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ABSTRACT With the growth of networks, the Internet of Things (IoT) and new cyber attacks pose threats to
privacy and security, secure communication is therefore becoming one of the most crucial concerns. For this
purpose, symmetric algorithms namel; The Rijndael algorithm, the Serpent algorithm, and the TWOFISH
algorithm pay equal attention. In this paper, the TWOFISH algorithm’smathematical complexity is improved
by using substitution boxes (S-boxes) drawn from a multiplicative group of units of chain ring

∑7
i=0 u

iF2.
As these S-boxes have the property of having copious generators, they, therefore, produce a rich algebraic
complexity. Moreover, the time complexity of the proposed work is modified by processing the 64-bit
block throughout the process and reducing the number of subkeys. To measure the strength of the proposed
algorithm, various standard color digital images, with a size of 256 × 256, are encrypted and tested. The
computation speed of the encryption is compared to the standard TWOFISH algorithm’s speed and found that
the newly designed algorithm is quite fast. For security analysis and quality assessment, various statistical
tests are performed on the standard encrypted images. The results recommend that the proposed algorithm
is a strong candidate for digital image encryption.

INDEX TERMS Chain ring, color image encryption, substitution box, TWOFISH algorithm.

I. INTRODUCTION
With the increasing use of the Internet and online communi-
cations, data security has become a matter of great concern.
The risk of data being stolen, hacked, altered, and damaged
in one form or another compel the need to protect it before
sending. Encryption is done by combining a plain text with
a secret set of characters called the key. The key resists
adversaries to find a correlation between the original message
and the encrypted message [1], [30].

A sound encryption algorithm minimizes the chance of
third-unauthorized-party interference. Based on their struc-
tures, these algorithms can be classified into two main cat-
egories; the symmetric algorithms [1]; which requires only
one key for encryption and decryption purpose and asym-
metric algorithm [2]; in which one key is required to encrypt
the plain text while another key is required to decrypt the
cipher text. An additional classification distinguishes stream
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ciphers from block ciphers. However, this study mainly focus
on block cipher. The block ciphers operates on a bunch
of bits at a time. The famous block ciphers include the
Data Encryption Standard (DES) [3], the Advanced Encryp-
tion Standard (AES) [3] Serpent algorithm and Twofish
aoglrithm. The algorithms provide information security ser-
vices such as confidentiality, data integrity, authentication,
and non-repudiation [4]. Other sources that provide these
services are hashing algorithms, password authentication
protocols, and digital signatures.

In cryptography, a substitution box (S-box) is the main
nonlinear component of a symmetric key cipher that per-
forms the substitution and creates a layer of confusion in the
encrypted data. This was first proposed by Shannon [5] and
clarified more completely in [6] and [7]. These S-boxes pro-
vides the robustness in substitution-permutation networks;
a weak S-boxes can be routed to a weak crypto systems
(e.g., see [8] and [9]). In block ciphers, S-boxes are com-
monly used to conceal the relevance between the key and
the ciphered text. Properties such as bijection, non-linearity,
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strict avalanche effect, and independence of output bits are
judged in an S-box to categorize it. So far, many successful
attempts have been made to construct strong S-boxes by
randomly generating them and testing them on these proper-
ties [10]. However, some S-boxes do not meet the evaluation
criteria and are rejected [11].

In many cases, S-boxes are carefully chosen to resist crypt-
analysis. Many encryption algorithms use a variety of dif-
ferently structured S-boxes. AES, for example, has S-boxes
which are designed on the finite field GF(28) [3]. But study
shows that the implication of only nine terms in the alge-
braic expression of the S-box created a low complexity. And
therefore, these S-boxes are suspected to be vulnerable to
interpolation attacks [12]. To avoid such weaknesses, we took
a different approach using the S-boxes obtained from the
chain ring R8 [13]. The ring R8 =

F2[u]
<u8>

= F2+uF2+u2F2+

u3F2+u4F2+u5F2+u6F2+u7F2 is a commutative chain ring

having cardinality 28. Moreover, R8
uR8
∼= F2 is the residue field

of R8. So, the multiplicative and the additive binary operation
coincides with that of Z28 and F28 respectively. The achieved
S-boxes can be arranged in the form of 4 × 4 lookup tables
and are used inside the newly designed TWOFISH algorithm.

