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ABSTRACT The quality of service of many modern communication systems depends on the delay
performance of the underlying network. In digital subscriber line (DSL) networks, for example, crosstalk
introduces competition for data rate among users, which influences the delay distribution. In such a
competitive environment, delay performance is largely determined by the manner in which resources are
dynamically allocated to the different users. A common approach to this allocation problem is through
a cross-layer scheduler. Such a scheduler violates the OSI model by allowing communication between
different layers, in order to steer the physical layer towards operating points that maximize some upper layer
performance metric. In this paper, we present a new cross-layer scheduler and resource allocation algorithm
in the context of DSL networks, referred to as the minimal delay violation (MDV) scheduler, which aims
to minimize the number of delay violations and achieve a high throughput. Rather than solving a linear
network utility maximization problem, as most other schedulers from literature, we consider a problem that
is reciprocal with the service rate, allowing the scheduler to allocate the data rates at a finer level, while
still maintaining good performance. Through simulations, we show that the MDV scheduler performs better
than cross-layer scheduling algorithms from literature with respect to packet loss ratio, delay and throughput
performance for various scenarios, and often operates closely to an ideal scheduler.

INDEX TERMS Cross-layer scheduler, resource allocation, DSL, quality of service.

I. INTRODUCTION
Maintaining a low delay in a communication network is
critical to a wide variety of applications such as video con-
ferencing, voice over IP (VoIP), gaming, and live-streaming.
If many delay violations occur, quality of experience (QoE)
suffers considerably for these applications, and the allocated
resources are wasted. The QoE is usually expressed through
quality of service (QoS) rules that quantify the desired met-
rics. Scheduling plays an important role in provisioning
QoS, as it chooses how to allocate resources to different
applications.

The resources that are available depend on the underlying
physical layer. In a DSL network multiple twisted pair lines
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connect the distribution point unit (DPU) to the customer
premises equipment of the users. These lines are bundled
inside a cable binder, where the electromagnetic coupling
between the different twisted pair lines causes inter-user
interference or crosstalk, which is then the major source of
competition for data rate among users. Figure 1 shows an
example rate region R, the set of all rate vectors that can be
provided by the physical layer, for two users. Due to crosstalk
there is no allocation that maximizes the service rate for both
users at the same time.

The dynamic nature of applications and the physical layer
create a competition for data rate. At the upper layer the
requirements for the users fluctuate over time, as the ser-
viced applications and their demands change. At the physical
layer, meanwhile, there are multiple Pareto-optimal data rate
points from which to choose (see for example Figure 1).
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FIGURE 1. A rate region for a two user system.

As is dictated by the Open Systems Interconnection (OSI)
model the upper and lower layers operate independently of
each other. But this can lead to inefficient network usage and
degradation of the network performance. For example, if one
user is watching a live-stream, and another user is browsing
the web and downloading e-mails, then assigning both users a
fixed service rate will lead to inefficient usage of the available
resources. Additionally, if the live-streaming user experiences
a temporary peak in traffic arrivals, it is impossible to indicate
to the physical layer that it requires more service, resulting
in a reduction of the user’s QoS and the performance of the
network.

Dynamically adjusting the service rates offered to users can
resolve these problems. In the example given above, the upper
layers might instruct the physical layer to share service based
on the relative queue size of both applications. The physical
layer then decides on how to allocate resources, based on
the upper layer’s preference information, the queue sizes in
this case. An approach to share this information between the
physical and upper layers is through a utility function. Such
function quantifies for each user the usefulness of receiving
a certain service rate. Service rates are then set by solv-
ing the corresponding network utility maximization (NUM)
problem:

R∗ = argmax
R∈R

∑
n

un(Rn) (1)

where R = [R1, . . . ,Rn]
T
. A cross-layer scheduler then

translates the upper layer preference information into utility
functions un that express the usefulness to user n of receiv-
ing a service rate Rn. There are many available cross-layer
schedulers that focus on wireless networks, and optimize
in function of different metrics such as delay [1] or power
usage [2], or joint optimizing of several metrics [3]. These
schedulers assume that the solution to the (1) can be calcu-
lated and applied immediately. However, in our DSL setting
the solution can take an order of magnitude more time to
solve, introducing a delay between obtaining the metrics
and application of the new service rates. This can lead to a
degradation in performance.

The contribution of this paper is the MDV scheduler, tar-
geted towards DSL G.fast communication networks, that is

proven to be throughput optimal for convex rate regions.
The MDV scheduler aims to minimize the number of delay
violations while also offering a good throughput to best-effort
flows. We show through simulations that the MDV scheduler
has excellent performance with respect to throughput, delay
violations and multiplexing capabilities. This work extends
[4] with a stability analysis of the scheduler, and notes on the
discretization of the rate region and the intra-user scheduler.
It is now being applied to a DSL G.fast system with DSL
grouped vectoring. We have simulated additional scenarios
(focusing on e.g. multiplexing and heavy-tailed traffic). The
simulation results now feature to different intra-user sched-
ulers, and includes more and more recent schedulers from
literature.

This paper is structured as follows.We discuss relatedwork
in Section II. In Section III we describe the system model.
In Section IV we present a formal description of the MDV
scheduler, and an analysis of the scheduler together with a
discussion of the stability. In Section V we discuss sampling
the DSL G.fast physical layer such that we can assess the
performance of the schedulers fairly. In Section VI we eval-
uate the MDV scheduler and compare the performance with
other cross-layer schedulers using simulations. We conclude
the paper in Section VII.

II. RELATED WORK
Many of the schedulers listed here are used in wireless net-
works, but due to the general nature of the NUM problem (1)
which optimizes weights over a rate region, it can also be
applied to the DSL setting. There is a family of cross-layer
schedulers where the utility function is linear with Rn. There-
fore, (1) is often simplified to

R∗(t + 1) = argmax
R∈R

∑
n

ωn(t)Rn (2)

where t is the time slot and ωn is called the weight of user n.
The seminal work of the max-weight (MW) scheduler [5]
introduces one of the first opportunistic schedulers. The MW
scheduler has ωn(t) = Qn(t), where Qn(t) is the length of the
queue at time t . It performs very well with respect to through-
put, but it lacks any notion of QoS. Many subsequently
proposed schedulers focus on optimizing a single QoSmetric.
For example, the delay-based max-weight (DMW) scheduler
of [6] has ωn(t) = 0n(t), where 0n(t) is called the head-
of-line (HOL), the waiting time of the packet at the front
of user n’s queue. Such an approach is less apt to deal with
bursty traffic, as batch arrivals will result in a low initial HOL
but at the same time a large queue, causing larger delays for
subsequent packets. For the maximal delay utility (MDU)
scheduler [7], ωn(t) = |u

′(wn)|
λ
n , where u is a traffic-class based

function, wn the average waiting time, and λ
n
the average

arrival rate. The average waiting time is approximated using
Little’s law. However, as the mean delay is used applica-
tions sensitive to real-time requirements can suffer. The
EXP/PF [8] scheduler differentiates between real-time and
best-effort applications. The real-time application weights
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takes the average HOL of all users into account, while the
best-effort applications receive only service when the HOL
of all real-time applications are below the delay threshold.

