01
(5.90E+00) (8.77E+00) (1.25E+01) (8.77E+00) (8.57E+00) (1.14E+03) (2.64E+00)
F19 2.99E+00 ~ 4.70E+00 + 3.61E+00~  3.13E+00~  432E+00+  4.12E+00+ 3.08E+00
(2.65E-01) (9.79E-01) (1.31E+00) (8.17E-01) (6.44E-01) (7.32E-01) (6.62E-01)
F20 2.33E+01 + 1.91E+01 + 1.16E+01- 2.13E+01 + 1.04E+01 - 1.19E+01 ~ 1.28E+01
(4.68E+00) (7.13E+00) (4.34E+00) (1.40E+01) (3.53E+00) (4.18E+00) 2.81E+00
F21 4.20E+02 + 1.68E+02 + 1.06E+02 ~  2.17E+02+  299E+02+  5.I5E+02+ 1.06E+02
(1.31E+02) (1.38E+02) (9.43E+01) (2.59E+02) (1.43E+02) (3.01E+02) (6.25E+01)
F22 2.97E+02 + 1.16E+02 ~ 5.75E+01 - 5.25E+01 + 2.77E+01 - 1.22E+02 ~ 1.11E+02
(1.52E+02) (8.31E+01) (7.37E+01) (5.44E+01) (1.99E+01) (8.26E+01) (8.55E+01)
F23 315E+02 ~ 315E+02 ~ 315E+02~  3.15E+02~  3.15E+02~  3.15E+02+ 3.15E+02
(3.98E-13) (4.47E-13) (3.98E-13) (4.02E-13) (4.02E-13) (4.14E-13) (4.02E-13)
F24 2.24E+02 ~ 2.25E+02 ~ 226E+02~  2.26E+02~ 2.04E+02 - 2.23E+02 + 2.26E+02
(3.99E+00) (2.15E+00) (5.02E+00) (3.97E+00) (8.69E+00) (4.04E+00) (4.41E+00)
F25 2.03E+02 ~ 2.03E+02 ~ 2.03E+02~  2.03E+02~  2.03E+02+  2.04E+02+ 2.03E+02
(3.76E-01) (4.49E-01) (4.80E-01) (6.44E-01) (2.17E-01) (4.87E-01) (4.55E-01)
F26 1.00E+02 + 1.00E+02 ~ 1.00E+02 ~ 1.00E+02 - 1.00E+02 - 1.00E+02 - 1.02E+02
(4.77E-02) (5.36E-02) (4.60E-02) (4.00E-02) (3.28E-02) (4.16E-02) (1.41E+01)
F27 3.48E+02 ~ 3.84E+02 ~ 3.46E+02 ~ 3.46E+02~ 3.38E+02 ~ 3.22E+02 - 3.67E+02
(4.55E+01) (3.39E+01) (4.57E+01) (4.49E+01) (4.64E+01) (3.81E+01) (4.67E+01)
F28 8.20E+02 - 8.66E+02 ~ 8.19E+02 ~ 8.21E+02 - 7.90E+02 - 7.87E+02 - 8.53E+02
(4.43E+01) (4.27E+01) (5.84E+01) (3.60E+01) (2.26E+01) (3.79E+01) (4.36E+01)
F29 8.69E+02 + 6.01E+02 ~ 7.86E+02+  7.91E+02+  9.69E+02 + 1.33E+03 + 6.64E+02
(1.63E+02) (2.22E+02) (1.41E+02) (1.52E+02) (1.24E+02) (2.77E+02) (1.67E+02)
F30 1.0SE+03 + 7.40E+02 ~ LIOE+03+  9.96E+02 + 1.05E+03 + 1.91E+03 + 74TE+02
(6.47E+02) (3.54E+02) (5.79E+02) (4.92E+02) (3.45E+02) (7.38E+02) (4.38E+02)
19/2/9 13/4/13 14/5/11 12/12/6 13/13/4 14/13/3
as follows: where wl and w2 represent the number of times CCDE
and COVDE were successful in the evolutionary process,
pl = ——mM— (13) respectively. n1 and n, represent the evolution times of CCDE
N xny xk and COVDE, respectively, and k is the number of XDG
p2 = TN o (14) groups. The selection probability calculation does not depend
X X nyp
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TABLE 2. The p values for Wilcoxon rank-sum tests of A-CC/COV-DE vs. CCDE, COVDE, DE, ADLADE, CSDE, TVDE over 50 independent runs on the

CEC2014 benchmarks with 30D.

