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ABSTRACT A common problem for machine vision applications is uncontrolled illumination conditions
that cause undesired artifacts on sensorial data. For instance, quality inspection using color cameras, while
having wide industrial application, requires manual illumination adjustment and is severely affected by
external lighting sources and the physical properties of the inspected object. To overcome this problem,
we propose an autonomous illumination solution, that adjusts illumination via a Deep Reinforcement Learn-
ing (DRL) agent following a goal-oriented reward that takes into account image entropy and specularity.
The system is validated in a challenging vehicle documentation use case where vehicle images are captured
under various lighting conditions using a camera and an in-house built illumination system. The DRL agent
learns to control illumination levels directly from high-dimensional visual inputs bymapping the interactions
from the environment to the reward-driven control actions of the illumination system, targeting an optimal
illumination zone even under the appearance of abrupt illumination changes in the environment.

INDEX TERMS Artificial intelligence, autonomous systems, computer vision, deep reinforcement learning,
illumination control.

I. INTRODUCTION
Reinforcement Learning (RL) has substantially benefited
from the recent achievements of Deep Learning (DL) meth-
ods which provide an efficient way to learn complex rep-
resentations in various tasks including pattern recognition
and computer vision. The recent advances in DL opened a
research path for improving RL by deploying DL networks as
complex functions approximators. Thus, efficient representa-
tions of high dimensional inputs can be successfully derived
from Deep Reinforcement Learning (DRL) agents proving
remarkable performance in benchmark problems [1]–[3].
However, the research in the application and implementation
of RL in real-world problems has been mainly restricted
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by the difficulty of setting up the experimental environment
which may in some cases be significantly complex or time
demanding while the stability of RL in control tasks is con-
sidered an open research issue [4].

Illumination control is one of the most critical aspects
for machine vision inspection applications where the inspec-
tion environment should be thoroughly analyzed in terms of
reflections, multiple lighting sources, position of the lighting
sources and equipment requirements [5]. Up to now, in indus-
trial machine vision applications, illumination conditions are
manually set up based on human experience, following a
trial and error process. Automated solutions exists mainly for
energy-saving in smart road lighting applications [6]–[8] or
other applications that aim at optimizing lighting conditions
in indoor environments [9]–[12]. In terms of lighting tech-
nologies, Light emitting diodes (LEDs) have been adopted
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in the recent years by various sectors including the industry,
due to the considerable efficiency and performance over older
lighting systems [13] and have been the main components of
many smart lighting systems [14].

In our work, we provide an autonomous illumination
system based on the DRL paradigm and guided by image
quality. Existing research on learning-based methods for
controlling and adjusting image quality, mainly focus on
learning to expose, retouch or enhance photos [15]–[17]
using image processing techniques including salient feature
extraction which is a widely adopted methodology in vari-
ous research areas [18]–[22]. Furthermore, most evaluations
for these works are performed on benchmarks of scenery,
human scenery or other image sceneries captured under fixed
light sources such as natural external lighting or typical
indoor light sources and aim at estimating or predicting
illumination [23]–[25].

In automotive industry, documenting the condition of vehi-
cle’s surface under optimal ambient light is crucial for qual-
ity control since unsuitable lighting may lead to undesired
reflections and shadows that make visual inspection tasks
unreliable and inaccurate. Furthermore, in fleet management,
monitoring and tracking the vehicles’ surface under reliable
lighting conditions is important for scheduling maintenance
and ensuring roadworthiness. In this direction, our work pro-
poses an autonomous system that adjusts illumination level
during color images recordings of vehicles, based on pre-
defined quality criteria. The system we propose comprises a
vision sensor to capture the scene, a controllable illumination
system to adjust the lighting conditions under which the scene
is captured and a DRL agent deployed on a computation unit
to control illumination. This work aims to bridge the gap in
the literature between DRLmethodologies and smart lighting
control applications.

The main contributions of our work can be summarized as
follows:
• We proposed a system architecture to explore the use
of external illumination sources in a controlled scene,
using LED luminaires and common low-cost electronic
equipment.

• We investigated the control of image quality by adjust-
ing the light projected on the scene. For this purpose,
we defined an image quality metric in order to build a
reward strategy for a DRL framework.

• We adjusted the Deep Q-Learning approach and
explored the optimal set of parameters to achieve con-
sistent results.

