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ABSTRACT The Granger test is one of the best known techniques to detect causality relationships among
time series, and has been used uncountable times in science and engineering. The quality of its results
strongly depends on the quality of the underlying data, and different approaches have been proposed to
reduce the impact of, for instance, observational noise or irregular sampling. Less attention has nevertheless
been devoted to situations in which the analysed time series are irregularly polluted with missing and extreme
values. In this contribution I tackle this problem by comparing four different data pre-processing strategies
and evaluating their performance with synthetic time series, both in dyadic tests and functional network
contexts. I further apply these strategies to a real-world problem, involving inferring the structure behind the
propagation of delays in an air transport system. Finally, some guidelines are provided on when and how
these strategies ought to be used.

INDEX TERMS Granger causality, missing data, functional networks.

I. INTRODUCTION
The Granger causality test [1], developed by the economy
Nobel Prize laureate Clive Granger on top of time series pre-
diction models proposed by Norbert Wiener [2], is one of the
best well-knownmetrics for assessing predictive causality [3]
between elements composing a system. It is based on the anal-
ysis of time series, and on a very simple and intuitive assump-
tion: given two elements A and B, B is causing A if including
information about the past of B helps predict the future of A
- as, in other words, B contributes in defining the future of A.
Since its introduction, this test has been applied to uncount-
able problems, from economics [4]–[7], engineering [8],
sociology [9], biology [10] or neuroscience [11]–[13];
and has been extended to handle different situations and types
of data [14]–[17].

As is ubiquitous in data analysis, results obtained by the
Granger causality test are as good as the data supporting them.
Any practitioner working on real-world problems knows that
data are seldom (if ever) perfect; but that instead they usu-
ally contain different types of artefacts. To illustrate, and
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following the previous examples, financial markets can close
because of local public holidays; when merging data from
different countries, this may result in gaps in the time series.
Similarly, any application of Granger causality in engineer-
ing is based on recording variables from sensors, which are
subject to measurement and additive noise and that may be
sampled at a frequency not corresponding with the natural
one of the system. Finally, biological data cannot always be
recorded, resulting in irregularly-sampled time series.

The challenges posed by these data limitations in the
application of the Granger causality test have been the focus
of previous works in the literature. Specifically, researchers
have proposed solutions to improve the detection of causality
under noise [18]–[20], linear transformations and subsam-
pling [21], irregularly sampled time series [22], and equidis-
tant missing data [23].

Less attention has been devoted to the problem of how
Granger causality behaves under (irregular) missing and
extreme values. Note that irregular pollution of data is a
scenario more common that, for instance, a regular one,
as studied in [23]. For the sake of simplicity, here missing val-
ues are defined as those measurements that are not available
and are thus encoded by zeros; and extreme values as those
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that fall beyond the expected range of normal measurements.
Several general methods, i.e. not specific for Granger causal-
ity, have been proposed in the past to handle such values.
These include, for instance, deletion, i.e. simply deleting
those instances containing one or more missing data [24];
interpolation, in which missing values are supposed to be a
function of the neighbouring (non-missing) ones [25]; or ran-
dom replacement, in which missing values are filled with
random numbers drawn from the original time series [26].
These methods, while useful in general, may not be so when
applied to Granger causality. The reason stems from the
fact that this test goes beyond considering values of a time
series as independent from each other, but instead assesses
temporal structures. To illustrate, substituting missing values
with data drawn from the time series guarantees that the
probability distribution is maintained, and may be suitable
in many applications [27]. This method nevertheless yields
suboptimal results when used in conjunction with Granger
causality, as I will show below, as preserving the probability
distribution is not enough to preserve temporal relationships.
In addition, there is an increasing interest in the scientific
community in evaluating large-scale causality structures, i.e.
beyond simple dyadic relationships [28]. In other words,
given a set of variables, the Granger test is calculated between
each pair of variables, and the final structure is then described
in terms of a set of networkmetrics. This is especially relevant
in cases where multiple elements are expected to interact in
complex ways, as is for instance the case of brain regions
[11], [12]. How these standard methods affect the observed
network structures is something that has not yet been studied.