Functions CCDE COVDE DE ADLADE CSDE TVDE
F1 1.94E-15 7.07E-18 7.07E-18 7.07E-18 7.07E-18 7.07E-18
F2 2.09E-18 3.27E-02 3.70E-01 5.51E-01 3.16E-05 3.79E-09
F3 7.43E-19 6.24E-09 9.89E-12 1.31E-11 5.79E-10 1.94E-01
F4 1.11E-01 8.82E-01 2.11E-02 1.33E-03 6.03E-01 7.56E-07
F5 1.29E-13 1.20E-11 3.02E-10 1.95E-17 7.07E-18 7.07E-18
F6 1.27E-01 2.26E-10 7.26E-01 1.77E-02 8.05E-14 1.23E-07
F7 5.64E-11 1.05E-13 1.00E-14 1.35E-13 4.24E-13 1.25E-19
F8 1.98E-02 6.25E-18 6.14E-18 6.23E-18 6.22E-18 6.25E-18
F9 1.00E-06 1.08E-17 2.07E-05 6.36E-04 7.64E-01 4.97E-03
F10 3.47E-01 6.61E-18 6.61E-18 6.61E-18 6.61E-18 6.61E-18
F11 3.91E-01 8.46E-18 7.07E-18 1.47E-07 1.27E-12 1.85E-10
F12 7.07E-18 7.56E-07 2.65E-13 6.52E-15 7.07E-18 1.63E-17
F13 1.44E-04 7.14E-02 4.26E-01 5.11E-06 4.46E-17 2.89E-10
F14 1.65E-04 2.05E-13 3.90E-04 6.87E-08 1.20E-16 2.95E-11
F15 7.07E-18 1.67E-01 1.35E-16 9.02E-04 5.33E-16 1.28E-06
Fl16 2.26E-14 5.01E-01 7.29E-10 1.80E-16 5.24E-15 1.21E-17
F17 8.46E-18 1.28E-04 5.57E-14 4.01E-16 8.99E-17 7.07E-18
F18 7.07E-18 1.99E-12 1.63E-02 2.95E-17 2.81E-11 1.92E-14
F19 5.88E-01 3.46E-14 1.32E-01 6.17E-01 4.21E-15 1.20E-11
F20 6.17E-15 3.69E-07 1.89E-02 1.45E-05 2.48E-04 7.36E-02
F21 2.47E-17 4.23E-02 4.67E-01 1.15E-07 9.46E-12 7.92E-16
F22 4.73E-09 7.28E-01 1.12E-04 3.27E-05 2.32E-09 3.33E-01
F23 3.27E-01 3.27E-01 3.27E-01 NaN NaN 2.30E-02
F24 3.36E-01 8.44E-01 8.50E-01 3.13E-01 7.50E-18 9.76E-06
F25 6.67E-01 7.12E-01 2.37E-01 2.84E-01 4.30E-02 4.83E-05
F26 3.90E-04 2.99E-01 1.36E-01 1.17E-08 1.29E-17 1.55E-12
F27 1.55E-01 6.19E-02 5.44E-02 5.04E-02 3.06E-01 5.72E-06
F28 2.84E-04 2.29E-01 8.80E-04 2.55E-04 8.19E-12 1.29E-10
F29 2.27E-13 3.54E-01 4.20E-13 3.96E-12 7.07E-18 7.07E-18
F30 4.92E-04 4.67E-01 5.27E-05 2.23E-04 9.02E-07 1.16E-13

on the setting of any parameters, it only depends on the
fitness value of the two evolution methods involved in the
evolution process, which makes it simple and straightforward.
If p>0.5 at the start of a generation, the success rate of CCDE
is greater than COVDE’s. Hence, CCDE will be the optimizer
for that generation. Otherwise, the evolution will continue
with COVDE. The advantage of this method is that whether
the optimization problem can be separated or not, it can obtain
better optimization results. The pseudocode of the adaptive
evolutionary selection mechanism is given by Algorithm 3.