In [9] another approach is presented that uses utility func-
tions, where applications with the tightest deadlines receive
higher priority. Their approach does not exploit themulti-user
diversity, and results in an increased number of packets
missing their deadlines. In [10] a joint power allocation
and transmit scheduling method is introduced for orthogo-
nal frequency-division multiplexing (OFDM) wireless net-
works with mixed real-time and non-real time users. It aims
to reduce the delay variance and tries to satisfy the delay
requirements of the real-time users, though at the expense
of throughput. In [11] a scheduler framework is intro-
duced for real- and non-real-time applications in orthogo-
nal frequency-division multiple access (OFDMA) wireless
networks. Their framework can approximate other com-
mon schedulers such as earliest deadline first (EDF) and
modified largest weighted delay first (M-LWDF). Some
approaches incorporate a neural network (NN). For exam-
ple, in [12] the ‘‘AdaptSch’’ framework is presented, built
on two NN blocks, the first one of which predicts network
traffic, while the second block predicts the performance for
a set of predefined schedulers and chooses the best one.
This can improve the delay performance, but at the cost of
overall throughput. In [13] another allocation algorithm is
presented, but the tuning parameters require a priori knowl-
edge of the applications, such as the required throughput.
In [2] a cross-layer algorithm is developed in the context
of ultra-reliable and low-latency communications. It aims
to minimize the number of packets that exceed the delay
bound for a given power constraint. Rather than the queue
size, it bases its decision on the delay of the individual
packets.

In [1] a cross-layer scheduling algorithm is developed
that minimizes the delay in vehicular networks. It adds a
parameter V that allows for a trade-off between throughput
and latency.

The authors of [3] introduce a probabilistic cross-layer
scheduler. Each packet is transmitted with a certain proba-
bility that is determined by the queue length. They aim to
minimize the average queuing delay under average power
constraints. The model only allows for sending at most one
packet per slot. This approach is not suitable for use in our
DSL system as the slots are much larger compared to the
wireless channel setting in the paper.

Other cross-layer schedulers such as FLS [14] and Opt.-
Fair [15] implement a mechanism similar to priority queue
(PQ) in every time slot in order to achieve a low packet loss
ratio (PLR) and high throughput. They first select and serve
some of the real-time flows, and left-over resource blocks
(RBs) are then assigned to best-effort flows.

In [16] different scheduling strategies are discussed
together with a survey of the schedulers. A taxonomy of
cross-layer schedulers can be found in [17].

Some of the schedulers listed above are also used in the
simulations in Section VI and are listed in Table 3 on Page 11
together with the expression used by each scheduler to calcu-
late the user weightsω in the weighted sum ratemaximization
problem (1).

III. SYSTEM MODEL
In this section we give a high level overview of the system and
describe the common symbols used throughout the paper.

In the system we consider, time is divided in slots of length
τ = 50 ms. There are N users, where each user n ∈ [1,N ]
hasφn flows (or equivalently applications). Flows are indexed
by subscript i. The total number of flows in the system is
φ =

∑N
n=1 φ

n.
In each slot an operating point for the physical layer has

to be chosen. The physical layer assigns to every user n a
service rate Rn(t) ∈

[
0, R̂n

]
where R̂n is the maximal service

rate possible for user n. Furthermore, Rn ∈ R, where the
rate regionR is the set of all Pareto-optimal rate vectors that
the physical layer can accommodate. The capacity region is
defined as C = conv∪r∈R

(
({r} − RN

+) ∩ RN
+

)
, where convA

denotes the convex hull of the set A.
The upper layer determines at the start of slot t the system

state S (t), which can include historical data up to time t ,
such as arrival rates, or immediate data such as queue lengths.
Based on S (t) the scheduler then constructs the utility func-
tions uni (·) for each flow. These utility functions are then
passed to the processing unit of the physical layer, where
NUM problem (1) is solved to determine the optimal oper-
ating point. At the start of slot t + 1, the reply of the physical
layer, i.e. service ratesR(t+1), is applied. These service rates
are in effect in the interval [t + 1, t + 2[. There is thus a delay
of one slot between the request and application of service
rates.

Each flow i ∈ [1, . . . , φn] of user n has its QoS defined
by P{Dni (t) > T̂ ni } ≤ εni , where D

n
i (t) are the delays of the

flow’s packets up to slot t , T̂ ni a delay upper bound, and εni
the allowed violation probability. Traffic arrives in a buffer
large enough to hold all packets. However, if a packet’s delay
exceeds T̂ ni , the packet is useless to the flow, and will be
dropped. If P{Dni (t) > T̂ ni } > εni in a reasonable interval,
the QoE of the user will suffer.

The number of arrivals and departures in bits for flow i and
user n during the interval [t, t + 1[ are denoted by Ani (t) and
Eni (t). The number of arrivals and departures in packets in an
interval [s, t] are written as Anp,i(s, t) and E

n
p,i(s, t) The queue

size (in bits) at the start of slot t is denoted byQni (t). The HOL
is the time spent in the system by the packet at the head of the
queue, and is denoted by 0ni (t).

Every flow has a utility function uni (R
n
i ,S

n
i (t)), which

quantifies the usefulness to the flow of receiving a service rate
Rni , given state S n

i (t).
1 At the start of slot t the cross-layer

scheduler selects the rate assignment R(t + 1) ∈ R that

1We will often omit S n
i (t) if is clear from context
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FIGURE 2. The system model. The ISP core network is connected to the distribution point unit (DPU) through an optical fiber cable. The DPU is
connected to N network terminations (NTs). In the DPU layers 1 to 3 contribute here to solving the NUM problem. The physical and data link
layers at the NT are omitted.

maximizes the system’s performance, i.e.:

R(t + 1) = argmax
R∈R

N∑
n=1

φn∑
i=1

uni (R
n
i ,S

n
i (t)). (3)

A large family of scheduling algorithms is linear in R [7],
[18]–[21], i.e.

u(R,S (t)) = R · ω(S (t)). (4)

For the MDV scheduler we present in this paper, we have

u(R,S (t)) = −
ω(S (t))
R+ ζ

(5)

where ζ is a small constant to avoid division by 0. We
refer to (4) and (5) as MW-style and MD-style schedulers
respectively. The reasoning for using an MD-style scheduler
is explained in the introduction of the next section.

IV. THE MDV SCHEDULER
In this section, we introduce the MDV scheduler and its
equations, and discuss some properties.

Schedulers from literature usually calculate ω based on
immediate QoS-related metrics like the queue state and the
HOL delay (and possibly other metrics like power). As the
resources for these schedulers are typically assigned imme-
diately every 1 ms, metrics like the queue and HOL delay can
provide accurate guidance for the duration of the next 1 ms-
sized slot. However, in our DSL system slot sizes are an order
of magnitude larger, and, together with the fact resources are
only allocated one slot later, the queue and HOL might be
out-of-date the moment that the resources are assigned. For
example, assume Q(t) = 0, and at t + 0.01 packets arrive,
then if the weight depends on the queue (e.g. [1], [22]) or
HOL (e.g. [23], [24]), it will get assigned a low or possibly
even zero service rate for the coming 50 ms slot.

Furthermore, most cross-layer schedulers are developed
in the context of wireless networks, where the achievable
data rate can change drastically over short time spans.
Hence, these use the utility function (4) which favors servic-
ing users experiencing a better signal-to-noise ratio (SNR),

at the cost of data rate fairness. In the DSL setting the rate
region is static, hence opportunistic scheduling is not as
important.

Therefore, in the MDV scheduler we solve the first prob-
lem, the inherent delay of one slot between calculating ω and
application of the service rates, bymaking use of the expected
arrival rate and the number of recently dropped packets,
in addition to the queue size, to determine a flow’s weight.
The arrival rate and PLR are not as volatile and hence can
steer the weights better over multiple slots. This ensures that
a flowwill receive sufficient service rate, even though it is not
backlogged. The inclusion of the queue ensures that sudden
bursts of traffic will increase the service rate. The second
issue, the opportunistic character of cross-layer schedulers,
is resolved by using a utility function of the form (5), which
is more suitable for fair sharing [25].

The weight for the MDV scheduler is shown in (6), as
shown at the top of the next page and is composed of three
components. The factor λ̃ni (t+1) is an estimate of the number
of bits that will arrive in slot t + 1. The function cni (·) is
dependent on the traffic class (e.g. streaming, or best-effort),
and operates on its argument which acts as a measure for how
close a flow is to violating its QoS delay requirement.