II. RELATED WORK
Methods based on DRL enable DL as functions approxima-
tors to scale to complex control tasks and provide efficient
frameworks to build autonomous systems. DL frameworks
have reached smart manufacturing providing advanced com-
putational methods to improve manufacturing systems’ per-
formance [41] while demonstrating efficiency in monitoring
industrial processes [42]–[46]. With the proliferation of DL

methods there has been substantial progress in DRL with
many successful applications in various domains including
smart manufacturing and robotics, autonomous driving and
energy.

Traditional tabular Q-learning approaches are used in
experiments with low-dimensional states with the goal to
learn the action-value function Q(s, a) which measures the
expected reward from taking any particular action at any
state. Deep Q-Networks have been recently used to han-
dle high dimensional inputs. In [47] authors introduce the
potential of DRL application in smart grids while in [30],
a goal-oriented application of DRL for the efficient schedul-
ing optimization of electricity consumption in residential
buildings is examined, using Deep Q-Learning and Deep
Policy Gradient methods. An extension of DRL as a semi-
supervised paradigm is proposed in [31], focusing on the
problem of indoor localization in the Internet Of Things
(IoT) and smart city applications, combining labeled and
unlabeled data deploying a deep variational autoencoder for
learning the best action policies. In the same domain, a DRL-
based framework is proposed in [32] for building an energy
management and scheduling agent with the goal of long-term
energy efficiency in an IoT environment. A Deep Q-Network
detection system is introduced in [33] to learn the optimal
defending policy against data integrity attacks in smart grids
and is evaluated for its detection accuracy and speed. A Dou-
ble Deep Q-Learning network (DDQN) has been deployed
in [34] to provide an efficient solution to the optimal active
power dispatch problem. A recent work [48] examines the
decision making potential of DRL in the autonomous IoT
systems while in [49] the proposed DRL-based agent learns
the optimal policy to deal with caching-based IoT data prov-
ing better performance in simulation results than the baseline
policies.

In the autonomous-driving domain, authors in [50] explain
the practical challenges in the autonomous-driving appli-
cations which are mostly built on simulated environments.
In a recent work, [26], a Deep Q-Learning process is devel-
oped to find the optimal driving policy for the success-
ful on-ramp merging for the automated driving systems
(ADS) using a Long Short-TermMemory (LSTM) network to
model the interactive environment. The performance of Deep
Q-Network and Deep Deterministic Actor Critic algorithm
has been examined in [27], for the two main categories
of RL, discrete actions and continuous actions categories,
evaluating the methods on a car simulator for the lane-
keeping scenario in autonomous driving. In the same domain,
a DRL agent, [28], for learning safe lane changing behavior
and an attention mechanism is examined to boost the per-
formance while the system is validated in a car simulator.
In the domain of autonomous urban driving, the work of [29]
proposes a Controllable Imitative Reinforcement Learning
(CIRL) approach using Deep Deterministic Policy Gradient
(DDPG) algorithm to achieve state of the art success in
driving benchmark tests and generalization ability on diverse
and unseen cases.
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TABLE 1. Summary of related works for applications of deep reinforcement learning and smart lighting.

In smart manufacturing and robotics, frameworks based
on RL have been studied to offer solutions to complex and
hard to engineer behaviors [51], [52]. Minimizing human
intervention and hard-engineering in enabling the learning
of autonomous robotic systems has been an open goal in
robotics, where manipulation skills are usually hard to train
and require a level of supervision [35]. In [36], authors pro-
pose and validate a skill acquisition method based on DRL
for industrial robotics, to provide a data-driven autonomous
solution for the assembly process where the environmen-
tal uncertainty is a significant factor. For a similar task of
skill acquisition of industrial robotics, authors in another
work [37] deploy Recurrent Neural Networks (RNN) for
training a DRL agent in order to learn to take the optimal
actions by observing sensorial data from an 7-axis robot arm
and provide an autonomous solution for a high precision
fitting task. In manufacturing, recent research focuses on job
scheduling frameworks to automate production and deploy
a Dueling Double Deep Q-Network with prioritized replay
to learn the best policy of actions for decision-making [38].
In [39], the authors adjust a multiclass DQN network for job
shop scheduling problems on an edge computing framework

while in [40] a semiconductor production scheduling case
is studied by deploying multiple cooperative DQN agents
for the optimization of the production in an autonomous
manner. In order to create a taxonomy of DRL algorithms
and intelligent illumination, we summarize the related works
that focus on real-world applications of DRL, mainly for use
cases of the industrial sector, in Table 1.