D. ALGORITHM COMPLEXITY ANALYSIS

To objectively compare the performance of the algorithms,
here we mainly analyze the complexity of the proposed algo-
rithm and differential evolution algorithm. The computational
complexity of the algorithm can be divided into two parts:
time complexity and space complexity. The spatial complex-
ity of the algorithm is the same as DE, with the addition of
O (D2) to store the covariance matrix in COVDE, and O (N)
to store the group assigned for each dimension in CCDE.

VOLUME 9, 2021

For the DE algorithm, its time complexity is mainly related
to the number of individuals in the population and the prob-
lem dimensionality. The population size is N, and the problem
dimensionality is D. Then, the algorithm has a time complex-
ity of O (N - D) for a single iteration, being O (N - D - Gen)
for the whole run, where Gen is the number of generations
given by FES/N.

For the proposed algorithm A-CC/COV-DE, CCDE has a
complexity of O (N - D - S), where S represents the number
of groups calculated by XDG. Since the maximum number of
possible sub-populations in a problem is D, this complexity
can also be represented as O (N - D2). For a whole run of
the algorithm, the complexity is given by O (N - D - S -
Gen/S), therefore it has the same time complexity as DE.
The second part of A-CC/COV-DE, which is COVDE, also
has a complexity of O (N - D2), whose upper bound is given
by the calculation of the covariance matrix.

Since both sections of the algorithm have the same com-
plexity, we can conclude that the overall time complexity of
A-CC/COV-DEis O (N - D2).
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TABLE 3. The statistical results (Mean (Std)) of A-CC/COV-DE vs. CCDE, COVDE, DE, ADLADE, CSDE, TVDE over 50 independent runs on the
CEC2014 benchmarks with 50D.