The classic TWOFISH algorithm [14] is one of the finalists
for the call of AES. In this article, the TWOFISH algo-
rithm is modified using various strategies. A 128-bit block
is encrypted using a variable-length key of size 128, 192,
or 256 bits in the modified TWOFISH algorithm. Initially,
the 128-bit input block is divided into two sub-blocks,
the right 64-bit block and the left 64-bit block, each of 64-bit
(In classic Twofish algorithm 32-bit blocks were considered
for encryption). This helps the newly designed algorithm in
speed performance. After this, regular whitening is carried
out through the key. Then, an F-function is operated on the 64-
bit word. In the F-function; the 64-bit word is rotated, molded
according to the function g, the pseudo hadamard transformed
(PHT), and then exclusive-ored with the round key. Inside the
g function, S-boxes obtained from the commutative chain ring
are used. These S-boxes have multiple generators (instead
of 1 generator) that improve the algebraic complexity of the
g-fuction and hence the algebraic complexity of the improved
Twofish algorithm. The output of F is then XORed with the
right block of 64-bit obtained after whitening. To complete
this process, an exchange of the outcome is performed with
the right 64-bit block and the process continues for a total
of 16 rounds. The output of the last round undergoes a final
exchange and is exclusive-ORed with key material in the
output whitening step to produce ciphered text.

The article is assembled as follows: In section II,
we explain the chain rings and substitution boxes designed on
the units of the structure. The modified TWOFISH algorithm
on chain ring operations and its application to color images
are given in section III. The security analysis of the proposed
encryption scheme is given in section IV. Sections V and VI
include experimental analyzes, including comparison, for the
encrypted color images. Comparing the time execution of the

proposed scheme with other established schemes is given in
Section VII. Section VIII provides the randomness with a test
on the encrypted images. In the last section IX, the concluding
remarks are included.

II. ALGEBRA UNDER CONSIDERATION
Consider that R is a ring with identity and Commutativity.

A. LOCAL RING
For any u ∈ R if there exist v ∈ R such that uv = 1 then u is
unit. The ring R is a local ring if the set of non-unit vectors
in R form an abelian group. Also, if R has a unique maximal
ideal we call it a local ring. For example, the integer modulo
ring Zpk , is a local ring.

Let the pair (R,M ) represent a local ring R having maximal
idealM . Then R

M = K form residue field. Also, there presents
a canonical epimorphism θ : R→ R

M defined as θ (a) = â =
a+M , a ∈ R. Let the polynomial f (y) = a0+ a1y+ a2y2+
. . .+amym ∈ R [y] and f (y) = â0+â1y+, â2y

2
+. . .+âmy

m
∈

K [y], if f (y) is irreducible over K , then f (y) is called a basic
irreducible polynomial.

III. CHAIN RING
Let R be a ring. Then x ∈ R is a unit in R if there exists some
y ∈ R such that xy = 1, where 1 the multiplicative identity of
R. Set of all unit elements of R forms a multiplicative group.
If 0 6= a ∈ R, then a is called the zero-divisors if there exists
some nonzero element b ∈ R such that ab = 0. Also, 0 6=
a ∈ R is nilpotent if there exists a least positive integer n such
that an = 0, n is called as the multiplicative index of a.
A ring with only one maximal ideal M is a local ring and

the quotient ring R
M is its residue field. A local finite ring R

is a chain ring iff the radical M of R is a principal ideal, and
therefore the quotient ring R

M is a field. Thus, the ideals of a
chain ring form a chain.

Let Rn be a representation of a finite chain ring F2[v]
<vn> =

F2+vF2+v2F2+ . . .+vn−1F2. The ringRn has 2n elements.
The element v is the nilpotent element with nilpotency index
n, i.e. vn = 0. Thus, it follows that < 0 >= vnRn ⊂

vn−1Rn ⊂ . . . ⊂ vRn ⊂ Rn is the ascending chain of
ideals in Rn and therefore Rn is a local ring with only one
maximal ideal vRn, whereas

Rn
vRn
∼= F2 is the residue field

of the chain ring Rn. This ring Rn shares some properties of
the local ring Z2n and the Galois field F2n . More explicitly
the multiplicative binary operation of Rn coincides with of
Z2n whereas the additional binary operation is similar to that
of F2n .

In algebraic coding theory, the most frequently used rings
of cardinality four are Galois field F2 and the modular ring of
integers Z4.

The cyclic codes (see [15]) are constructed over the rings
F2 + vF2 = {0, 1, v, v̄} with v2 = 0 and F2 + vF2 + v2F2 =
{0, 1, v, v2, 1 + v, 1 + v2, v + v2, 1 + v + v2} with v3 = 0.
These codes are further extended to Rk = F2 + vF2 +
v2F2 + . . . + vk−1F2 with vk = 0 [16]. The elements in
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the ring F2 + vF2 corresponds to the binomial polynomial in
variable v with the degree at most 1. These elements satisfy
the closure property of polynomial addition and polynomial
multiplication modulo v2. Table 1 and Table 2 states the
multiplication and addition for this ring. Careful observation
of these tables reveals the similarity of operations with that of
Z4 and 4. More explicitly the multiplication table coincides
with Z4 with v and v̄ replacing 2 and 3. And the addition table
coincides with the Galois field F4 = {0, 1, γ, γ 2

= 1 + γ }
where v̄ and v are replaced by γ and γ 2.

TABLE 1. Addition table for F2 + vF2.