In Section IV-A we will first discuss the components that
comprise the scheduler. Then in Section IV-B we highlight
a difference with MW-style schedulers. In Section IV-C we
discuss the stability of the MDV scheduler. In Section IV-D
we add some important notes on the discretization of the rate
region.

A. THE COMPONENTS
In this subsection we will have a detailed look at the compo-
nents that make up the MDV scheduler, as described in (6).

1) FACTOR (A)
Factor (a), λ̃ni (t + 1), constitutes an estimate of the required
service rate to support the flow in slot t + 1, the slot that we
are now finding the suitable weights for. We calculate it as

λ̃ni (t + 1) =
Ãni (t+1)

τ
, where Ãni (t + 1) is a prediction of the
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ωni (S
n
i (t)) = λ̃

n
i (t + 1)︸ ︷︷ ︸

(a)

· cni︸︷︷︸
(c)

δc Qni (t)

(Rni + ζ ) · T̂
n
i

+ (1− δc)
P{Dni (t) < T̂ ni }

εni︸ ︷︷ ︸
(b)

 (6)

number of bits that will arrive during the slot t + 1.2 We use
the low-complexity normalized least mean square (NLMS)
predictor [26]. Each slot the state of the algorithm is updated
with the vector ani (t) = [Ani (t − 1), . . . ,Ani (t − p)]

T , i.e. the
arrivals in the past p slots, which results in the prediction
Ãni (t + 1). In the simulations we used p = 20.

2) ARGUMENT (B)
The MDV scheduler aims to ensure that less than 100εni
percent of the packets experience a delay more than T̂ ni . We
use a metric bni here, given by

bni = δc
Qni (t)

(Rni (t)+ ζ ) · T̂
n
i︸ ︷︷ ︸

(b1)

+(1− δc)
P{Dni (t) < T̂ ni }

εni︸ ︷︷ ︸
(b2)

. (7)

It expresses the closeness of a flow to violating its QoS
delay requirementP{Dni (t) < T̂ ni } ≤ ε

n
i , which is then used as

the argument of cni in (6). The closer b
n
i is to 1, the more likely

there are delay violations, and the more service rate should
be given to this flow in order to reduce the delay violations.
When bni exceeds 1 there will be violations in the next slot.

We estimate the bni metric based on the weighted average of
the current queue size (b1) and the past delay violations (b2),
which approximate the predicted delay of the most recently
arrived packet and the delay percentile respectively. We now
look at (b1), (b2) and δc in more detail.

(b1): The factor Qni (t)
Rni (t)+ζ

in (7) can be seen as an approxi-
mation of the delay of the most recently arrived packet, if the
service rate were to be kept at Rni (t). Thus (b1) =

Qni (t)

(Rni (t)+ζ )T̂
n
i

indicates the proximity of the delay of the queue’s last packet
to the delay upper bound T̂ ni , given a constant service rate
Rni (t). A value larger than 1 means that the packet will violate
the QoS delay requirement.

In [27] the authors show that queue-independent sched-
ulers incur a delay that grows at least linearly with the number
of flows. Hence, the queue should be incorporated in order to
achieve good performance.

(b2): The term (b2) represents an estimate of the number
of delay violations so far, relative to the QoS delay bound.
We calculate the delay distribution P{Dni (t) < T̂ ni } as 1 −
Enp,i/A

n
p,i, where E

n
p,i is the number of packets that have been

sent with a HOL less than T̂ ni and Anp,i are the total number
of packets for the flow. These can be easily tracked using a
simple counter.

2For stability reasons (see Section IV-C), we assume Ãni (t) > 0, and use
Ãni (t) if Ã

n
i (t + 1) ≤ 0.

δc: The parameter δc is class-dependent and shifts the
focus to future delay violations (a large δc) or to past delay
violations (a small δc). For the streaming traffic class, we use
δstream = 0.5, while best-effort traffic class has δBE = 0.2.
By choosing a smaller δBE < δstream, we shift the weight
from the volatile queue metric to the less volatile delay metric
for the best-effort traffic class. As best-effort traffic is less
sensitive to variation in delay than streaming traffic, it can
also cope better with temporarily larger queues. These values
were chosen empirically through simulations.

3) FUNCTION (C)
The traffic class-dependent function c is applied to the argu-
ment (b) and indicates the elasticity of the flow. Following
two classes are defined:

• cstream(x) = β(x, 1, 0.6, 0.2, 1.0)
• cBE (x) = β(x, 0.15, 0.4, 0.2, 0.1)

with

β(x, γ, µ, σ, ρ) =


β2(x, γ, µ, σ ) if x ≤ 1
β2(1, γ, µ, σ )
+ (x − 1)ρ if x > 1

(8)

where β2 is the sigmoid function

β2(x, γ, µ, σ ) =
γ

1+ exp(−(x − µ)/σ )

The functions cstream and cBE behave like a regular sigmoid
when bni < 1. When bni ≥ 1, however, cstream and cBE will
switch to linear mode. The slope in this case is much larger
for cstream(bni ) than for cBE (bni ). If the system is overloaded,
bni quickly becomes more than 1 for all flows as the queue
sizes (and subsequently delays) will increase. But as the
streaming class’s weight increases faster, the streaming traf-
fic class flows will be prioritized over best-effort traffic
flows.

The values for the cstream and cBE functions are chosen
empirically through simulations. It is clear that when a flow
from the streaming traffic class is far from violating its
requirements, its weight is low, thus giving more weight
to other flows. Comparing the traffic class functions cstream
and cBE in Figure 3, we can see that for small bni the func-
tion cBE is relatively large. This results in the best-effort
traffic class receiving a larger share. However, as the sys-
tem load increases, and thus also bni increases, cstream will
quickly receive a larger weight and hence a larger service
rate.
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FIGURE 3. cstream(b) and cBE (b).

B. INTRA-USER SCHEDULING
In the previous subsection, we discussed the MDV scheduler
and how it calculates the weights ωni for the corresponding
NUM problem. In this section, we look at the scheduling
of flows for a single user, contrasting the MW-style and
MD-style schedulers.

The channel of a single user can be fed with the output
of a traditional regular packet scheduler (e.g. [28]–[30]),
operating on the aggregate of the user’s flows. In some cir-
cumstances however, it may be useful to consider each flow
being allocated a separate channel. Consider for example a
best-effort flow. Generally, it can deal with packet loss, and
thus such a flowmight request a higher service rate at the cost
of a higher bit-error rate. Likewise, VoIP calls require reliable
transfer, and as such can request for a low bit-error rate. For
example [31] discusses a DSL scenario in which each flow
can have different properties.

In such case, it is interesting to use the scheduler to also
allocate the resources for the intra-user flows. Solving the
NUMproblem for all users can then conceptually be split into
two steps. First a service point R in the rate region is picked.
Then, for each user n the service rate Rn must be divided over
user n’s flows. This intra-user rate region can be considered a
simplex rate region (see Figure 4 for an example of a three
flow 2-simplex). In such a scenario, increasing one flow’s
rate by δ will decrease the sum of the other flows’ rates by
exactly δ.

FIGURE 4. Intra-user rate region for a user with three flows.

It is in this setting that our cross-layer scheduler excels.
Consider a user n receiving a rate Rn, to be distributed over
φn flows. This rate region is the φn− 1-simplex. If we use an
MW-style scheduler for intra-user rates rn = [rn1 , . . . , r

n
φn ]

then the NUM problem can be written as

argmax
[rn1 ,...,r

n
φn ]

T<0

φn∑
i=1

ωni r
n
i , subject to

φn∑
i=1

rni ≤ R
n. (9)

Here, (9) results in an assignment that gives only a non-zero
rate to the flow that has the largest weight ωni .
If we now consider an MD-style scheduler the correspond-

ing NUM problem is formulated as:

argmax
[rn1 ,...,r

n
φn ]

T<0

φn∑
i=1

−
ωni

rni
, subject to

φn∑
i=1

rni ≤ R
n. (10)

For this problem the closed form solution is

rn =

 φn∑
i=1

√
ωni

−1 ·

√
ωn1
...√
ωnφn

 · Rn. (11)

Here the rate is distributed proportionally to all flows,
rather than only to the flow that has the largest weight. This
allows the MDV scheduler to be readily used for intra-user
scheduling, whereas MW-style schedulers may require addi-
tional intra-user scheduler mechanisms.