Functions CCDE COVDE DE ADLADE CSDE TVDE A-CC/COV-DE
Fl1 8.01E+00 + 7.24E+05 + 1.43E+06 + 1.40E+06 + 1.73E+06 + 6.70E+05 + 2.50E-01
(5.55E+00) (3.54E+05) (5.16E+05) (5.60E+05) (6.30E+05) (5.12E+05) (1.39E-01)
F2 4.22E+06 + 1.63E+02 - 3.02E+00 - 3.63E+00 - 1.53E+02 - 6.75E-09 - 3.41E+04
(1.57E+06) (7.31E+02) (1.19E+01) (9.07E+00) (6.24B+02) (2.48E-08) (1.95E+04)
F3 1.71E+01 + 4.44E-12 - 2.75E-01 + 4.69E-01 + 3.06E-01 + 6.19E-06 - 1.35E-05
(9.05E+00) (9.10E-12) (9.37E-01) (9.91E-01) (4.14E-01) (2.07E-05) (1.53E-05)
F4 9.34E+01 + 8.24E+01 ~ 5.78E+01 - 6.27E+01 ~ 9.66E+01 + 8.96E+01 ~ 8.13E+01
(1.09E+01) (2.21E+01) (3.67E+01) (3.72E+01) (2.92E+00) (1.45E+01) (2.10E+01)
F5 2.12E+01 + 2.09E+01 - 2.11E+01 + 2.08E+01 - 2.05E+01 - 2.07E+01 - 2.11E+01
(3.22E-02) (4.89E-02) (3.64E-02) (1.20E-01) (8.48E-02) (8.28E-02) (4.20E-02)
F6 3.99E+00 ~ 4.44E+01 + 1.42E+00 - 1.75E+00 - 4.94E+00 ~ 6.14E-01 - 4.13E+00
(2.74E+00) (8.62E+00) (1.33E+00) (1.52E+00) (2.82E+00) (9.49E-01) (2.48E+00)
F7 6.79E-01 + 1.36E-13 - 1.27E-13 - 1.48E-04 - 1.91E-13 - 1.82E-13 - 3.80E-01
(8.17E-02) (4.59E-14) (3.73E-14) (1.05E-03) (6.26E-14) (6.08E-14) (1.69E-01)
F8 9.48E-13 ~ 1.37E+02 + 1.87E+02 + 3.63E+01 + 2.03E+01 + 1.40E+01 + 9.35E-13
(1.98E-13) (1.27E+01) (4.92E+01) (6.45E+00) (5.45E+00) (3.89E+00) (2.10E-13)
F9 8.98E+01 + 1.63E+02 + 3.53E+02 + 5.72E+01 - 5.59E+01 - 4.96E+01 - 8.79E+01
(8.59E+00) (1.77E+01) (1.33E+01) (1.60E+01) (1.13E+01) (1.11E+01) (2.05E+01)
F10 7.99E-03 ~ 6.64E+03 + 9.19E+03 + 8.56E+02 + 9.82E+02 + 4.53E+02 + 6.50E-03
(8.65E-03) (3.94E+02) (1.47E+03) (4.41E+02) (3.76E+02) (2.72E+02) (9.52E-03)
F11 4.03E+03 ~ 7.50E+03 + 1.30E+04 + 4.63E+03 + 5.34E+03 + 7.26E+03 + 4.07E+03
(3.32B+02) (4.47E+02) (2.83E+02) (1.40E+03) (9.45E+02) (1.30E+03) (3.01E+02)
F12 3.42E+00 + 1.58E+00 - 3.27E+00 + 1.50E+00 - 6.22E-01 - 1.08E+00 - 1.76E+00
(3.06E-01) (2.03E-01) (2.70E-01) (4.14E-01) (1.66E-01) (2.67E-01) (1.96E-01)
F13 5.50E-01 ~ 4.02E-01 - 4.61E-01 - 3.87E-01 - 2.36E-01 - 3.09E-01 - 5.69E-01
(9.21E-02) (4.36E-02) (4.49E-02) (6.13E-02) (3.13E-02) (4.02E-02) (8.95E-02)
F14 3.62E-01 + 2.61E-01 ~ 3.38E-01 + 3.64E-01 + 2.85E-01 + 3.39E-01 + 2.79E-01
(1.17E-01) (2.27E-02) (1.13E-01) (1.75E-01) (1.76E-01) (1.63E-01) (7.20E-02)
F15 3.25E+01 + 1.88E+01 ~ 3.10E+01 + 2.24E+01 + 7.20E+00 - 1.29E+01 - 1.87E+01
(1.59E+00) (1.89E+00) (1.27E+00) (4.93E+00) (2.15E+00) (3.85E+00) (1.80E+00)
Fl16 2.23E+01 + 2.12E+01 ~ 2.21E+01 + 2.09E+01 - 2.02E+01 - 1.98E+01 - 2.12E+01
(2.48E-01) (3.93E-01) (2.25E-01) (6.46E-01) (7.11E-01) (7.33E-01) (3.73E-01)
F17 7.72E+04 + 1.29E+03 + 1.58E+04 + 1.52E+04 + 5.04E+04 + 3.44E+04 + 1.14E+03