In this contribution I review and evaluate four methods
for handling missing and extreme values in conjunction with
Granger causality: doing nothing, i.e. disregarding the pres-
ence of wrong values; substituting those values with the
median of the time series, also known as a value imputation
strategy; substituting them with random ones, known as ran-
dom replacement; and a novel method based on weighting
the linear regression model underlying the Granger causality
test, in order to disregard missing and extreme data. These
methods are tested using synthetic data, to detect both how
many real causal relations they are able to recover and how
many spurious relations are generated. This is done both in
a bivariate (or dyadic) case, i.e. when pairs of time series
are independently tested; and in a functional network con-
text [29], in which the Granger causality test is used to
detect connections between the nodes composing a network
[30], [31]. The results of these tests on synthetic data are used
to draw some guidelines, and are further applied to a real-
world application involving the reconstruction of causal net-
works representing the propagation of delays in the European
air transport system [32].

II. THE GRANGER CAUSALITY TEST AND ITS STABILITY
While the Granger causality test is a well-known instrument
used in many fields of science, and has been described in
uncountable publications, for the sake of completeness the

main elements of its mathematical formulation are discussed
here below. Suppose two systems A and B, respectively
described by two time series tA and tB representing some
observable function of their dynamics. These two systems
are part of the universe U , representing all systems and
elements (both observable by and hidden to the researcher)
that are relevant for a given problem. Let us further suppose
that these time series fulfil some basic conditions, includ-
ing being stationary and regularly sampled. Note that the
F- and χ2-tests underlying the Granger approach assume
stationarity; therefore, if a unit root is observed in the time
series, it is recommended to make them stationary by using
the first- or second-order time derivative, as otherwise spu-
rious causalities may emerge. Additionally, for a discussion
on irregularly sampled time series, see [22]. B is said to
‘‘Granger-causes’’ A if:

σ 2(tA|U−) < σ 2(tA|U−\t
−

B ), (1)

where σ 2(tA|U−) stands for the error, in terms of the standard
deviation of residuals, when forecasting the time series tA
using the past information of the entire universe U ; and
σ 2(tA|U−\t

−

B ) the error when the information about time
series tB is removed. In other words, B is causing A if includ-
ing information about the past of B helps predict the future of
A - hence the name of predictive causality [3]. The forecast
itself is done, in both cases, through an autoregressive-
moving-average (ARMA) model. An F-test is finally per-
formed to assess the statistical significance of the inequality
of Eq. 1; a causality is accepted if the resulting p-value is
below a fixed significance value (usuallyα = 0.01). Note that
other alternatives to the F-test are available, as for instance the
Wald test, which assesses the absence of causality (or, equiva-
lently, assesses the noncausality) [33]; results here presented,
unless otherwise specified, correspond to the F-test.

How stable is the Granger causality test? In other words,
how resilient are its results when missing and extreme values
are included? In order to answer this initial question, I here
consider a simple linear system, composed of two time series:{

x(t) = ξx
y(t) = γ x(t − 2)+ ξy,

(2)

with ξx and ξy representing two independent and identically
distributed random variables with probability distribution
N (0, 1), and 2 the lag, i.e. the time required for x to force y.
Note that x has an independent dynamics, while y dynamics is
partly defined by the past of x through a coupling constant γ ;
thus, provided γ is large enough, the Granger test should be
able to detect such causality relation. As a final step, a fraction
δ of the values of both time series is randomly selected and
set to zero, to simulate the presence of missing values. Note
that missing values are here distributed in an irregular way -
for a discussion of equidistant missing data, see [23].