C. STABILITY
In this subsection, we discuss the concepts of stability and
throughput optimality, and how these apply to the MDV
scheduler.

We define a system with scheduling policyψ to be (queue)
stable if for an arrival rate vector λ the expected lengths of all
queues in the system remain bounded. The stability region
is the set of all arrival rate vectors λ for which scheduling
policyψ results in a stable system. Thus, an arrival rate vector
outside the stability region could lead to a system in which
one or more queues are not bounded, and grow to infinity.

Stability also leads to the concept of throughput optimality.
Assume we have an optimal scheduling policy ψ∗ whose
stability region is maximal, i.e. queue stable for the largest set
of arrival rate vectors, then this policy ψ∗ is throughput opti-
mal. Schedulers such as MW [5] are proven to be throughput
optimal in some scenarios [32].

We show here that the MDV scheduler is throughput opti-
mal for convex capacity regions. For non-convex rate regions
it is possible to find an arrival rate vector such that for
example the MW scheduler can stabilize the queues, while
the MDV scheduler cannot. In practice this only occurs for a
limited set of arrival rate vectors.

The proof we present here is based on the Lyapunov drift in
a fluid system, and is similar to the proof of (�,α)-fairness in
the context of bandwidth sharing [25], [33]. We first consider
a general scheduler whose weights depend only on some
constants and the queue sizes. If for such a system the arrival
rate vector lies within the scheduler’s stability region, then we
show that the sum of the queue sizes will decrease, if we start
from arbitrarily large queues. Next, we show that this also is
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FIGURE 5. R and Rα for a two users system (α ∈ {0,0.5,2}).

true whenwe allow the constants to change at slot boundaries.
Finally, we show that the MDV scheduler must be stable for
arrival rate vectors within the scheduler’s stability region,
by constraining it between two other, stable schedulers.

For the proof we make use of a general scheduler of the
form

R∗ = argmax
R∈Rα

∑
i

(AiQi(t)+ Bi)β−1
(Ri + ζ )1−α

1− α
(12)

with constants ζ > 0, Ai > 0, Bi ≥ 0, β > 1 and α ∈
R0
+\{1}. This scheduler belongs to the family of α-fair utility

maximization functions [25]. To avoid division by zero when
Ri = 0 and α > 1, we have introduced ζ , which should be
small compared to typical values of Ri.
In (12),Rα

⊆ R is the set of operating points the scheduler
can select from a rate region R (we use Cα for the corre-
sponding capacity region). This set Rα depends only on the
parameter α. In [34] it is shown that α determines how much
the rate regionR is convexified. As α grows, operating points
that are more interior to convR are included in Rα , until
Rα
= R. In Figure 5 we show an example rate regionR and

Rα for α ∈ {0, 0.5, 2}, where we can observe more points
being selected from R as α increases. Note in particular that
Figure 5a forms the convex hull ofR.
When the rate regionR is continuous, we can approximate

the rate region with a finite number of operating points [35].
In Section IV-D we have some remarks about this sampling
process.
Theorem 1: The scheduler described by

R∗ = argmaxR∈Rα

∑
i (AiQi(t)+ Bi)

β−1 (Ri+ζ )1−α

1−α is stable
if λ ∈ Cα .

FIGURE 6. Multiplier for the streaming traffic class and bounds.

The proof can be found in appendix A. There we also show
that the constants Ai and Bi do not impact the stability region,
but do reduce the rate at which the queues decrease.

We use this result and show that the system is still stable
when Ai(t) and Bi(t) can change at the start of a slot, and
remain constant for the duration of the slot.
Corollary 1: In a slotted system

R(t)∗=argmaxR∈Rα

∑
i
(Ai(t)Qi(t)+Bi(t))β−1

(Ri+ζ )1−α

1−α

is stable for λ ∈ Cα for any function Ai(t) > 0, Bi(t) ≥ 0.
During slot t Ai(t) and Bi(t) are constant.

The proof is presented in appendix B, and follows the same
steps as the previous proof. In the proof we make use of the
fact that the weights remain constant, except at slot times,
at which the derivatives are undefined. However at these time
instants the queues themselves do not change. This corollary
then leads to the stability of the MDV scheduler by bounding
it between two schedulers with variable Ai(t) and Bi(t).
Corollary 2: The MDV scheduler is stable if λ ∈ C2.
Proof: We can find constants gl, gu > 0, such that for

any t we can upper and lower bound the class-dependent mul-
tiplier c(·) in (6) (as depicted by the dashed lines in Figure 6):

glδc
λ̃ni (t + 1)

Rn′i (t)T̂
n
i

Qni (t)

< λ̃ni (t + 1)cni

(
δc

Qni (t)

Rn′i (t)T̂
n
i

+ (1− δc)
P{Dni (t) < T̂ ni }

εni

)

< guδc
λ̃ni (t + 1)

Rn′i (t)T̂
n
i

Qni (t)+ gu(1− δc)
λ̃ni (t + 1)

εni
(13)

where Rn′i (t) = Rni (t) + ζ . Equation 13 is the same as
the weight ωni from the MDV scheduler, first described in
Equation 6. As mentioned in Section IV, we assume that
λ̃ni (t + 1) > 0, thus our MDV scheduler function is bounded
between functions of the form AL(t)Q(t) and AU (t)Q(t) +
BU (t) with A{L,U}(t) > 0 and BU (t) > 0. Hence using
Corollary 1 we can conclude that the MDV scheduler also
is stable. �
It is clear from (7) that using only the number of delay

violations will result in a unstable MDV scheduler, as the
delay component is bounded by 1/εni . In such a case it is not
possible to find a lower bound with AL(t) > 0. This shows
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that it is necessary to incorporate the queue length to keep the
scheduler stable.

Other schedulers (e.g. [11]) bound the utility of best-effort
traffic, to ensure that best-effort traffic will be low priority if
the system load is high. In the MDV scheduler this could be
also accomplished by setting ρ = 0 in (8). However, when
ρ = 0 we encounter the same problem as for using only
the delay distribution, i.e. we cannot find a lower bound with
AL(t) > 0, as now the traffic class cBE is bounded. Hence
in such case, the stability region is reduced, meaning that in
some scenarios the best-effort queues can be unbounded, even
if the arrival rate vector is within the capacity region.

We have shown here that the scheduler is guaranteed to be
stable when the average arrival rate vector λ is within C2. An
arrival rate vector outside of C2 does not necessarily result
in unstable queues, as this depends on the arrival patterns of
the users. It is usually very challenging to derive the exact
stability region for such cases [36].

The rate region for our DSL setting (see Section V) is
not convex, and there are thus arrival patterns for which the
MDV scheduler cannot keep the queues stable. To test this
we ran 10 000 simulations with the rate regions used in the
simulations. Each simulation had a random average arrival
vector within R (without considering R2). For constant bit-
rate (CBR) traffic we found that in about 2% of the scenar-
ios the MDV scheduler was not able to bound the queues
whereas the MW scheduler was. Changing the fixed packet
lengths of the CBR traffic to exponentially distributed lengths
(but keeping the average arrival rate identical), dropped this
number to about 0.3%. Thus in real-life scenarios the loss
in stability region is very small as the traffic is much more
diverse.