TABLE 2. Multiplication table of F2 + vF2.

The ring R8 =
F2[v]
<v8>

= F2 + vF2 + . . . + v7F2 is a

commutative chain ring of 28 elements since v are nilpotent
with nilpotency index 8, it follows that < 0 >= v8R8 ⊂

v7R8 ⊂ . . . ⊂ vR8 ⊂ R8. The multiplicative group MG8

contains 128 elements. To get a subgroup of cardinality 16,
the subgroupHG8 =< v6 + v3 + 1, v7 + v5 + v4 + v2 + 1 >
is chosen. And by defining the maps f : HG8 −→ HG8 by
f (a) = a−1 and g : HG8 −→ HG8 by g (a) = a′a where we
take a′ = v6 + v4 + 1. Thus gof (a) = (a′a)−1.
The following table of fog(HG8 ) is the S-box designed over

the chain ring R8. Table 3 is represented in the binary and
corresponding hexadecimal form of the polynomial R8 =

v7F2 + v6F2 + . . .+ F2.

TABLE 3. The binary and hexadecimal representation of
R8 = v7F2 + v6F2 + . . .+ F2.

IV. MODIFIED TWOFISH ALGORITHM
Figure 1 explains the structure of the modified TWOFISH.
In this algorithm, the 128-bit plaintext is divided into two
64 bits’ words. The two words are first passed through the

FIGURE 1. Image enciphering technique based on Improved TWOFISH
algorithm.

process of input whitening, in which these are XORed with
the subkeys K0 and K1. After this, the resultant left word is
passed through the Feistel Function F. The output of the F
function is XORed with the resultant right word. And then
the resultant word swaps its position with the left word. These
new 64-bits words are then the input of the second round. The
same process continues till 16 rounds and then the output of
the last round is XORed with subkeys K2 and K3.

A. THE FUNCTION F
The Function F takes two inputs, a 64-bit word R0 and the
round number to get the round key. R0 is left rotated by 16 bits
and passed through g-function. Function g yields two outputs
G0 and G1 of 32 bits each. These two outputs undergo pseudo
Hadamard transform to yield P0 and P1. These words are
combined and XORed with the round key Kr+4.

(G0,G1) = g(ROL(R0, 16)

P0 = (G0 + G1)mod 232

P1 = (G0 + 2G1)mod 232

F0 = ((P0,P1)+ Kr+4)mod 264
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B. THE FUNCTION G
The g function takes a 64-bits word as an input, split it into
four vectors of 16 bits, and then pass these vectors through
key-dependent S-boxes. The result is then considered as two
vectors of length four and is individually multiplied by the
MDSmatrix. The matrix multiplication is defined over Finite
Field GF 28, with primitive polynomial ω (x) = x8 + x6 +
x5 + x3 + 1.

The MDS matrix is given below:
01 EF 5B 5B
5B EF EF 01
EF 5B 01 EF
EF 01 EF 5B


C. S-BOX UNDER CONSIDERATION
The S-boxes we have used are key-dependent and take 16 bits
of input. Inside these S-boxes are the two permutation q0 and
q1 and the list S of k number of keywords are used.

These keywords are generated once and are kept fixed
throughout the process. As TWOFISH supports key of vari-
able length. The list S contains two, three, and four keywords
for 128, 192- and 256-bits’ key lengths respectively.

If k = 2, then(
y0,0, y0,1

)
= q0

[
qo [x0]⊕

(
s1,0, s1,1

)](
y0,2, y0,3

)
= q1

[
q1 [x1]⊕

(
s0,0, s0,1

)](
y1,0, y1,1

)
= q0

[
qo [x2]⊕

(
s1,2, s1,3

)](
y1,2, y1,3

)
= q1

[
q1 [x3]⊕

(
s0,2, s0,3

)]
If k = 3, then(

y0,0, y0,1
)
= q0

[
q0
[
qo [x0]⊕

(
s1,0, s1,1

)]
⊕(s2,0, s2,1)

](
y0,2, y0,3

)
= q1

[
q1
[
q1 [x1]⊕

(
s1,0, s1,1

)]
⊕(s2,0, s2,1)

](
y1,0, y1,1

)
= q0

[
q0
[
qo [x2]⊕

(
s1,0, s1,1

)]
⊕(s2,2, s2,3)

](
y1,2, y1,3

)
= q1

[
q1
[
q1 [x0]⊕

(
s1,0, s1,1

)]
⊕(s2,2, s2,3)

]
If k = 4, then(

y0,0, y0,1
)
= q0

[
q0
[
qo [x0]⊕

(
s1,0, s1,1

)]
⊕(s2,0, s2,1)

](
y0,2, y0,3

)
= q1

[
q1
[
q1 [x1]⊕

(
s1,0, s1,1

)]
⊕(s3,0, s3,1)

](
y1,0, y1,1

)
= q0

[
q0
[
qo [x2]⊕

(
s1,0, s1,1

)]
⊕(s2,2, s2,3)

](
y1,2, y1,3

)
= q1

[
q1
[
q1 [x0]⊕

(
s1,0, s1,1

)]
⊕(s3,2, s3,3)

]

D. THE PERMUTATIONS q0 AND q1
The permutations used in s-boxes are made of the two fixed
look-up tables whose entries are the elements of the multi-
plicative group of chain ring. Both permutations take input
of 16 bits split into two bytes and the proceeds as explained
by the equations below.