Fig. 1 reports the fraction of detected causality relations in
these raw time series as a function of δ and γ ; in other words,
it reports the fraction of times the Granger test detected

VOLUME 9, 2021 75363



M. Zanin: Assessing Granger Causality on Irregular Missing and Extreme Data

FIGURE 1. Resilience of the Granger causality test to missing values.
Evolution of the fraction of detected causalities (i.e. fraction of times the
Granger causality yielded a statistically significant result) as a function of
the fraction of missing values δ and of the coupling γ , for time series
defined as per Eq. 2. The top and bottom panels respectively correspond
to a standard Granger test, and to the Wald test variant. For each pair of
values (δ, γ ), 104 simulations have been executed, and the fraction of
simulations yielding a p-value below α = 0.01 is here reported.

a statistically significant causality. The top and bottom panels
respectively correspond to a standard Granger test (thus based
on an F-test) and a Wald test variant. For a coupling strength
γ ≈ 0.1, the Granger test is able to detect the presence of
a causality relation half of the times, provided no values are
missing; yet, for the same coupling strength, almost no tests
yield statistically significant results for δ > 0.1. Additionally,
virtually the same results are obtained when using the Wald
test [33], suggesting that missing values have the same effect
independently on the used test.

Beyond this simple bivariate example, as previously
introduced, the Granger causality test is frequently used to
reconstruct functional networks, i.e. graphs representing the
structure of interactions between the elements of a complex

system [29]. In order to explore this case, the system of Eq. 2
has been extended to include N = 40 elements (or nodes),
with the dynamics of element i-th being defined by:

xi(t) = ξ + γ
N∑
j=1

aj,ixj(t − 2). (3)

The matrix A is commonly called the adjacency matrix,
and its element aj,i is equal to one whenever node j is
connected to (here, forces) node i, and zero otherwise
[30], [31]. The dynamics of each element is thus the result of
the sum of an internal component, in this case stochastic; and
of external contributions defined by the elements ofA. I here
consider that the probability of connecting two nodes i and j
is proportional to 1/i, such that node 1 is the most connected
one, and node 40 is the least one.

In a real-world application, what is available to the
researcher is the set of time series xi, and the aim is to recon-
struct the underlying functional network and its adjacency
matrix A by applying the Granger causality test on each
pair of time series. Note that, while being the most common
approach, it is not the only one; for instance, the Granger
causality can be estimated through a vector autoregression
(VAR) model to model multivariate (i.e. beyond dyadic)
dependencies [34]. In both cases, the interest is shifted
from evaluating the presence of individual relationships,
to the assessment of high-level structures emerging from
such micro-scale - what is commonly called the topology
of the network [35]. As such, I here consider four classical
topological metrics used in network science:
• Link density. Number of active links divided by the total
number of possible links - in a directed network of N
nodes, this latter number is N (N − 1):

ld =
1

N (N − 1)

∑
i,j

ai,j (4)

• Transitivity. Density of triangles in the network, i.e. of
triplets of nodes such that, if A is connected to B and
this to C , then C is also connected to A [36]. Also called
clustering coefficient, this metric is defined in terms of
the adjacency matrix as:

C =

∑
i,j,k ai,jaj,kak,i∑
i ki(ki − 1)

, (5)

where ki is the number of connections (i.e. the degree)
of node i.

• Efficiency. Metric describing how efficiently the net-
work exchanges information, and defined as the inverse
of the harmonic mean of the minimum distance between
all pairs of nodes [37].

• Assortativity. Correlation coefficient between the
degrees of nodes at the extreme end of each link [38].
Positive values indicate that the network is assortative,
and that highly connected nodes tend to connect with
themselves. On the other hands, networks with negative
values of the metric are called disassortative, and are
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FIGURE 2. Evolution of four topological metrics, for networks reconstructed from time series defined as per Eq. 3, as a function of the fraction of
missing values δ and for γ = 0.3. Black, blue and red lines respectively correspond to no missing values; missing values equally distributed among time
series; and missing values biased towards some time series. Deviations from the black lines thus indicate a bias in the observed metric values. Each
point corresponds to the average of 500 random realisations; transparent bands to the 25− 75 percentile band.

characterised by having highly connected nodes being
attached preferentially to peripheral ones.