D. QUEUE PERFORMANCE FOR A DISCRETE RATE REGION
In the previous section we discretized a fluid rate region to
discuss the stability region. This section provides an alterna-
tive view on the behavior of anMD-style scheduler when dis-
cretizing the rate region, as the sampling not only impactsRα ,
but also the behavior for service rates close to zero.

MD-style schedulers can exhibit large queues when the
rate region is not distributed well, as shown in the following
example. Consider the utility function uMD(ρ) = Q/ρ in
a system with a rate region R = {ρa, ρe} from Figure 7,
i.e. having just two operating points. As this rate region is
convex, the scheduler achieves the maximal stability region.
Let user 1 and user 2 have an average arrival rate such that
λ = [0.1, 0.1] packets/time unit. It is clear that the arrival
rate vector is well within the capacity region C.

Figure 8 shows the queue evolution Q(t + 1) =

max(0,Q(t) − ρ(t)) + A(t, t + 1) for the two users of this
system. Q1 remains very close to 0.1 = λ1 · 1, while Q2
increases until it exceeds about 10 (or equivalently, when
Q2
Q1
>

(ρa1 )
−1
−(ρe1)

−1

(ρe2)
−1
−(ρa2 )

−1 ≈ 100), after which Q2 remains hovering

around 10. We informally name the region in which the
queues grow relatively large, despite low arrival rate vectors,

FIGURE 7. Rate regions for the example of Section IV-D.

FIGURE 8. Queue evolution of a MD scheduler with two rate points.

the pseudo-unstable region.We name the region in which this
does not occur the pseudo-stable region.

Increasing the number of operating points near the
extremals reduces the arrival rate vector region in which
this behavior occurs. For example, extending the rate region
to R = {ρa, ρc, ρe} will reduce the aforementioned
pseudo-unstable region to average arrival rate vectors in the
horizontally shaded areas, giving us a pseudo-stable arrival
rate region in the white square.

Intuitively, if λ2 > ρc2 = 0.5, then only choosing operating
point ρa can reduce user 2’s queue. However, ρa is only

chosen when Q2
Q1
> maxx∈c,e

(ρa1 )
−1
−(ρx1 )

−1

(ρx2 )
−1
−(ρa2 )

−1 ≈ 9998, rendering

it more difficult to chose ρa. Extending the region again to
R = {ρa, ρb, ρc, ρd , ρe} reduces the pseudo-unstable to the
square-shaded areas.

As can be induced, increasing the number of operat-
ing points near the service rates close to zero reduces this
pseudo-unstable region.

V. PHYSICAL LAYER MODEL
So far we have discussed the upper layers only. In this section,
we will look at the physical layer and the discretization
of the rate region to avoid problems when comparing the
performance of the different schedulers.

In the simulations in Section VI we assume a downstream
DSL G.fast physical layer. Ideally, such a system applies
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precoding or vectoring across all users in the network. All
users may then be able to communicate free of interference.
In some cases however, full vectoring is not available [37],
[38] and one should resort to grouped vectoring (GV) instead.
In a grouped vectoring system, two or more vectoring groups
exist. Vectoring is then possible among users that are in
the same group, but not among users that are in a different
group. As a result of the uncanceled interference, competition
for bandwidth among users between the vectoring groups is
typically strong.

The G.fast implementation for this paper uses zero-forcing
grouped vectoring as in [37]. In such a system vectoring
matrices are fixed and different rate trade-offs can be made
by varying the transmit power allocation s. The power allo-
cation s that is to be employed in each time slot can be
determined by solving the following NUM problem:

max
s∈S

N∑
n=1

un(Rn(s)). (14)

In (14) we have the utility function un from (1). Rn(s)
expresses the rate of user n as a function of s, the trans-
mit power allocation of all users, which is chosen from
the set of feasible power allocations S. The NUM problem
in (14) contains the spectrum coordination problem from [39]
as a special case, and is therefore NP-hard [39]. As such,
the locally optimal solution to (14) can be far away from the
global optimum. Moreover, locally optimal power allocation
algorithms may yield different results when different utility
functions are considered, even when the utility functions are
chosen in such a way that one would expect the same solution
to be found. Using locally optimal solutions to the NUM
problem as in (14) is therefore not ideal when the objective
is to compare the performance of different schedulers, as one
cannot exclude that the observed differences in performance
are to be attributed to the behavior of the algorithm that is
used to solve the non-convex NUM problem.

In order to obtain a reliable comparison of the different
schedulers, we propose to compute a discrete set of power
allocation settings Ŝ ⊂ S from which the scheduler can
choose a single s ∈ Ŝ. The achievable set of rate vectors will
be defined as

R̂ = {r ∈ RN
+|∃s ∈ Ŝ : r = [R1(s), . . . ,Rn(s)]

T
}.

Each time-slot, the scheduler then chooses a power allo-
cation s ∈ Ŝ by evaluating the objective function of (14)
for each r ∈ R̂ and selecting the rate vector that achieves
the highest value. The considered set of power allocation
settings Ŝ will still be obtained by solving a set of NUM
problems as in (14). However, the question of whether or not
these power allocations correspond to global optimums of the
NUMproblem fromwhich they are obtained is now irrelevant
with respect to the scheduler’s performance.

Some literature is available on selecting a representative
set of DSL resource allocations in order to achieve good
performance: [40] considers full-duplex DSL and constructs

a set Ŝ containing two elements to obtain a performance
gain over time-division duplexing, and [41]–[43] employ
multi-objective evolutionary algorithms to obtain a larger
set Ŝ containing resource allocations that are – in some sense
– diverse. We will however take a more heuristic approach
towards compiling Ŝ by solving the following weighted sum
rate maximization (WSRM) problem for a predetermined set
of weight vectors Ŵ:

max
s∈S

N∑
n=1

ωn · Rn(s). (15)

The set Ŵ is chosen such that the convex hull of the
resulting set R̂ covers the rate region well, as this yields a
large set of arrival rates that can be stabilized.

Before going into the details about how Ŵ was compiled,
we define a metric that quantifies how well a set R̂ covers its
corresponding rate region. The coverage metric will be based
on an inner and an outer approximation of the true rate region,
which are respectively defined as

R̂in = conv
⋃
r∈R̂

{({r} − RN
+) ∩ R

N
+} (16)

and

R̂out =
⋂
r∈R̂

{q ∈ RN
+|ω

T
· q ≤ ωT · r} (17)

where convA denotes the convex hull of the set A and the
vector ω in (17) is the weight vector ω ∈ Ŵ that was
employed in (15) to obtain the considered rate vector r.
Note that R̂in also corresponds to the set of arrival rates that

can be stabilized by a throughput optimal scheduler operating
in R̂. Moreover, the approximation R̂out is based on the
observation that each solved WSRM problem identifies a
half-space that fully contains the original set of achievable
rates R = {r ∈ RN

+|∃s ∈ S : r = [R1(s), . . . ,Rn(s)]T .3

It can be readily seen that R̂in ⊂ R ⊂ R̂out . The proposed
coverage metric is then defined as

Cover R̂ = N

√
Vol R̂in

Vol R̂out
(18)

where Vol A denotes the volume of the set A. The N -th root
is applied to the ratio of volumes to give a sense of ‘‘relative
distance’’ between the two rate region approximations. If for
instance R̂out is a scaled version of R̂in, then the proposed
measure will yield the value by which R̂in should be scaled
to obtain R̂out . Hence, the closer (18) is to 1, the better the
match.

Using this metric, we can now compile and assess the set of
weights Ŵ . First we construct Ŵ1, the set of group weights

3Note that this outer approximation can be inaccurate, as the employed
power allocation algorithm attains a locally optimal solution to the WSRM
problem as in Equation 15, not the globally optimal solution.
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TABLE 1. Summary of G.fast parameter settings.