(6.05E+04) (1.97E+02) (1.12E+04) (1.33E+04) (3.29E+04) (3.06E+04) (2.23E+02)
F18 1.21E+02 + 8.91E+01 + 1.35E+02 + 1.46E+02 + 1.30E+02 + 4.03E+02 + 3.30E+01
(2.91E+01) (1.81E+01) (7.75E+00) (1.50E+01) (4.32E+01) (4.80E+02) (4.09E+00)
F19 6.89E+00 + 1.14E+01 + 1.22E+01 + 1.06E+01 + 1.13E+01 + 1.74E+01 + 6.74E+00
(8.99E-01) (1.23E+00) (8.26E-01) (1.15E+00) (1.03E+00) (9.39E+00) (1.05E+00)
F20 7.19E+01 + 6.04E+01 + 9.81E+01 + 1.06E+02 + 6.74E+01 + 1.02E+02 + 3.58E+01
(7.29E+00) (1.01E+01) (1.34E+01) (1.02E+01) (1.79E+01) (4.64E+01) (5.46E+00)
F21 1.35E+04 + 1.05E+03 + 2.64E+03 + 2.71E+03 + 1.20E+04 + 4.24E+04 + 7.65E+02
(1.18E+04) (2.07E+02) (6.04E+02) (8.54E+02) (1.03E+04) (7.78E+04) (1.51E+02)
F22 1.43E+03 + 5.54E+02 - 7.66E+02 + 1.83E+02 - 3.27E+02 - 3.78E+02 - 6.25E+02
(1.33E+02) (1.45E+02) (3.85E+02) (1.73E+02) (1.63E+02) (1.87E+02) (1.39E+02)
F23 3.44E+02 ~ 3.44E+02 ~ 3.44E+02 ~ 3.44E+02 ~ 3.44E+02 ~ 3.44E+02 + 3.44E+02
(4.59E-13) (4.45E-13) (4.21E-13) (4.26E-13) (4.50E-13) (2.87E-13) (4.45E-13)
F24 2.70E+02 ~ 2.70E+02 ~ 2.70E+02 ~ 2.70E+02 ~ 2.62E+02 - 2.64E+02 - 2.70E+02
(2.84E+00) (1.88E+00) (2.71E+00) (3.11E+00) (4.39E+00) (3.98E+00) (2.22E+00)
F25 2.06E+02 + 2.05E+02 ~ 2.05E+02 - 2.05E+02 - 2.07E+02 + 2.08E+02 + 2.06E+02
(5.99E-01) (4.86E-01) (4.54E-01) (3.71E-01) (7.93E-01) (1.47E+00) (4.37E-01)
F26 1.01E+02 - 1.02E+02 ~ 1.00E+02 - 1.00E+02 ~ 1.00E+02 - 1.16E+02 + 1.06E+02
(5.16B-02) (1.41E+01) (6.19E-02) (6.57B-02) (4.60E-02) (4.69E+01) (2.39E+01)
F27 3.78E+02 - 7.89E+02 ~ 3.70E+02 - 3.71E+02 - 3.47E+02 - 3.51E+02 - 6.89E+02
(4.02E+01) (3.96E+02) (3.80E+01) (3.72E+01) (2.24E+01) (2.66E+01) (3.79E+02)
F28 1.07E+03 - 1.35E+03 ~ 1.08E+03 - 1.08E+03 - 1.07E+03 - 1.06E+03 - 1.36E+03
(4.76B+01) (7.20E+01) (4.58B+01) (4.39B+01) (2.76B+01) (3.53E+01) (6.93B+01)
F29 1.20E+03 + 7.05E+05 ~ 9.40E+02 + 9.90E+02 + 1.60E+03 + 1.47E+03 + 6.57E+02
(3.40E+02) (4.98E+06) (2.39E+02) (2.49E+02) (1.48E+02) (3.89E+02) (1.30E+02)
F30 8.37E+03 ~ 8.46E+03 ~ 8.25E+03 - 8.36E+03 ~ 8.30E+03 ~ 8.59E+03 ~ 8.47E+03
(4.03B+02) (4.42E+02) (3.02B+02) (4.33B+02) (2.70E+02) (5.08E+02) (4.66E+02)
+/-/~ 19/3/8 11/7/12 18/10/2 13/12/5 14/12/4 14/14/2
IV. EXPERIMENTS AND ANALYSIS A. EXPERIMENTAL SETTINGS
In this section, experimental tests are conducted and their To evaluate the performance of the proposed algorithm,
results are presented and discussed. A-CC/COV-DE is compared with CCDE, COVDE, DE,
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TABLE 4. The p values for Wilcoxon rank-sum tests of A-CC/COV-DE vs. CCDE, COVDE, DE, ADLADE, CSDE, TVDE over 50 independent runs on the