Let x be input to q0 then:

ao, b0 = dx/256e , (x mod 256)

a1 = (a0)⊕ (b0)

b1 = a0⊕ ROR (b0, 1)⊕16a0 mod 256

a2 = t0 [a1]

b2 = t1 [b1]

y = 256b2 + a2

The lookup tables for permutation q0 and q1 are given
in Table 4 and Table 5 respectively.

TABLE 4. (a) T0. (b) T1.

TABLE 5. (a) T0. (b) T1.

The step = t0[a1] works as follows:

n = a1mod16

m = t0[n]

a2 = a1 × m

Here multiplication × is defined over chain ring R8.
The values from other lookup tables are also fetched
similarly.

E. THE KEY SCHEDULE
TWOFISH supports the key lengths of N = 128, N = 192,
and N = 256. The key Schedule has to provide 20 subkeys,
four of which are used for whitening and the other sixteen in
the rounds. And the fixed keys [S0, S1, . . . , Sk ] for S-boxes
are produced separately. Where k = N/64.

If the original key is M = [m0,m1, . . . ,m8k], where
mi represents the byte. Then the keys Si are produced as
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follows:


Si,0
Si,1
Si,2
Si,3

 =
 . · · · .
... RS

...

. · · · .





m8i
m8i+1
m8i+2
m8i+3
m8i+4
m8i+5
m8i+6
m8i+7


The multiplication with Reed Solomon (RS) matrix is

carried out in finite field GF(28) with primitive polynomial
ω (x) = x8 + x6 + x5 + x3 + 1. The RS matrix is given as
follows:

01 A4 55 87 5A 58 DB 9E
A4 56 82 F3 1E C6 68 E5
02 A1 FC C1 47 AE 3D 19
A4 55 87 5A 58 DB 9E 03


To produce the subkeys Ki, the same S-boxes are used as

in function g. The input is (2i)! and is of 64 bits, where i is
the number of rounds.

F. THE ALGORITHM
In this section, the algorithm for the proposed chain ring
cryptosystem is stated. The Encryption scheme is as follows:

Input: Plain text P, User key K, Block Size B
Output: Cipher Text C
Algorithm Body:
Begin

G. BEGIN KEY SCHEDULE
1. Read user key K
2. Generate Sub keys S0, S1 by calling the subkey genera-

tion function.
3. Generate round keys K by calling encryption function F

and using the initial agreed-upon values as the random
input to the function.

4. Repeat step 3 to generate all the round keys.
End Key Schedule;

H. BEGIN ENCRYPTION
5. Read a block B from the Message P into the message

cache.
6. Divide the block into Left and Right sub-blocks.
7. Encrypt the Left block by calling encryption function F.
8. Perform XOR of the right block with the resulting block

of step 7.
9. Swap the result of step 8 with the input block of step 7.

10. Repeat step 7 and step 8 for 16 rounds.
11. Combine the resulting blocks in one block.
12. If message P is not finished
13. Load the next block into the message cache.
14. Go to step 6.

Else if the message is finished then Halt.
End Encryption;
End;

I. FUNCTION F ENCRYPTION
Begin

1. Read the Left Block.
2. Read the round key.
3. Perform rotation, Q-permutation, MDS matrix multipli-

cation, PHT, and subkey XOR.
4. Store the resulting block.

End;
Flow chart for enciphering scheme using improved

TWOFISH algorithm is given in Figure 1.

V. CORRECTNESS PROOF USING TEST VECTOR
The modified TWOFISH algorithm takes an input of size
128 and a key of variable length 128 or 192 or 256. The
original explicit pseudo-code for defining the algorithm was
transformed to a strictly functional form in the formalization,
which served as both an executable model and the code
tested in the correctness proof. Using function composition,
we can describe the encryption (TWOFISH) and decryption
(TWOFISH_INV) functions as follows:

TWOFISH keys = from_state_vector ◦
Round 16 ◦ AddRoundKey ◦
to_state_vector
TWOFISH _INV-keys =
from_state_vector ◦ InvRound 16 ◦
AddRoundKey ◦ to_state_vector

TWOFISH takes a key schedule (a list of keys), while
TWOFISH_INV takes the key schedule in reverse. The
encrypted copies the input vector, ‘xors’ with the first key,
and then processes it for 16 rounds. Each round consumes
one key from the key plan. Onward the F-function is applied.