TABLE 2. Different networks and their coverage for Ŵ2.

that is obtained by uniformly sampling the unit (Ngrp − 1)-
simplex, where Ngrp is the number of vectoring groups:

Ŵ1 = {aωgrp ∈ NNgrp |1Twgrp = 1} (19)

where a ∈ N determines the sampling density. We have
chosen a = 20.

This set Ŵ1 is now modified to include the user weights.
For every group i ∈ 1..Ngrp the weights are expanded to
a vector of length Mi with each component having value
ωi, where Mi is the number of users in group i. Finally,
we again iterate over each group i, now setting its weights to
1Tωi · b where b is any combination of 0 and 1 (excluding 0
as that is already covered by ωi = 0), resulting in 2Mi − 1
combinations for group i. The resulting set of weights is
denoted by Ŵ2.
Before showing the coverage results, we first describe the

G.fast networks that are used in the simulations of Section VI,
and then apply the algorithm to obtain the sampled rate
regions. Three G.fast networks are considered: one with two
vectoring groups each containing two users (2g2u), a network
with two vectoring groups each containing three users (2g3u),
and finally a network with three vectoring groups each con-
taining two users (3g2u, see Figure 9 for this rate region,
where for each group all user rates are summed to reduce
dimensionality). The channel matrices are based on lab mea-
surements of a 104m long cable [44]. The considered cable
type is representative for access cables that are widely used
by KPN in the Netherlands. The employed G.fast parameter
settings are summarized in Table 1 (we refer to [37] for further
details).

In Table 2 we show the coverage results for the three
different networks. It can be seen that this simple sampling
algorithm approximates the rate region quite well, as the
numbers in the cover R̂ column are all very close to 1.

VI. EVALUATION
In this section, we evaluate the MDV scheduler using simula-
tions and by comparing it to other schedulers from literature,

FIGURE 9. Rate region for 3 groups with 2 users (in bit/second).

as well as to an ideal scheduler. In Section VI-A we describe
the setup, including the runtime settings, the metrics inves-
tigated and the plot layout. Then we look at the simulation
results themselves in Section VI-B.

A. SETUP
In this section, we describe how the evaluation was per-
formed. First we give an overview of the settings and sched-
ulers used. In Section VI-A1 we briefly show the intra-user
scheduler settings used in the simulations. We continue with
enumerating the metrics that we have used in Section VI-A2
and introducing the plot layouts in Section VI-A3.

The simulations were run in OMNeT++ using the INET
framework. Each of the N users has a number of flows that
send traffic to a sink over a channel using a fluidmodel. There
is a warm-up time of 5 s, duringwhich no results are recorded.
Every τ = 50 ms the weights are computed by a scheduler.
Prior to this computation, packets whose HOL exceeds T̂ are
removed from the queue. Packets that are late and in transit
will still be delivered, however.

The schedulers are summarized in Table 3 on Page 11. We
have also included an approximation to an ideal scheduler,
called the Oracle scheduler. This algorithm has access to
future arrivals and can select the optimal rate from the rate
region in order to minimize the number of delay violations,
while at the same time maximizing the system throughput.
To reduce the simulation time of the Oracle scheduler, some
shortcuts were taken. The first shortcut is that the Oracle
scheduler only looks at the next M = 2 future slots. Increas-
ingM would allow for better handling of bursts and increased
throughput. The second shortcut is that we approximate the
runtime delay distribution used by the scheduler, resulting
sometimes in a temporarily suboptimal rate selection. Even
though these simplifications result in a slightly suboptimal
result, mainly when the load is high, the results offer a
valuable benchmark that can be used to compare the other
schedulers to.

The simulations cover different scenarios. Each scenario is
repeated 20 times, with a random seed based on the repetition
index. The traffic generated is the same for all (scenario,
repetition)-tuples, i.e. each scheduler will receive the same
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TABLE 3. Summary of the considered schedulers (in no particular order) and their settings. Common symbols: ρ (averaged service rate), λ (averaged
arrival rate) and α = −ln(ε)/T̂ .

FIGURE 10. The PLR and throughput for scenarios with one flow per user.

traffic. The traffic can be categorized by traces (videos),
regular generated traffic such as traffic with packet arrivals
according to a Poisson process and exponentially distributed
packet sizes (which we refer to as M/M/1), VoIP, CBR,
heavy-tailed (self-similar traffic) and a traffic source called
SAT that keeps the output line saturated by keeping the queue
always backlogged. These traffic flows are considered to be
of the streaming traffic class by default. In some scenarios we
set the traffic class of M/M/1 to best-effort.

1) INTRA-USER SCHEDULING
We mainly consider the scenarios in which all flows have
their own channel. For some scenarios we also consider using
a regular scheduler, as the one flow, one channel regime
is very disadvantageous to the linear schedulers. In such
case, each of the users’ flows are inputs to the scheduler,
which is then directed to the users’ only output channel. We
employ the parameterless EDF scheduler, which serves the
flow whose HOL packet has the most stringent deadline.
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FIGURE 11. The PLR and throughput for regular scenarios.

FIGURE 12. The PLR and throughput for regular scenarios for the EDF scheduler.

The NUM problem is then reduced to

argmax
R∈R

N∑
n=1

ωnRn

with ωn =
∑φn

i=1 ω
n
i .

2) METRICS
We assess the schedulers’ performance using the following
metrics:
• Packet loss ratio Ap(0,Tsim)−Ep(0,Tsim)

Ap(0,Tsim)
: The number of

packets dropped due to their delay being too large, with
Ap and Ep the number of respectively arrivals and depar-
tures. Here, Tsim is the length of the simulation. Note that

we show the plain PLR, without taking ε into account,
in order to not complicate this metric. Lower is better.

• Average throughput E(0,Tsim)Tsim
: The total number of bits

that have been sent successfully. This is influenced by
both the packet loss ratio, and the SAT traffic type, which
keeps the queue backlogged. Higher is better.

• Average delay E[D]: The delay is calculated as the
time difference between creation and arrival of a packet.
Delays can occasionally exceed T̂ if service is lowered
while a packet is being transmitted. Lower is better.

3) PLOT LAYOUT
We make use of two types of plots in the results section:
• Violin plot: Violin plots consist of a rotated and mir-
rored histogram that is smoothed using a kernel density
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FIGURE 13. The PLR and average delay for high load scenarios.

estimator. The data that are used to compose the his-
togram come from the results of all the scenarios. The
schedulers are arranged horizontally. The wider a violin
plot is, the higher its frequency at that point. Inside
the shaded area, the quartiles are displayed. For easier
comparison, a line connects the mean values.We present
the data like this as it gives a good summary over the
many data points.

• Line plot: Each individual line represents a different
scheduler. The y-axis is the average of all selected sce-
narios, while the x-axis is the independent parameter,
such as the number of multiplexed flows per user.

B. RESULTS
In this section, we discuss the results of the simulations. First,
in Section VI-B1, we consider scenarios in which each user
has exactly one flow. Then we continue with scenarios repre-
senting typical use cases in Section VI-B2, scenarios where
the system load is close to 1 in VI-B3, scenarios that focus
on heavy-tailed traffic in VI-B4 and statistical multiplexing
in VI-B5.

As the schedulers’ performances are similar among the
different rate regions, we show the averaged results, unless
otherwise noted.

1) SINGLE FLOW SCENARIOS
In this first section, we consider scenarios in which each user
has exactly 1 flow. The flows are a mix of different kinds
of traffic. This set of scenarios highlights that the excellent
performance of the MDV scheduler does not solely depend
on its intra-user scheduler.

Figure 10a shows the PLR distribution for the flows of
the scenarios. There we can clearly see that the MDV sched-
uler performs very close to the Oracle scheduler. All other
schedulers have outliers of at least 20%, while for the MDV
scheduler the PLR for most flows stays below 5%.