III. PROPOSED SYSTEM
A. ILLUMINATION SYSTEM AND DATA COLLECTION
In order to build a controlled environment in terms of the
lighting conditions, we used two dimmable luminaires with
LED (Light-Emitting Diode) [53] lighting technology with
luminous power of 22,500 lumens each, in an environment
where only the light emitted from the controlled lighting
sources appears on the experimental scene. We selected the
luminaires based on the high luminous power, the wide
beam angle and the ability to be controlled with a DALI
(Digital Addressable Lighting Interface) controller. DALI is
an industry-standardized protocol specified in International
Electrotechnical Commission (IEC) 62386 [54], [55] and is
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FIGURE 1. In (a), the in-house built electronic device which serves as a DALI communication bridge between the
control PC and the luminaires. Indicative images captured under the minimum and maximum illumination levels
from the luminaires are depicted in (b). On the right, in (c), we can see a schematic picture of the metallic structure
that was used to mount the luminaires and the camera. In (d), the overall processing blocks of the system are
illustrated.

commonly used for lighting control in smart illumination
applications that require dimming simplicity and low light
pulsation during brightness adjustment [56]. The developed
illumination system comprises two LED luminaires and an
in-house built DALI communication interface device, which
was developed using an Arduino microcontroller. The com-
munication device which connects the computer and the
luminaires using DALI protocol are depicted in Figure 1a,
where we see the endpoint wiring for the computer and the
luminaires. Each of the luminaires has 255 possible dim-
ming levels. The first 80 were not taken into consideration
during the experiments since the difference between these
levels was not significant. We defined 20 dimming lev-
els {0, 80, 90, 100, 110, 120 . . . 240, 250, 254} for each lamp
and we used the combination of the levels from the two
luminaires which equals to 400 illumination levels. Indicative
images captured under the lowest and highest setting of the
illumination levels are depicted in Figure 1b.
The lighting system was placed in an underground indoor

parking area where the external lighting sources are limited

to the uneven illumination provided by fluorescent lumi-
naires that are commonly used for lighting such areas. The
main challenge in such environments, is the arbitrary and
uneven distribution of ambient light emitted on the vehicle
as captured from the camera’s viewpoint. This uncontrolled
brightness combined with the complex geometry and high
specularity of the vehicles’ surface causes undesired reflec-
tions and saturated regions on the images. The luminaires and
the camera were mounted on a metallic structure underneath
which the vehicle was parked in a fixed position. The metallic
structure functions as a support frame for the luminaires and
the camera and its modular construction allows for more
luminaires or cameras to be added to the system in different
positions. A schematic picture of the experimental setup is
illustrated in Figure 1c, where the two luminaires are shown,
mounted on the vertical and horizontal metallic pillars so
that we can simulate light emitted from two perpendicular
directions, from the side and from above. As can be seen
in Figure 1d, the environment of the vehicle is captured
visually by the camera sensor while the illumination module
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is used to act and change the lighting conditions of the
environment.

During data collection, we used the DALI control inter-
face to digitally control the luminaires from the computation
unit using an Application Programming Interface (API) [57]
based on open-access Arduino library [58]. The commands
implemented in the API included increasing, decreasing and
setting a fixed illumination level for the luminaires. For each
luminaire, a total of 20 illumination levels were used during
data collection so 400 images from the combinations of the
illumination levels from the two luminaires were acquired.
To augment the dataset, 3 images for each combination level
were captured, collecting in this way 1200 images for each
car. The ambient light from the environment was minimized
by turning off the parking’s lights, so that we can examine the
effect of only the controllable light sources and safely assume
that the quality of the picture, in terms of external lighting
conditions, is only affected by the lighting system.

B. NETWORK ARCHITECTURE AND
TRAINING PROCEDURE
The experimental setup was designed to investigate the appli-
cation of DRL using the illumination system to provide an
autonomous system that is optimized by experience-based
learning during interaction with the environment based on
Q-Learning method.