A. ENCRYPTION OF A ROUND
Divide the 128-bit plaintext to two 64-bit blocks and process
the left 64-bit as follows:

F-function (64-bit vector) =
PHT(left_rotate (g-function(64-bit
vector))) ⊕ key

g-function(64-bit vector) =
MDS(Subbytes_state(64-bit vector))

B. DECRYPTION OF A ROUND
INV_F-function (64-bit vector) =
INV_PHT(Right_rotate (INV_g-
function(64-bit vector))) ⊕ (key in
reverse order)

INV_g-function(64_bit vector) =
INV_MDS(INV_Subbytes_state)

C. BYTE SUBSTITUTION AND ITS INVERSE SUBSTITUTION
As the S-box consists of units elements therefore, they have
inverse for each element. The S-box on a single byteis applied
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in the following manner:

Let plaintext = 114 (dec) = 1110010 (bin)

= x + x4 + x5 + x6

S − box = 81 = 1010001 = 1+ x4 + x6

C = S − box(plaintext)

= (1+ x4 + x6)(x + x4 + x5 + x6)

= x + x4 + x5 + x6 + x5 + x8 + x9

+ x10 + x7 + x10 + x11 + x12

Now delete higher terms than degree 7 and take mode 2 we
get:

C = x + x4 + x6 + x7

This is the output of the proposed Subbyte step.
Now let apply the inverse S-box on this C .

INV_S − box (C) =
(
1+ x4 + x6

) (
x + x4 + x6 + x7

)
= x + x4 + x6 + x7+x5 + x8 + x10

+ x11 + x7 + x10 + x12 + x13

Now delete higher terms than degree 7 and take mode 2 we
get:

INV_S − box (C) = x + x4 + x6+x5 = plaintext

VI. SECURITY ANALYSIS
We have performed analysis on various digital images to
approve the certainty and execution of the designed algorithm
of TWOFISH. These analyses consist of authentic testing
and exploration with subtleness and raggedness tests for the
enciphered images. The analysis techniques are explained in
the accompanying subsections.

A. ANALYSIS OF CONSISTENCY OF IMAGE PIXELS
The image histogram defines the tonal distribution of pixels
of an image. A secured encryption structure creates the
enciphered digital images with undifferentiated histograms
that have the power to cope with statistical strikes and
thrashes. The histograms for the various standard original
and encrypted images are displayed in Figures 2, 3, and 4.
In the 1st row of each of these Figures, the sharp peaks
and un-balanced data show the uneven pixel distribution
of the original images. Whereas, the histograms in the 2nd

row of each figure reveals uniform pixel distribution. The
value for each pixel is turned out to be approximately equal.
These results guarantee the difficulty an intruder can face
to obtain the original image by statistically analyzing pixels
approximation of encrypted image.

The histogram pins of R, G, and B components of enci-
phered and ciphered images in Figures (2-4) indicate the
resistivity of the proposed cipher against the brute force
attack.

FIGURE 2. The 1st row represents Lena original image with its
corresponding R, G, B layers histogram, denoted by (a), (b), (c) and,
(d) respectively. The 2nd row represents Lena ciphered image with its
corresponding R, G, B layers histogram, denoted by (e), (f), (g) and,
(h) respectively.

FIGURE 3. The 1st row represent Baboon original image with its
corresponding R, G, B layers histogram, denoted by (a), (b), (c) and
(d) respectively. The 2nd row represent Baboon ciphered image with its
corresponding R, G, B layers histogram, denoted by (e), (f), (g) and (h)
respectively.

FIGURE 4. The 1st row represents Aeroplane original image with its
corresponding R, G, B layers histogram, denoted by (a), (b), (c), and
(d) respectively. The 2nd row represent the Aeroplane ciphered image
with its corresponding R, G, B layers histogram, denoted by (e), (f), (g),
and (h) respectively.

B. CORRELATION ANALYSIS FOR NEIGHBORING PIXELS
In the correlational analysis, we examine the interdepen-
dence of adjacent pixels of original and enciphered combined
images. The correlation coefficients σX ,Y of two bordering
pixels can be deduced by:

σX ,Y =
Cov(X ,Y )

√
Var (X) .Var(Y )

where X and Y are the assessments of two bordering pixels
at grayscale in the image, Cov(X ,Y ) defines the value of
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TABLE 6. Lena’s correlation.

TABLE 7. Baboon’s correlation.

covariance, Var (X) and Var(Y ) is the measure of distinctness
of components X and Y separately. The coefficients of cor-
relation for the original and ciphered images corresponding
to figures (5-7) are displayed in Table (6-8). The high corre-
lation of the neighboring pixels of original images is turned
into a very weak correlation after being encrypted.

The correlation distribution of sample images, Lena,
Baboon, and Airplane’s original and encrypted images are
shown in Figure (5-7). The analyses of these correlations

TABLE 8. Aeroplan’s correlation.