It is important to note that both the transitivity and the
efficiency depend on the number of links in the network.
To illustrate, a dense network will have a higher efficiency
that a sparse one, as a larger number of links implies a
higher probability of having a direct path between pairs of
nodes. Yet, this does not imply that links are organised in a
more efficient way, or in a way favouring movements in the
network. In order to compare networks with different number
of links, the two metrics have to be transformed through a
Z-Score, i.e. the distance between the observed metric and
what expected in an ensemble of random equivalent (same
number of nodes and links) graphs [39]. In what follows,
reported values of transitivity and efficiency correspond to
their respective Z-Scores.

Fig. 2 presents the evolution of the average value of these
four topological metrics, as obtained from reconstructing the
functional network defined in Eq. 3, as a function of δ for
three different cases. First of all, the blue lines correspond
to a case in which missing values are distributed among
the time series in an equiprobable way. On the other hand,
this probability is made proportional to i (i.e. to the node
number) in the case of the red lines; in other words, the last
nodes of the set, which are also the least connected ones,
receive the largest share of missing values. Finally, the black
lines correspond to the network reconstructed on the data
without missing values, and thus represent the ideal result.
Any deviation from the black lines indicates a bias in the
observed topological metrics.

It can be appreciated that results strongly vary, and depend
on the considered topological metric. For instance, missing
values have no effect on the efficiency and assortativity of
the network, provided these are few and distributed equally
among the time series. As long as missing values are not
biased, these are causing random links to disappear, thus they
do not affect (or bias) the overall structure of the network.
This changes both when a large fraction of values (larger than
approximatively 20%) are missing, as the network structure
is effectively destroyed; and when missing values are not
equally distributed, as this introduces a bias in the results.

In synthesis, the results of Figs. 1 and 2 describe a complex
picture. On one hand, the Granger causality test is quite
sensitive to missing values, as even a small fraction of them
can undermine the detection of weak and medium causalities.
When the focus is shifted towards large-scale structures, some
topological metrics are rather insensitive to missing values,
provided these are few and evenly distributed among time
series.

III. HANDLING MISSING AND EXTREME VALUES DATA
A. STRATEGIES DEFINITION
In this contribution I am considering three strategies for
handling extreme and missing values, plus an initial baseline
reference. These are:
• Using Raw Time Series: The baseline of the analysis
is obtained by disregarding that some values are miss-
ing or extreme, and thus work with the raw time series.
As previously shown, this approach yields a substantial
subestimation of the causality in bivariate analyses, and
changes in topological metrics for functional networks.

• Substituting Missing and Extreme Values With the
Median: This second strategy is based on substituting
wrong values for values that are expected to less mislead
the calculation of the Granger causality. Specifically,
I here firstly consider the median of all available values,
the rationale being that this should affect less the cal-
culation of the slope coefficients in the linear regression
model. In other words, encountering a (false) value equal
to the median pushes the slope towards zero, but does
not introduce any bias. This strategy is thus a value
imputation one.

• Substituting Missing and Extreme Values With Random
Ones: This strategy is equivalent to the previous one,
except that wrong values are substituted by values drawn
from the same time series. This is a random replacement
strategy that has widely been used in other contexts,
and which presents the advantage of maintaining the
underlying probability distribution [26].

• Weighting the Linear Regression Model: Instead of
fitting the linear model of the Granger causality con-
sidering equal weights for all values, one may use
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a linear model in which the weight of missing and
extreme values is set to zero. In other words, consider
the simplest case in which the future of a time series
X is forecasted through an autoregressive model of its
past, i.e. xt = a0 + a1 xt−1 + a2 xt−2 + . . .+ εt , with εt
representing the error of the forecast. The coefficients
a can be obtained through an ordinary least squares
approach. Subsequently, let us suppose that a value xj is
known to be wrong, e.g. missing or extreme. The previ-
ous fit can then be substitute by a weighted least squares
approximation, in which all weights w are set to one,
except for wj that is set to zero. This effectively implies
that the value of xj is excluded from the calculation of
the autoregressive model. When this approach is applied
to the two models composing the two sides of Eq. 1,
the result is a Granger causality test performed only on
the values esteemed as correct. Note that this approach
also presents the drawback of a decrease in the reliability
of subsequent F-tests, as the effective length of the time
series is changed. To the best of my knowledge, this
method has not been studied before.