1) PROPOSED QUALITY METRIC AND REWARD STRATEGY
The first most crucial step for training a RL agent is to define
the way that each new state, which in this work is observed
by the image captured by the camera, returns a reward signal.
For this purpose, we defined an image quality metric that
incorporates image’s entropy information as the first compo-
nent and luminance intensity as the second component. The
entropy component provides an objective statistical measure
of the average information content that can be extracted from
the image and has been examined in literature for assessing
perceptual quality of images [59]. The luminance intensity is
used to provide the information of the effect of the external
lighting in the captured images.

The entropy information is extracted by the image his-
togram for each change of the external illumination level and
the luminance intensity level is calculated directly from pixels
with high intensity values in the ‘L*’ lightness component
after converting the RGB (Red, Green, Blue) image to the
CIELAB color space which is a common color system in
industrial vision, closest to human perception [60], [61].
Converting the images from RGB to CIELAB color space
provides a different color space where color is expressed
by three values, the Lightness value ‘L*’, and ‘a*’, ‘b*’
that combine the colors red, green, blue and yellow. For our
experiments, the separate component for lightness is impor-
tant since we investigate the images in terms of illumination
conditions. For the image entropy we used standard entropy

equation defined as

E =
n−1∑
i=0

pi log2(pi) (1)

where p are the histogram counts and n corresponds to the
256 levels of 8-bit image. The luminance component is cal-
culated as

L =
1
P

P∑
p

1l(p)≥thres (2)

where 1 is the indicator function of the set of pixels whose
luminance intensity level is above the threshold thres, P is
the number of pixels, l(p) is the luminance intensity (L*) of
pixel p. The luminance intensity (L*) is normalized in range
[0, 255] and the threshold we used for our experiments was
the value of 230 which was perceived as a saturation point by
user experience.

In Figure 2d, we see the entropy component of the equation
as observed in the images from the dataset in the order of
increasing illumination level from the luminaires. The value
of the image entropy is increasing as more light is emitted on
the scene from the illumination system and more information
from the image can be extracted. In Figure 2b, we see the
luminance component of the equation which as expected
illustrates the increasing trend of intensity for images cap-
tured under increasing illumination levels.

In order to incorporate perceptual criteria for the image
quality we roughly approximate user experience by the feed-
back of 10 users that selected the illumination levels that
were perceived as optimal. Based on this, we weight the lumi-
nance intensity component by a weight function representing
the normal distribution from user’s feedback. Thus, images
acquired under very low or very high illumination levels
contribute less to the luminance component. In Figure 2c,
we see the estimated normal distribution from the users’,
regarding the illumination levels of images that are perceived
to be better in terms of brightness. The normal distribution,
N (µ, σ 2) is estimated with mean µ = 205.3 and standard
deviation as σ = 20.2. We can observe that the mean of
the distribution corresponds to values close to the combined
illumination level ‘200’ while lower or higher levels are given
lower weights. So if fN is the probability density function
of N , and Ei is the level of the external illumination system
for image i, the weighted luminance component (2) is calcu-
lated as

Lw = fN (Ei)Li. (3)

Moreover, we introduceweights to the entropy and luminance
components, giving more influence to the information from
the luminance component and the equation we used for the
image quality measure is defined from (1), (3) as

q = w1E + w2Lw + c (4)

where c is a shifting constant so that we can define two
regions in the quality function q ≥ 0 and q < 0 and
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FIGURE 2. The defined quality metric (a) combines information from image’s entropy (d) and luminance intensity
values (b). (c) A rough estimation of a weighted normal function that provides weight factors for each illumination
level obtained after asking 10 users to select in a qualitative manner which images are perceived as better in terms
of brightness.

FIGURE 3. Reward strategy followed for time step t giving positive
rewards only to states that the quality metric is calculated greater than
zero.

w1,w2 the weights of the components. For our experiments,
we qualitatively selected the values 0.3, 0.7 for w1,w2 to
produce a weighted average between entropy and luminance
intensity. Finally, we define our reward function based on the
quality metric equation as

reward =

{
1, if q ≥ 0
0, otherwise

(5)

giving only positive rewards to images for which the quality
metric is q ≥ 0 as depicted in Figure 3. The final cal-
culated quality metric can be observed in Figure 2a where
the diagram plot of the quality metric against images of
sorted illumination levels is depicted. The quality threshold
q ≥ 0 which is used to assign the reward-score to the
image, is marked in dashed red line. Marked in the yellow
region of the Figure 2b and 2d are images captured under
very low illumination levels, for which both the entropy and
the luminance intensity are very low. On the red regions of
the graphs, the entropy is increasing and finally converging,
while the luminance intensity reaches saturation levels.