FIGURE 5. (a), (b), and (c) shows Original image horizontal correlation for
R, G, and B layer, respectively. Whereas, there corresponding encrypted
channels are shown in the 2nd row respectively.

FIGURE 6. (a), (b), and (c) shows Original image vertical correlation for R,
G and B layer, respectively. Whereas, there corresponding encrypted
channel are shown in the 2nd row respectively.

from the given figures and stated tables (6-8) reveals the
ability of the proposed algorithm to discard the correlation
between the neighboring pixels. The alignment of dots along
the diagonal lines indicates the strong correlation between the
neighboring pixels, while for the encrypted images these dots
are scattered, showing the reduced correlation between these
pixels.
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FIGURE 7. (a), (b), and (c) shows Original image diagonal correlation for
R, G, and B layer, respectively. Whereas, there corresponding encrypted
channels are shown in the 2nd row respectively.

C. MAXIMUM DEVIATION
The statistical security of the encryption scheme can be mea-
sured using Maximum Deviation. It measures the deviation
of the values of pixels of the ciphered image from the pixel
values of the original image. The larger value of maximum
deviation indicates the greater deviation and hence stronger
security. The formula to calculate the maximum deviation is
given as follows:

Md =
h0 + h255

2
+

254∑
i=1

hi

where hi denotes the difference between the count value of
the histogram of an original and ciphered image.

Table 9 shows the results of Maximum deviation for the
images of Lena, Baboon, and Airplane.

TABLE 9. Maximum Deviation of different RGB 256× 256 images and
their corresponding layers.

The large values of maximum deviation in Table 9 indicate
the greater difference between the corresponding pixels of an
original and ciphered image. Hence showing the proficiency
of the proposed algorithm.

D. IRREGULAR DEVIATION
A strong cipher should be capable of changing the pixel’s
values randomly. The cipher that lacks this property, that is,
for some pixel values the change is large while for others it
is insignificant, is not considered as secure. The strength of
statistical robustness can bemeasured by calculating irregular
deviation using the following formula:

Id =
255∑
i=0

|hi −Mh|

where hi denotes the difference between the count value of
histogram of original and ciphered image. Mh denotes the

mean value of hi. Smaller value of Id is an indication that
the encryption is uniform and hence the cipher possesses the
statistical strength.

Table 10 shows the results of Irregular deviation for the
images of Lena, Baboon and Airplane.

TABLE 10. Irregular deviation of different RGB 256× 256 images and
their corresponding layers.

The values stated in Table 10 indicates the small ran-
domness in deviation. Hence showing the proficiency of the
proposed algorithm.

E. INTENSITY HISTOGRAM
The pixel appearance of an image is controlled by the
intensity of R, G, and B components of the image. This
value of intensity decides the amount of information stored
in the pixel. The color depth deals with the pixel colors.
Figure 8, 9, and 10 gives the count of pixel satisfying the
intensity level over the image. For the sample images of
‘Lena’, ‘Baboon’ and ‘Airplane’ the 3-D intensity histograms
of original and ciphered images elucidates the uniformity of
color intensities of encrypted images in comparison with the
non-uniform 3-D color intensities of the original image. Thus,
guarantying the robustness of cipher against adversaries.

FIGURE 8. (a) is Lena Intensity histogram whereas, (b), (c), and
(d) represents intensity histogram of R, G and B layers respectively.
(e) is Lena encrypted image intensity histogram whereas, (f), (g) and
(h) represents intensity histogram of R, G, and B layers respectively.

FIGURE 9. (a) is Baboon Intensity histogram whereas, (b), (c), and
(d) represents intensity histogram of R, G, and B layers respectively.
(e) is Baboon encrypted image intensity histogram whereas, (f), (g) and
(h) represents intensity histogram of R, G, and B layers respectively.
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FIGURE 10. (a) is Airplane Intensity histogram whereas, (b), (c), and
(d) represents intensity histogram of R, G, and B layers respectively.
(e) is Aeroplane encrypted image intensity histogram whereas, (f), (g) and
(h) represents intensity histogram of R, G and B layers respectively.

The histogram pins of encrypted images in Figures (8-10)
show the uniformity in intensity, hereby revealing very little
information stored at every pixel. Thus proving the robustness
of the cipher.

VII. MEASUREMENTS BASED ON PIXEL MODIFICATION
The assessment for the quality of the image is dependent on
the pixel difference technique that has been performed by
calculating MSE, MD, AD, SC, NAE, NCC, PSNR, AD, and
MSE values. This provides error benchmarks used to connect
different images.