CEC2014 benchmarks with 50D.

Functions CCDE COVDE DE ADLADE CSDE TVDE
F1 7.07E-18 7.07E-18 7.07E-18 7.07E-18 7.07E-18 7.07E-18
F2 7.07E-18 7.07E-18 7.07E-18 7.07E-18 7.07E-18 7.07E-18
F3 7.07E-18 6.88E-18 7.07E-18 7.07E-18 7.07E-18 1.23E-09
F4 1.93E-10 4.06E-01 2.74E-03 7.47E-02 7.61E-10 1.75E-01
F5 2.27E-16 7.68E-15 4.65E-13 4.69E-15 7.07E-18 7.07E-18
F6 6.92E-01 4.46E-17 1.00E-07 7.07E-06 3.26E-01 5.15E-13
F7 2.65E-13 5.20E-19 2.12E-19 1.23E-19 1.98E-18 2.11E-18
F8 5.88E-01 6.20E-18 6.20E-18 6.20E-18 6.20E-18 6.20E-18
F9 1.54E-03 8.00E-17 7.07E-18 4.42E-13 2.02E-16 2.07E-17
F10 5.21E-01 6.62E-18 6.62E-18 6.62E-18 6.62E-18 6.62E-18
F11 6.17E-01 7.07E-18 7.07E-18 1.15E-02 3.57E-15 2.95E-17
F12 7.07E-18 1.95E-05 7.07E-18 2.84E-04 7.07E-18 2.85E-16
F13 2.96E-01 1.06E-14 6.68E-10 4.44E-15 7.07E-18 2.95E-17
F14 2.94E-13 5.57E-02 1.69E-10 2.56E-07 5.64E-06 5.19E-08
F15 7.07E-18 9.04E-01 7.07E-18 6.86E-05 1.63E-17 9.01E-12
Fl6 8.46E-18 7.38E-01 1.84E-17 9.44E-03 6.75E-12 6.32E-16
F17 7.07E-18 5.46E-04 7.07E-18 7.07E-18 7.07E-18 7.07E-18
F18 7.07E-18 7.07E-18 7.07E-18 7.07E-18 7.07E-18 3.39E-11
F19 3.02E-02 1.84E-17 7.07E-18 1.27E-16 2.47E-17 8.46E-18
F20 7.07E-18 1.27E-16 7.07E-18 7.07E-18 2.02E-16 6.34E-17
F21 7.07E-18 6.20E-11 7.07E-18 7.07E-18 7.07E-18 7.07E-18
F22 7.07E-18 1.25E-02 4.83E-02 1.05E-15 1.55E-12 3.46E-10
F23 8.22E-02 1.00E+00 1.13E-01 1.87E-01 6.55E-01 7.55E-21
F24 6.94E-01 6.74E-01 8.90E-01 9.12E-01 5.09E-17 3.31E-16
F25 1.04E-05 7.04E-02 2.00E-02 2.08E-03 3.28E-14 3.02E-15
F26 2.95E-12 9.92E-01 6.56E-07 8.82E-01 5.64E-17 4.94E-06
F27 4.29E-05 2.40E-01 2.90E-06 5.11E-06 3.78E-10 3.39E-09
F28 7.07E-18 3.91E-01 7.07E-18 7.07E-18 7.07E-18 7.07E-18
F29 1.63E-17 9.75E-01 1.41E-10 5.42E-13 7.07E-18 7.07E-18
F30 5.15E-01 7.33E-01 2.08E-03 5.67E-02 4.63E-01 1.39E-01

TABLE 5. Mean ranks from Friedman tests for each algorithm and dimension.
Algorithm D=30 D=50 avg
CSDE 3.30 (€8 3.53 (€3] 342
TVDE 3.35 2) 3.57 2) 3.46
A-CC/COV-DE 3.58 3) 3.65 3) 3.62
ADLADE 3.60 “ 3.77 “ 3.68
DE 4.03 5) 4.67 6) 435
COVDE 497 6) 3.87 %) 4.42
CCDE 5.17 (7 4.95 (7 5.06

ADLADE, CSDE, TVDE in the 30 test functions provided by
the CEC2014 test suite. To further illustrate the effectiveness
of A-CC/COV-DE, two different dimensions are used on the
tests (30 and 50). The code for A-CC/COV-DE was written
in Matlab software.