The oscillations that can be noticed in the diagrams of
entropy (Figure 2b) and luminance (Figure 2d) are due to

their non-linear relation with illumination levels. This non-
linearity is caused by the complex geometry of the vehicle
and the two different illumination sources (Figure 1c). Con-
cretely, for the same cumulative illumination, different illumi-
nation setups on the lamp have a very different effect in terms
of reflections and specularities. Each of the luminaires emit
light that is distributed on surfaces of the vehicles with dif-
ferent specularity such as the wheels and the windows. As an
example, in Figure 2b, two images are depicted, capturedwith
the same cumulative illumination level but having a differ-
ent illumination effect on luminance. Therefore, a cumulative
illumination don’t accurately reflect the contribution of the
illumination levels of each lamp to the total light emitted on
the image. Nonetheless, this assumption significantly simpli-
fied problem formulation, while experiments showed that it
didn’t affect the convergence of the network.

For the green zone in Figure 2a, combining information
from the two components as described from (4), the region
above the threshold corresponds to images with high entropy
values yet illumination levels that don’t cause severe reflec-
tions and saturation. Indicative images from different illu-
mination levels are illustrated in the figure to show how the
reward strategy follows the quality metric criteria to benefit
images close to the values as defined by the components
of the quality metric’s equation. Thus, the users’ feedback
provides a contribution to the reward signal which is used for
the training phase.

With the proposed quality metric, we adequately model the
perceptual effect of luminance intensity. While the proposed
metric is only a rough approximation of human perception
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on image quality, it allows us to define an efficient reward
strategy for our DRL agent.

2) DEEP Q-LEARNING APPROACH
In our experiments, we adopt Deep Q-Learning approach [1]
which uses a DL network, in our case a 2D Convolutional
Neural Network (CNN), to approximate the Q action-value
function given color images, representing the states of the RL
environment. Compared to the Q-Learning algorithm, which
can be used to estimate the values of the state-action pairs
in a tabular manner, using a DL network to approximate
the Q function provides the ability to the agent to handle
high-dimensional inputs which in our case are color images.
The environment which consists of the current image of the
vehicle, is fully observable to the DRL agent and each state-
image is an image captured under a certain illumination level
without incorporating any movement either from the lighting
system or the camera. Each transition from one state to the
next depends only on the current state and action, which is
a set of illumination control actions, and does not depend on
past transitions. Additionally, our problem regards the con-
tinuous task of repeatedly adjusting the lighting conditions
of the environment without a pre-defined terminal state and
therefore the process can be formulated as an infinite horizon
Markov Decision Process (MDP).

The MDP of our task is defined by the tuple (S,A,P, γ,R)
where S is a set of states of images I , S = {Ii}, A is
the set of actions A = {increase, decrease, no action}, P is
the state transition probability from the previous state to the
next, γ is the discount reward factor and R is the reward
function. To solve the underlying MDP, we use model-free
RL algorithm based on Q-learning which does not require
to build the explicit model of the environment using the P
transition probability and we deploy Deep Learning to handle
the high-dimensional visual inputs. Thus, we aim at searching
for a policy that optimizes a performance criterion defined as
γ -discounted criterion [62]. The policy aims at maximizing
the expected cumulative sum of rewards, E[r0+γ r1+γ 2 r2+
· · ·γ 3 rt +· · ·|s0], where s0 is an initial state and rt the reward
at time step t .