A. MSE AND PSNR ANALYSIS
The encryption scheme must create heterogeneity between
the original and encrypted digital image by appending noise
to the accurate content. Mean square error has been carried
out between original and encrypted image to check the quality
of encryption. MSE is given as follows:

MSE =

∑O
i=1

∑P
j=1(Pij − Cij)2

O× P
where Pij and Cij are the position of pixels situated in the
ith row and jth column of the original and encrypted image
respectively. The large value of MSE implies strong encryp-
tion security. The distinctiveness of encrypted image is eval-
uated by exploiting PSNR (peak signal to noise ratio) which
is given by the following expression:

PSNR = 20log10[
Imax
√
MSE

]

whereas Imax is the largest value for pixel estimation of the
image. A strongly encrypted image must have a low PSNR.

Table 11 shows the PSNR and MSE values of the original
and enciphered Lena images.

B. NORMALIZED ABSOLUTE ERROR
Normalized absolute error (NAE) is expressed as follows:

NAE =

∑O
m=1

∑P
n=1 |Pmn − Cmn|∑O

m=1
∑P

n=1 |Cmn|

This distribution reveals how digitally isolated an
encrypted image is from the original one.

C. MAXIMUM DIFFERENCE
MD (Maximum Difference) provides the between original
and encrypted image. A higher MD value implies stronger
encryption. It is given as follows:

MD = max |Pij − Cij| Whereas,

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

D. AVERAGE DIFFERENCE
The average difference can be defined as the pixel dissimi-
larities between the original and its corresponding encrypted
image. A large value of the AD indicates the significant
strength of the image encryption scheme (see Table 11).
AD can be expressed as follows:

AD =
1

O× P

∑O

i=1

∑P

j=1
(Pij − Cij)

The average difference for two similar images is ideally
zero.

E. SIMILARITY MEASURES
To assess the affinity between two signals, the criteria like
structural content, structural similarity, and cross-correlation
are used. For the assessment of signals from the perspective of
comparison and divergence, other methods exist. Recognition
is used to match the corresponding pixels of two images. But
this method is limited due to some conditions. So, to illus-
trate the differences between original and encrypted images,
standardized correlation and structural correlations are used.

F. NORMALIZED CROSS CORRELATION
To check the similarity between two images the criteria of
normalized correlation is used. The little sensitivity towards
the linear changes gives normalized cross-correlation as well
as common correlation an upper hand among other criteria.
NCC takes the values between −1 and 1. The allocation of
position bounds is comparatively easier in NCC as compared
to cross-correlation. The main aim of NCC is to analyze the
interdependence of color between two images, be it the plain
and encrypted images. The correlated measures are assigned
the value of 1 and the dissimilar ones are assigned zero.
For every image, the resemblance count is dependent on the
varieties of utilizing cross-correlation, hence is computed
accordingly. The mathematical expression that defines the
normalized correlation is given as follows

NCC =

∑O
i=1

∑P
j=1|Pij − Cij|∑P
j=1 P

2
ij

where O × P denotes the size for plain (P) and encrypted
image (C). The deviation of the NCC value from unity indi-
cates the strong dissimilarities present between the pixels of
the original and the encrypted image. (See Table 11).

G. STRUCTURAL CONTENT
Structural content is an important criterion that is used to
get the statistics of weights of the original image against

76526 VOLUME 9, 2021



T. U. Haq et al.: Improved Twofish Algorithm: Digital Image Enciphering Application

TABLE 11. Quality measure analysis of improved TWOFISH algorithm based encrypted Lena image 36.

the encrypted one. The better-quality encryption gives the
encrypted, the value of 1. Whereas, the greater value of SC
indicates the low quality of the image. Structural content is
defined as:

SC =

∑m
i=1

∑n
j=1(P (i, j))

2∑m
i=1

∑n
j=1 (C (i, j))

2

Due to the confusion and diffusion layer in the encryption
scheme, the value of SC is not usually close to unity. If the
standard color layers (red, green, and blue) in an image are
cross-hatched then the value of SC is not close to one.

H. ENTROPY INVESTIGATION
Entropy is used to access the increase of grayscale estimations
and assessments of the images. The sharper the image is,
the greater the entropy is. Smoother areas of the image show
less entropy. For an asymmetrical image having 256 gray
levels, the most perfect desirable entropy is 8 [18]. However,
the entropy of the encrypted image is under 8, as the regularity
in the image is expected. Mathematically, entropy H can be
represented for a data source zi is delineated as:

H = −
∑2N−1

i=0
p(zi)log2p(zi)

where zi in this condition is called source image and 2N is the
total states of information. For completely scattered source
displaying signs, entropy should be N. For ideally unpre-
dictable digital content, the estimation of perfect information
entropy is 8.

For the color image of ‘Lena (256 x 256)’, the values for
entropy are evaluated and are stated in Table-12. These values
are very close to the optimal value of 8. It verifies the strength
of the proposed cipher.

TABLE 12. Comparing entropy for Lena (256 × 256) image.