The properties of the CEC2014 benchmark functions are
as follows [11]:

F1-F3: Unimodal function, non-separable functions

F4-F16: Simple multimodal function, F8, F10 are separa-
ble functions, the remaining are non-separable functions.

F17-F22: Hybrid functions, non-separable functions

F23-F30: Composition functions, non-separable functions

VOLUME 9, 2021

The subcomponent optimizer used in this paper is DE,
the adaptive crossover rate is 0.9, the scale factor is 0.5,
the population size N is (2D), The maximum number of
iterations FESmax is set to D*10000, and D=30, 50 is the
function dimension. In this paper, the experiments are per-
formed independently 50 times.

B. COMPARISON OF A-CC/COV-DE RESULTS WITH OTHER
ALGORITHMS

To evaluate the performance of the proposed algorithm, this
paper uses CCDE, COVDE, DE, ADLADE, CSDE, TVDE
in the CEC2014 benchmark suite as a comparison, Kruskal
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Algorithm 3 Adaptive Evolution Selection Mechanism

1: Input: N: population size.

2 D: dimension.

3 F: scaling factor

4 CR: crossover rate

5: FESmax: maximum number of function evaluations
6: % Initialization:

7: gen = 0;

8: ccCount = 0;

9: covCount = 0;

10: Create N solutions x;(i = 1, 2, ..., N) in the search space
randomly.

11: The population is evaluated according to the objective
function value.

12: Set the current function evaluations as FES = N.

13: while FES < FESmax do

14: if (p > 0.5&&gen # 1) || gen =0

15: ccCount = ccCount + 1;

16: Group variables according to Algorithm 1.

17: pop <— rand(popsize, N)

18: (best, best_val) <— min(func(pop))

19: for i < 1 to cycles do

20: for j < 1 to size(groups) do

21: indicies < groupsljl;

22: subpop < popl:, indicies];

23: subpop < optimizer(best, subpop, usedFES);

24: popl:, indicies| < subpop;

25: (best, best_val) < min(func(pop));

26: Calculate the overall success rate of CCDE
by (13);

27: end for

28: end for

29: else

30: covCount = covCount + 1;

31: % Differential mutation operator

32: Create a mutant vector v; g by (1);

33: % Binomial crossover operator

34: Create a trial vector u; g by (2);

35: Evaluate the objective function values f (u; G);

36: % Greedy selection operator

37 if f(u;.6) < f(xi,6)

38: Xi,G = Ui,G;

39: end if

40: Evaluate the objective function values of individuals
and sort them.

41: Calculate the covariance matrix by using the first
N /2 individuals.

42: Generate the candidate solution v;’ j in Eigen coordinate
system by (9 - 10).

43: Convert vg’ jto the original coordinate system by (11).

44 it f(vi) < f(x)

45: Xi = Vi,

46: end if

Wallis rank-sum test was used to obtain the p-value, and
Wilcoxon rank-sum test was used to identify the difference
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Algorithm 3 (Continued.) Adaptive Evolution Selection
Mechanism

47: usedFES = usedFES + 2 x N,

48: Calculate the overall success rate of COVDE by (14).
49: end

50: p=pl/(pl +p2);

S51:fori=1: usedFES

52: FES =FES + 1;

53: end

54: gen=gen+1;

55: end

56: Output: take the current best solution as optimal solution
output.

between the proposed algorithm and the other compared
algorithms. The test results of the compared algorithms are
marked as “+/—/~"’, which means that the marked value is
worse, better, or similar to those obtained by A-CC/COV-DE,
respectively. The test results for D=30 and D=50 are shown
in Table 1 and Table 3, and the average convergence plots
for some representative benchmark functions are presented
in Figure 5 and Figure 6, respectively. The values highlighted
in bold represent the best average results for each benchmark
function.