FIGURE 14. The PLR for the heavy-tailed traffic scenarios.

The throughput plot shown in Figure 10b shows that
the MDV scheduler has the best throughput performance.
The Oracle scheduler’s throughput is less as it trades service
to achieve a lower PLR .

2) REGULAR SCENARIOS
The regular scenarios comprise a mix of different sources
where each user has about 4 flows.

Figure 11a shows the PLR distribution for the flows for the
regular 4- and 6-user scenarios, as the curves for the different
schedulers are shaped very similarly. There we can see that
most schedulers cannot cope well with the traffic offered.
Within a scenario, usually some applications have a low PLR,
at the cost of other flows. These flows are mainly video flows
and high volumes of M/M/1 generated traffic.
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FIGURE 15. The PLR for multiplexing Starwars videos for the 2g2u rate region using the regular intra-user scheduler and EDF scheduler.

For the MDV scheduler, however, the PLR remains very
close to 0% for all scenarios. Only VoIP sometimes suffers
losses, occasionally up to 10%. This is due to its low volume,
but highly bursty nature. The low volume (compared to e.g.
video)makes it more difficult to assign a large enoughweight,
while the burstiness, coupled with the delay of 1 slot until
rates are in effect, cause a relatively large PLR . Hence,
for such flows it might be more effective to consider them
to be CBR streams and assign a fixed service rate in the
physical layer. The performance is very similar to that of the
Oracle scheduler. Due to the low PLR, we also have a higher
throughput, as can be observed in Figure 11b.

Figure 12 shows the same scenarios, but now allocating
resources per user, and scheduling flows with the EDF sched-
uler, as described in Section VI-A1. It should not surprise us
that the PLR is lower for the linear schedulers, especially for
the Lei scheduler, as flows for a single user are multiplexed.
This is also visible in the increased throughput. Despite this,
the MDV scheduler still has a better performance for both
the PLR and throughput. Also here, there are MDV outliers
caused by VoIP traffic. The six left-most schedulers perform
significantly better in these scenarios with EDF scheduler,
as can be observed by the decreased mean and the wider part
being at the bottom of the plot.

3) HIGH LOAD
The scenarios from this subsection deal with traffic that is
close to the rate region boundary, resulting in a high system
load. Each user sends either one flow of type M/M/1 or CBR
that averages to 0.99·R∗, whereR∗ is the solution to theNUM
problem for weights 1. For each of the flows, we impose the
same QoS restriction P{D(t) > 100 ms} ≤ 0.01.
Figure 13a shows the best PLR performance for the MQS,

Wu and MDV schedulers the latter two of which perform

close to the ideal. Especially the MPT and eEXPRule sched-
ulers have difficulty to deal with the offered load. The EXP-
MLWDF scheduler features three distinct blobs. This is due to
the scheduler giving either all, some or close to none service
to the same flows during the simulation.

In a high load scenario flows sometimes get a lot of service,
but as the packet has almost finished transmitting, other flows
have considerably more weight. Due to the used fluid model,
this can result in some packets have large delays, as can be
observed for the EXP-MLWDF and MPT schedulers in the
delay plot Figure 13b. All other schedulers have a delay upper
bound close to 100 ms, as would be expected. The MDV
and Oracle schedulers’ delay distributions are very close to
100 ms, indicating that the delay fairness of the users is quite
good: all users experience similar delays.

4) HEAVY-TAILED TRAFFIC
In the heavy-tailed scenarios, half of the users are sending one
flow with regular M/M/1 traffic, while the other users have
one flow that comprises a superposition of Pareto-distributed
traffic with ON- and OFF-periods, resulting in heavy-tailed
traffic [50].

The PLR in Figure 14a shows that the EXP/PF, MQS,
Wu and MDV schedulers have a similarly good performance.
The EXP-MLWDF and MPT schedulers have two visible
parts: the M/M/1 traffic occupies the lower part, while the
self-similar traffic has a large PLR .

5) STATISTICAL MULTIPLEXING
The raison d’être of packet switched networks is multiplex-
ing. It is well known that the peak rate of an aggregate
of bursty traffic is significantly lower than the sum of the
peak rates. Hence, instead of reserving rates for the peak
rate of every flow, squandering service rate, flows can be
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multiplexed. This subsection looks at the schedulers’ per-
formances when each user sends a number of Starwars
videos [51]. The x-axis in the plots in Figure 15 represent
the number of videos each user is transmitting. On the y-axis,
we can see the average of the metric.

Figure 15a shows the PLR for the 2g2u rate region, which
more clearly shows the behavior of the schedulers. The other
rate regions behave similarly, but are shifted. We can clearly
discern two groups: the MDV and Oracle schedulers, that
increase linearly with N , and all other schedulers that peak
quickly and then decrease, decrease a little to increase again
around N = 10.

The performance of the MDV scheduler is relatively close
to the Oracle scheduler. It is able to support three video flows
per user. When N > 4, the violation rate increases linearly.

If we use the EDF scheduler, then we can observe
in Figure 15b that all schedulers perform significantly better.
Again, this does not surprise, as the flows are now multi-
plexed per user. However, there are still plenty of schedulers
that have difficulty coping with more than four flows. In this
plot we can also notice that, in addition to MDV, the MPT,
EXP/PF and MQS schedulers all are also able to multiplex 8
flows.

VII. CONCLUSION
In this paper, we have presented a new cross-layer scheduler
for DSL networks. The scheduler combines the arrival rates,
current queue sizes and the past observed delays to generate a
weight that, in combination with a utility function of the form
u(R, ω) = ω

R+ζ minimizes the number of delay violations.
We have discussed the stability region of the MDV scheduler,
and showed that it is throughput optimal for convex rate
regions. We have compared the PLR, throughput and delay
performance to other cross-layer schedulers from literature,
together with an Oracle scheduler, and demonstrated that
it performs at least as good, and usually substantially bet-
ter, than the other schedulers in the tested scenarios, which
included multiplexing and heavy-tailed traffic. The sched-
uler works excellent in the case where each flow has its
own ‘‘channel’’, but also performs equally or better than the
other cross-layer schedulers when using the EDF scheduler
as the intra-user scheduler. The MDV scheduler also often
performs close to the Oracle scheduler (with respect to QoS
requirements that are specified as a percentile of the delay
distribution).

APPENDIX A
PROOF OF STABILITY FOR CONSTANT A AND B
For this proof we model the queue using a Markov chain. We
assume a flow i has packet arrivals according to a Poisson
process with parameter νi. The packet sizes are exponentially
distributed with mean µ−1i . Define the average arrival rate
vector λ = [λ1, . . . , λn] = [ ν1

µ1
, . . . , νn

µn
]. By including the

residual inter-arrival and service times we can extend this
result to renewal arrival processes and generally distributed
packet sizes [52], and obtain results for general distributions.

The transition rates of the queues that describe the system
are given by

Qi → Qi + 1 at rate νi
Qi → Qi − 1 at rate µiR∗i

where R∗i is given by Equation 12.
We will now look at the ergodicity of this Markov process

Qi. A Markov process is called ergodic if all the states in
the Markov chain are aperiodic and positive recurrent, i.e.
all states can be visited from any of the states with non-zero
probability within a finite period. Thus, if the process is
ergodic, then the queues are stable.

Proof: We first look at the fluid system, when the initial
queues grow to infinity:

Xi(t) = lim
ω→∞

Qi(ωt)
ω

with Qi(0) = ω,∀i.