VIII. VITALITY AGAINST DIFFERENTIAL ATTACK
The randomization of any encryption scheme can be assessed
by evaluating the value of diffusion. A good encryption
algorithm satisfies the avalanche effect, which is sensitive
even against the slightest change in the original image
e.g. [23]–[26]. So, a good diffusion property prevents the
adversary to make minor advancements by changing only a
single pixel and observing the differences in the encrypted
image. This property is a very vital tool to protect the image
against differential cryptanalysis.

To assess the diffusion property of the encryption scheme,
a single bit of plain image is changed, and the relation of
difference between the encrypted images is tested. The results
for MSE, PSNR, NCC, AD, SC, MD, and NAE of the result-
ing image are stated in Table 13.

TABLE 13. Differential analyses of the proposed scheme tested for Lena
ciphered image.

The values stated in Table 13 reflect the sound resistivity of
the proposed algorithm against the differential cryptanalysis.

IX. COMPLEXITY OF ALGORITHM
In this section, we figure out the complexity of the encipher-
ing algorithm. The algorithm has four key stages. Image split-
ting to blocks, F-function and PHT key whitening. Initially,
we split an astronomical digital RGB image into 16 × 16
matrices. Eachmatrix is then partitioned to 128-bit bit blocks.
After this, we apply the F-function and the PHT. In the last,
we apply key whitening to get the output of the 1st round. The
process is repeated for 16 rounds to get the ciphered image.

We split Lena RGB image of size N × N × 3 into
blocks of 16× 16 matrices that results [ N

2

256 × 3] matrices.
Then we partitioned each channel in 128-bit blocks to obtain[
N 2

256×3× 128
]
. We an exclusive or operation and then apply

the F-function. The complexity of XOR operation is O(N ).
The F-function consists of g-function (i.e. substitution using
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TABLE 14. Specification of the computer system used for implantation of
the proposed and classical TWOFISH algorithm.

TABLE 15. The execution time of the proposed and classical TWOFISH
algorithm in seconds.

S-box and multiplication with MDS) and PHT. As the S-box
is constructed over unit element of the commutative chain
ring F2[u]

<u8>
, therefore, has complexity O(4 log 4) and as a

result, the complexity of becomes O (N) × O
(
42 log2 4

)
×[

N 2

256 × 3× 128
]
= O(48N 2). Also the MDS operates over

field F[x] and so has a complexity of O(4log4). Also the

PHT has a complexity of 4 log 4. Thus the computing com-
plexity of the proposed Twofish algorithm is: O

(
48N 2

)
×

O (4 log 4)× O (4 log 4) = O(768N 2)
This indicates that the proposed Twofish algorithm is of

low complexity and therefore a small encryption scheme
of high-security may substitute most of the prevailing
encryption schemes.

X. EXECUTION TIME OF ALGORITHM
The implementation of the algorithm is done using C++
language; a widely used language in algorithms implemen-
tation. We used a 128-bits sized key to encrypt the files of
various sizes. The results of which are being compared with
the classical TWOFISH presented in [28]. The specifications
of the computers used for the implementation of the proposed
algorithm and the Classical TWOFISH are given in Table 14.

The packet sizes of data are taken as 35kb, 80kb, 260kb,
and 550kb. The speed comparison reflects the better time
complexity of the proposed algorithm. Table 15 displays the
comparison of speeds.

XI. RANDOMNESS TEST FOR CIPHER
Factors like period, complexity, distribution, and output data
define the level of security for any cryptosystem. A secure

TABLE 16. NIST test results for improved TWOFISH algorithm based encrypted image.
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cryptosystem has high value for complexity, a long period
and it distributes the input data uniformly. We have measured
these parameters by using NIST.SP 800-22 [29] test. The
test is applied to the colored image of Specimen Lena. The
results indicate that the chain-ring based TWOFISH algo-
rithm passes all the security threats. The result of this test is
stated in Table 16.

Table 16 confirms that the presented scheme for encryption
qualifies the entire NIST tests and therefore guarantees the
safety of the modified TWOFISH algorithm.

XII. CONCLUSION
In this paper, the mathematical complexity of the proposed
TWOFISH algorithm is improved by using substitution boxes
drawn from a multiplicative group of chain ring F2[u]

<u8>
.

As these S-boxes have the property of having copious gen-
erators, they, therefore, produce a strong algebraic complex-
ity. Additionally, we have changed the time complexity of
the TWOFISH algorithm by processing a 64-bit block and
reducing the total number of subkeys.Moreover, the proposed
cipher is tested on various standard color digital images of
size 256× 256.

The Cipher computation speed is compared with the speed
of the standard TWOFISH algorithm and found that the newly
designed algorithm is quite fast. The multiple generators
for S-box add to the confusion in different layers of digital
images. For security analysis and quality assessment, various
statistical tests are performed on the standard encrypted
images. The results recommend that the proposed algorithm
is a strong candidate for digital image encryption.
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