The two main techniques used in Deep Q-Learning Net-
work (DQN) that address the instability problems, due to the
strong temporal correlations that usually appear when train-
ing the agent, are the experience replaymemory and the target
network. Experience replay memory is a circular memory
buffer that stores the transitions for each step that an action
is taken and a new state is observed from the environment.
The target network plays the role of the fixed network so
that the Temporal-Difference (TD) error is calculated on a
fixed target. The weights of the target network are updated
at regular intervals to match the weights of the on-line policy
network [1]. In Procedure 1, the training procedure using
DQN algorithm and a user defined image quality metric is
analyzed. The algorithmic steps concerning DQN algorithm
are adopted from the main algorithm [1] and are not explicitly
analyzed but are written for completeness to explain how

Procedure 1Training ProcessUsingDQNAlgorithm and
a User-Defined Image Quality Metric
Input: Vehicle color images under different illumination

conditions
Rsize = 1000, num_episodes = 1000, num_steps =
500, γ = 0.99;
Initialize networks targetNet(x; θtarget ),
policyNet(x; θpolicy);
Initialize experience replay memory R;
for episode← 1 to num_episodes do

Reset environment;
for step← 1 to num_steps do

select action astep with ε − greedy strategy;
act on illumination level based on astep:
{increase, decrease, no action};
calculate image quality metric using (4);
compute reward using (5);
store transition to R memory buffer;
sample a batch from experience memory:
B = {Ri}Ki=1;
foreach (s, a, s′, r) ∈ B do

calculate temporal difference error using
Bellman equation δ =
QpolicyNet (s, a)− (r+γ max

a
QtargetNet (s′, a));

calculate Huber Loss

L(δ) =

{
1
2δ

2, if |δ| ≤ 1
|δ| − 1

2 , otherwise

minimize
1
|B|

∑
b∈B

Lb(δ);

FIGURE 4. Training strategy of the DRL agent using experience memory
technique and a target network for the optimization.

we adjust the main algorithmic steps with a user-defined
reward strategy designed for our experiments. The parameters
including the experience memory size, the weight factors,
the number of episodes and steps and threshold for the lumi-
nance intensity are selected through experimentation with
different setups in order to find the optimal configuration.
These setups for the DQN parameters were explored through
grid search, considering for the experience memory size
the values {800, 1000, 10000}, for the number of episodes
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FIGURE 5. The network architecture used to approximate the Q action-value function for the DQN agent for the
actions that control the illumination namely ‘increase’, ‘decrease’, ‘no action’ . The 2D-CNN receives color images as
input which are propagated to the network’s layers and the final outputs of the network are the three nodes that
approximate the Q action-value for each of the three actions.

TABLE 2. Optimal parameters for the CNN network and DQN training
procedure.

the values {200, 500, 1000}, for the number of steps the
values {100, 500} and for the gamma parameter the values
{0.97, 0.98, 0.99}. The optimal values for the parameters are
depicted in Table 2.

3) ARCHITECTURE OF THE PROPOSED AUTONOMOUS
ILLUMINATION SYSTEM
The schematic diagram of the training strategy that was
followed is depicted in Figure 4. For each new state of the
environment which is represented by an image captured under
certain illumination level, a reward-score is assigned which is
used by the agent to update the network’s parameters and gen-
erate Q action values approximations. The target network’s
parameters, are only updated after a defined number of steps
to match the Q-network parameters, θ− := θ .

For each new observation, a reward-score is assigned to
the image based on the image quality metric. Each of these
interactions with the environment are stored in the experi-
ence memory which is used to train the DQN agent. The
DQN algorithm receives random samples from the experi-
ence memory and uses the target network for the optimiza-
tion whose weights are normally frozen and is regularly
updated with the parameters of themain policy network of the
agent.

For our experiments, the target network was updated every
10 episodes which was found to be the best strategy for the
stability of the training. Since the agent is trained on visual
inputs using images from the cars, a 2D-CNN architecture,
depicted in Figure 5, was used to approximate the Q action
values. The network receives color images of 224×224 width
and height from the cars and consists of four convolutional

layers followed by one fully-connected layer (FC). The out-
puts generated by the network are approximated Q action
values for each of the actions defined for the experiments
which are increase, decrease, no action.
The design of the network, in terms of the number of

convolutional layers, fully connected layers and network’s
parameters, was chosen by multiple experiments in order
to have the best trade-off between computation time and
results’ quality. For this purpose, we used grid search to
explore the combination of network hyper-parameters and
we monitored the learning process using the reward scores
achieved to conclude the optimal combination. For the
number of convolutional layers we considered the values
{3, 4, 5, 6}, for the number of filters for each layer the values
{16, 32, 64, 128, 256} and for the number of the nodes of the
fully connected layer the values {64, 128, 256}. The optimal
combination of the network’s hyper-parameters are depicted
in Table 2. The computer resources used for the experiments
include 64GB RAM memory, Nvidia GTX 1080Ti 11GB
GPU and Intel i7-8700K processor and the computing time
for training the agent was 8 hours and 50 minutes.