It can be seen from Tables 1 and 3 that the results confirm
our initial hypothesis, cooperative coevolution is effective
when solving problems that contain separable variables, but
its performance in problems with only non-separable vari-
ables is relatively poor. For example, in the separable prob-
lems F8 and F10, the performance of CCDE is better than
COVDE, while in non-separable problems, the performance
of the COVDE algorithm is better than CCDE. The cause for
this is the ability of differential evolution with covariance to
analyze the characteristics of samples and rotate the original
coordinates according to the rotation invariance feature vector
to eliminate the correlation between variables and improve
the algorithm’s performance. The results of A-CC/COV-DE
algorithm are better than those of CCDE, COVDE and DE
in most functions, which means that the adaptive selection of
the appropriate evolutionary method based on the correlation
of variables can improve the efficiency of the algorithm. For
D=30, the experimental results of our algorithm are similar
to ADLADE, CSDE and TVDE. For D=50, A-CC/COV-DE
performs better than ADLADE, CSDE and TVDE. This
means that as dimensionality increases, A-CC/COV-DE show
better signs of robustness and scalability when solving sep-
arable problems as well as non-separable problems, espe-
cially in functions F17, F18, F19, F20. Hence, these results
show some competitive advantages compared with other
algorithms.

Tables 2 and 4 show the p values for the Wilcoxon
rank-sum tests of A-CC/COV-DE vs. CCDE, COVDE, DE,
ADLADE, CSDE, TVDE over 50 independent runs on the
CEC2014 benchmarks with 30D and 50D.

All the algorithms in the experiments were also com-
pared by the Friedman test carried out on the medians of
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FIGURE 5. The mean function error values versus numbers of function evaluations for the compared algorithms over
50 independent runs (30D).
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the minimal function value errors in each dimension. The
average ranks of the algorithms according to the Friedman
test are shown in Table 5. Considering the average mean
ranks, we can see that CSDE and TVDE show a better overall
performance, indicating a possible good balance to solve
a wide range of problems. However, as can be seen from
Table 1 and Table 3, A-CC/COV-DE has the largest number
of wins among the 30 benchmark problems, depicted in bold
typeface in the tables. This acts as an indicator of the strong
ability of our algorithm for converging towards the global
optimum. The performance is especially remarkable in hybrid
functions with complex landscapes and a set of different
mixed properties.

V. CONCLUSION

Over the past many years, researchers have made a lot of
exploration on optimization problems. As a numerical opti-
mization method, differential evolution is popular in opti-
mization problems due to its simplicity, but it is difficult
to calculate the optimal solution for high-dimensional and
complex optimization problems. Cooperative coevolution
resolves the shortcomings of differential evolution to some
extent. In this paper, the grouping method used in the CC
framework is the Extended Differential Grouping (XDG)
algorithm, which excels on detecting interacting variables and
grouping them. Through experimental analysis, it is found
that the performance of CCDE is better when the variables
are separable (variables are not related), and the performance
of COVDE on most problems is better when the variables are
not separable (variables are related).

Since the correlation of variables is not clear in reality,
we propose an adaptive mechanism based on cooperative
coevolution and covariance. The mechanism is divided into
two parts, including two evolutionary methods. One method
is to add XDG into the CC framework, and then use differ-
ential evolution to optimize each subcomponent; the other
one is to optimize the population with differential evolution,
and then use covariance to analyze the characteristics of
the resulting population. The better evolutionary direction is
determined at the beginning of each generation by adaptive
selection based on the success rate of both methods, and the
better evolutionary direction of each generation is obtained
by adaptive selection based on the fitness of the population.

Most of those existing adaptive DE variants are intended
to update operators and control parameter settings. Instead,
this paper proposed an adaptive mechanism with cooper-
ative coevolution and covariance for differential evolution
proposed which chooses between two evolutionary methods
according to the fitness during the evolution so that CCDE
can solve problems with separable variables and COVDE can
solve problems with non-separable variables.

An adaptive mechanism with cooperative coevolution
and covariance for differential evolution proposed in this
paper can effectively solve optimization problems with
unknown separability. Compared with COVDE, CCDE, DE,
ADLADE, CSDE and TVDE, A-CC/COV-DE overperforms
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the results of its counterparts, showing a competitive
advantage when solving the optimization problems in the
CEC2014 benchmark suite. However, the algorithm we pro-
posed still has some deficiencies in some aspects, which will
be improved in subsequent research.
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