Define X(t) = [X1(t), . . . ,Xn(t)]. Given the initial distri-
bution of X(0) = 1, it follows from the strong law of large
numbers that the evolution of the fluid X(t) is defined by

Ẋi(t) = νi − µiRi(t)

for all t such that Xi(t) > 0. Here, Ẋi(t) is written using
Newton’s notation, i.e. Ẋi(t) = d

dtXi(t). R(t) is the solution
to Equation 12. If the traffic conditions

λ ∈ Cα (20)

are satisfied, then we show that there exists a constant T > 0,
such that X(t) = 0,∀t ≥ T . For this, we define Lyapunov
function F and scheduler G as

F(u) =
∑
i

(Aiui + Bi)β

µi(λi + ζ )αAiβ
,

G(u) =
∑
i

(AiXi(t)+ Bi)β−1
(ui + ζ )1−α

1− α
.

The Lyapunov function represents a scalar measure of the
queue sizes in the system and will be large if at least one of
the queues is large. Differentiating F(X(t)) with respect to t
we get the Lyapunov drift:

Ḟ(X(t)) =
∑
i

(AiXi(t)+ Bi)β−1

(λi + ζ )α
(λi − Ri(t)), (21)

using the fact that λi =
νi
µi
.

Let R(t) = argmaxu∈R G(u) = argmaxu∈Rα G(u). Thus
R(t) attains the maximum overRα , and we have that for any
u the gradient of G satisfies

∇G(R(t)) · (u− R(t)) ≤ 0,

where · is the dot-product. By concavity of G, we obtain that

∇G(u) · (u− R(t)) ≤ 0. (22)

Under the stability condition (20), we can find an ε > 0
such that u = (1+ ε)λ ∈ Cα . Applying u to (22) results in∑

i
(AiXi(t)+Bi)β−1(λi(1+ε)+ ζ )−α(λi(1+ε)−Ri(t))≤0
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which can be reduced to∑
i

(AiXi(t)+ Bi)β−1(λi + ζ )−α(λi(1+ ε)− Ri(t)) ≤ 0.

This can be rewritten using (21) to obtain

Ḟ(X(t)) ≤ −ε
∑
i

µ−1i (λi + ζ )−α(AiXi(t)+ Bi)β−1

≤ −ε β

√
min
i
(µ−1i (λi + ζ )−α)

·

(∑
µ−1i (λi + ζ )−α(AiXi(t)+ Bi)β

) β−1
β

(23)

≤ −ε β

√
min
i
(µ−1i (λi + ζ )−α)(β min(A))

β−1
β

·

(∑ µ−1i (λi + ζ )−α

βAi
(AiXi(t)+ Bi)β

) β−1
β

= −θF(X(t))
β−1
β (24)

In step (23) we employed the well-known inequality
||a||q ≤ ||a||p ≤ n1/p−1/q||a||q, where ||a||p is the p-norm
of a vector a, 0 < p < q, and n the number of elements in the
vector. Let in the following ai = p

√
wixi, p = β − 1, q = β

and A = [A1, . . . ,An] then

||a||β ≤ ||a||β−1

⇐⇒

(∑
w

β
β−1
i xβi

)1/β

≤

(∑
wix

β−1
i

)1/(β−1)
⇐⇒ min(w)

1
β

(∑
wix

β
i

) β−1
β
≤

∑
wix

β−1
i

⇐⇒ −

∑
wix

β−1
i ≤ −min(w)

1
β

(∑
wix

β
i

) β−1
β

Step (24) uses Abel’s inequality.
Now, if there exists T > 0 for which F(X(T )) = 0, then it

is clear that F(X(t)) will always be able return to 0, ∀t ≥ T .
As F(X(t)) = 0 implies that X(t) = 0, and thus also implies
that the queues are bounded, this concludes the proof. �

Furthermore,

Ḟ(X(t)) ≤ −θF(X(t))
β−1
β

⇐⇒ l̇n(F(X(t)))F(X(t))
1
β ≤ −θ.

Integrating both sides results in∫ t

0
l̇n(F(X(s)))F(X(s))

1
β ds ≤

∫ t

0
−θds

⇐⇒ βF(X(s))
1
β |
t
0 ≤ −θ t

⇐⇒ F(X(t)) ≤
(
F(X(0))

1
β −

θ

β
t
)β
.

This implies that F(X(t)) = 0 for all t ≥ T , with

T =
1
ε

β

√√√√∑
i

minj(µj(λj + ζ )α)
(Ai+Bi)β

Ai

µi(λi + ζ )αmin(A)β−1
.

The inclusion of a constant Bi does not impact the stability
region (but does increase T ). Also, multiplying A by a con-
stant cwill cancel out, and have no effect on T . Modifying Ai
does influence T , as then more service is allocated to flow i,
leaving less service for other flows. The smallest T is reached
when all Ai are equal. The ζ parameter adds a constant to the
arrival rates λi. As a typical ζ is small, its influence on T is
limited.

We can obtain the MD scheduler for β = 2, α = 2, A = 1
and B = 0, resulting in

TMD =
1
ε

√√√√∑
i

minj(µj(λj + ζ )2)

µi(λi + ζ )2
.

For the MW scheduler (β = 2 and α = 0) we get

TMW =
1
ε

√
minj(µj)∑

i µi
.

Both schedulers are thus clearly stable when λ ∈ Cα as
the upper bound exists. Additionally, for the MW scheduler,
we also have throughput optimality (i.e. stability region is
maximal) asR0 forms a convex hull of the rate region. In [34]
it is shown that there exists a γ > 0, such that the scheduler
with α < γ also is throughput optimal. This γ depends on
the shape of the rate region. For a convex rate region γ = ∞,
and thus all α-fair schedulers are throughput optimal.

Finally, we can also observe that limζ→∞ T = TMW ,
i.e. we can make any of the schedulers approach the MW
scheduler by increasing ζ (and thus making it throughput
optimal).

APPENDIX B
PROOF OF STABILITY FOR TIME-DEPENDENT A AND B

Proof: Analogous to the proof of Theorem 1, we define

F(u) =
∑
i

µ−1i (λi + ζ )−α

β

(Ai(t)ui + Bi(t))β

Ai(t)
,

G(u) =
∑
i

(Ai(t)Xi(t)+ Bi(t))β−1
(ui + ζ )1−α

1− α
.

Differentiating F(X(t)) with respect to t results in

Ḟ(X(t)) =
∑
i

(λi + ζ )−α(Ai(t)Xi(t)+ Bi(t))β−1

·(λi − Ri(t))+ a(t)+ b(t)

where

a(t) =
∑
i

(λi + ζ )−αµ
−1
i Ȧi(t) · (Ai(t)Xi(t)+ Bi(t))β−1

·

(
Xi(t)
Ai(t)

−
Ai(t)Xi(t)+ Bi(t)

A2i (t)β

)
and

b(t) =
∑
i

(λi + ζ )−αµ
−1
i Ḃi(t) ·

(Ai(t)Xi(t)+ Bi(t))β−1

Ai(t)
.
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Repeating the same inequality steps as in the previous proof,
we arrive at

Ḟ(X(t)) ≤ −θ(t)F(X(t))
β−1
β + a(t)+ b(t).

In the fluid system considered here, a(t) and b(t) depend
on Ȧi(t) and Ḃi(t) respectively, which are both undefined for
all t ∈ N (where they change value) and 0 for all other t .
Thus, we can reduce the system to one in which the weights
are constant for the duration of a slot. At the slot boundaries
t ∈ N the function F(X(t)) possibly makes a jump, due to the
weights changing. However this does not impact the queue
sizes themselves. We have thus that Ḟ(X(t)) ≤ 0, making the
system stable. �
As before, we can rewrite the equation to obtain

F(X(t)) ≤

(
F(X(0))

1
β − η

t∑
s=0

min(A(s))
β−1
β

)β

where η = ε β

√
mini(µ

−1
i (λi+ζ )−α)
β

. This implies that the smaller
min(A(s)) is with respect to max(A(s)), the longer it can take
to reduce all queues. If min(A(s)) = max(A(s)),∀s, then the
result is reduced to the previous theorem, as A is scaling-
independent.
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