IV. RESULTS
To evaluate the proposed system, we used a total
of 3600 images collected from three cars and we randomly
split the dataset into train and test subsets in 2:1 ratio,
resulting in 2400 images for train and 1200 images for test.

For the training phase, the algorithm was executed for
1000 episodes and for a maximum of 500 steps for each
episode or terminated earlier if the agent selects an action that
represent an inapplicable transition. The number of episodes
and number of steps were selected with experimentation to
achieve the best rewards. For each episode, the normalized
score, which represents the average rewards achieved during
the number of steps, is used to monitor the performance of
the training through the episodes and is depicted in Figure 6.
For the testing phase, we used the test dataset of 400 images

for each car which represented the testing environment. The
trained agent was run for 2000 iterations so that we can
examine the oscillations between the transitions. To test
the stability we insert at regular intervals images with very
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FIGURE 6. Average rewards monitored during the training phase for each
episode and for the number of steps used. We notice the trend of
increasing average of the rewards received through the episodes.

FIGURE 7. Time plot for 2000 iterations of the DRL agent acting on the
environment’s lighting changes for car ‘A’ while maintaining the stability
of selecting the right action to remain inside in the target illumination
zone.

high or very low illumination levels simulating an abrupt
change in the environment and examine the agent’s behavior.
In Figure 7, this simulated process is depicted where we see
the plot of the illumination level of the image as observed by
the environment after the agent selects an action.

Concretely, starting from an imagewith a random illumina-
tion level at time step ‘0’, the agent receives a random image
from the dataset as the initial state of the environment, selects
an action and the environment generates the next state which
is an image with increased, decreased or same illumination
based on the agent’s action. Then, the agent receives the next
state and selects an action, a process which is repeated for
2000 iterations. The target zone indicates the range between
the illumination levels as defined by the user-feedback to
have better image quality in terms of lighting conditions.
The red vertical lines in the plot denote the time instants
where a simulated abrupt illumination change is forced dur-
ing the interaction with the environment. After these instants,
the agent select actions that lead to the target zone with
low oscillations between transitions. We notice that based

on the visual input, the agent selects actions that control the
illumination system so that the brightness of the environment
is adjusted to optimal levels.

The simulation results for the other cars are depicted
in Figure 8 where the agent, similarly to car ‘A’, efficiently
selects actions for the illumination system that restores the
illumination to levels defined inside the optimal target illu-
mination zone. During the evaluation phase, the illumina-
tion step that is added/subtracted to the current illumination
level is fixed and corresponds to the effect of the actions
increase,decrease.

The number of transitions that are required to restore
abrupt illumination changes to the optimal levels, depend
on the illumination step used for the experiments, which is
the change in the dimming level of the luminaires. Selecting
larger or smaller step, that leads to faster or slower con-
vergence to the target, depends on the application design
requirements. For our architecture, instability issues appeared
when experimenting with larger or smaller steps.

In Figure 9, we have a closer look at the time steps around
an abrupt change that was inserted during simulation for the
three cars. Each action indicator corresponds to the action
the agent selects after observing the current image from the
environment. We notice that after approximately 10 transi-
tions from the 585 time step, after which the selected actions
corresponds to ‘decrease’ the level, the agent is able to restore
the illumination level to the target illumination levels defined
in the target zone. Each of the transitions corresponds to a
fixed step in the change of the illumination level, the same
step defined during the training phase. The required time that
the lighting system needs to change the illumination level,
added to the time that the agent needs to receive an input
and generates an output, is approximately 0.5 seconds. Thus,
the 10 transitions after which the system converges to the
target zone, corresponds to approximately 5 seconds. When a
very high illumination change appears, which can be consid-
ered as an abrupt change in the lightness of the environment,
the agent selects actions decrease (‘-1‘) which decrease the
illumination levels of the luminaires by the defined fixed
step. After the next 10 steps approximately, during which
the illumination levels are decreasing, the brightness of the
images decreases as an effect of the illumination decrease
from the luminaires. The agent converges to selecting action
no action after reaching the target zone.

V. DISCUSSION AND LIMITATIONS
The number of transitions as can be visualized in Figure 9 cor-
responds to approximately 5 seconds duration which includes
the time needed for the luminaires to increase their illumina-
tion level and the time needed for the trained agent’s model to
produce the output, times the 10 transitions required to reach
stability levels. It should be noticed, that the response time of
the luminaires consumes approximately 4 out of 5 seconds of
the time needed for restoring the levels while the lightweight
network architecture we used consumes the least time. This
delay time does not match the typical response time of the
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FIGURE 8. Time plots of the DRL agent acting on the illumination system to change the environment’s
lighting for car ‘B’ and car ‘C’ in (a) and (b) respectively. Notice that the agent learns to change the
illumination correctly to match the image quality criteria set during the training phase.

FIGURE 9. Indicative example focusing on the time steps 583-597 where we examine the behavior of the agent when an
abrupt change in the lighting conditions appear. The agent receives the image from the camera as the current state and
selects an action which in the figure is indicated as ‘+1’ for increase, ‘−1’ for decrease and ‘0’ as no action.

DALI system, as a result of the suboptimal hardware imple-
mentation, since our solution in terms of physical hardware
development opted for a low-cost and easy to build hardware
implementation using common electronic components.

Thus, further improvement can be made on the proposed
architecture, aiming at time-optimal adjustments, by using
better physical interface and deploying different electronic
design and programming. Another limitation of this work is
the size of the dataset used, which should be further expanded,
with more vehicles of different colors and surfaces, captured
by multiple views, so that a more generalized solution is
examined. Moreover, the quality metric that we defined,
considers only entropy and luminance indices as subjective
criteria of the quality of the image, which is suitable for the
scope of this work but is limited for other use cases because it
does not incorporate other factors such as contrast and texture
which is commonly examined in image quality assessment
studies [63].

Moreover, further experiments should be carried out to
investigate the proposed system on a larger dataset using
different image quality methodologies and different views
from the vehicles so that to explore the potential of the system
for quality inspection in automotive industry applications.

Our proposed quality metric approach can be compared
to a recent work [64] where the authors studied a defect
inspection case and defined an image quality assessment
score by combining three indices, image visibility, image
visibility distribution and overexposure, assigning to each one
a defined weighting coefficient. The goal of their study is to
adjust the brightness of a lighting source and examine how
the accuracy of deep learning models for defect inspection is
improved, by improving the quality of the images. The results
of their study proved that the performance of the Deep Learn-
ing model was significantly improved for images with higher
quality score, as defined by the authors. The performance
wasmeasuredwith F2-score showing a performance increase,
when the worst and best quality images were used, from
47% to 80%. Compared to this study, in our work we focus
on examining more thoroughly the adjustment of the image
quality by providing an autonomous illumination system that
is controlled directly by visual input signals from the images
using DRL. For this purpose, we defined a different quality
score based on the entropy and luminance of the images but
also guided by human opinion feedback.

Therefore, the main outcomes of the conducted experi-
ments can be summarized as follows:
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• We demonstrated an application of DRL in controlling
an illumination system for vehicle documentation based
on a user-defined quality metric.

• The trained DRL agent was evaluated on the stability to
choose the correct actions that lead to the target illumina-
tion zone set by the defined qualitymetric while showing
the ability to cope with abrupt illumination changes in
the environment.

• The lightweight 2D-CNNmodel that was used consume
the least of the total response time required for restor-
ing the stability levels which reflects the potential to
improve the physical interface of our system in a time-
optimal manner in order to minimize the system’s total
response time.

VI. CONCLUSION
In this work, we proposed an autonomous learning-based
system to control an illumination system, adopting the Deep
Q-Learning algorithm by introducing a user-defined image
quality metric to build a reward strategy based on information
extracted from image entropy and luminance intensity. The
illumination system was developed using LED luminaires
and in-house built components for the communication with a
programming interface. The developed DRL agent is able to
efficiently adjust illumination levels of the system to meet the
image quality criteria set by the reward strategy.We tested the
agent to run for a number of iterations, simulating a real-time
process, showing stability even when abrupt illumination
changes appear in the environment. The basic limitation of
our work was the small dataset we used from three cars and
from a single view from each car. It is expected that capturing
images from a large number of vehicles, from different view-
points, would require a different network architecture design
to compensate for the increased complexity, created by the
diverse specularities from the different parts of the vehicle.
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