Note that some other common strategies are here not con-
sidered, as they depend on the characteristics of the data, and
are therefore not always relevant. These include, on one hand,
interpolating missing and extreme values using neighbouring
ones [25]. This strategy clearly assumes that values are not
independent, or, in other words, that the time series have a
non-zero autocorrelation; nevertheless, this also means that
time series are not stationary, and therefore that the Granger
causality test may be overestimating the results. On the other
hand, one may consider trimming the time series, in order
to isolate ‘‘clean’’ parts of them, or even deleting those
time series containing missing values; these two approaches
respectively require to have fewmissing values (or for them to
be clustered in a single region), and to havemultiple instances
of each time series.

In order to see how the four described strategies can help
solving the missing and extreme values problem, I here start
by applying them to a simple correlation. Even though the
Granger causality test is more than a simple linear correlation,
the latter is a basic element of the former, at least when an
ARMA model is used in its estimation. For this I consider
a simple linear system, composed of two time series x =
[1, 2, . . . , 20] and y = x+ξ , where ξ represents independent
random numbers drawn from a normal distribution N (0, 1).
As in the case of Eqs. 2 and 3, a fraction δ of the values is
randomly selected and set to zero, to simulate the presence
of missing values. Finally, a linear regression model, and
the corresponding p-value of the F-test to check whether
the slope is significantly different from zero, are calculated.
Fig. 3 reports the median of the correlation coefficient (top
panel) and of the log10 of the p-value (bottom panel) over
10, 000 executions. It can be appreciated that, as expected,
using the raw time series and disregarding the fact that some
values are missing underestimates the correlation coefficient,
and the corresponding p-value converges to 1 for large values

FIGURE 3. Evolution of the median of the linear correlation coefficient
(top panel) and of the corresponding p-value (bottom panel), as a
function of the fraction of missing values δ, and for the four strategies
here consider (see legend for colour codes). Results correspond to 105

random realisations. See main text for a definition of how time series are
generated.

of δ (aqua line). The best method seems to be the weighted
linear model, which yields a correlation coefficient very close
to that of the original time series without missing values
(black line); nevertheless, starting from δ ≈ 0.5, the p-value
is strongly underestimated. This result is easy to be visu-
alised, by imagining an extreme situation in which only two
values are not missing from both time series: the correlation
is then calculated over these two pairs of values, yielding a
perfect fit - and hence a subestimation of the true p-value.
Finally, the two remaining methods based on substitutions
perform similarly, retaining a good and statistically signifi-
cant approximation of the correlation coefficient.

B. TESTING PAIR-WISE PREPROCESSING STRATEGIES
I then move to analyse how these strategies perform in
a real causality detection problem, focusing in a bivariate
(or dyadic) case involving the detection of the causality
between a pair of time series. For that, I will use again the
model of Eq. 2. Unless otherwise specified, I here consider
time series of 1, 000 points and γ = 0.1, yielding ≈ 60%
of statistically significant tests when no wrong values are
included - for a significance level of α = 0.01. Note that
the value of γ = 0.1 has been selected to represent an
intermediate scenario, in which causality relationships are
neither too strong, as this would minimise the impact of
missing values, nor too weak, as to preclude a detection.

Fig. 4 depicts the result of the Granger causality test as a
function of the fraction δ of missing values and of the data
preprocessing method. In a way similar to Fig. 3, two set of
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FIGURE 4. Effect of missing data handling strategies on bivariate Granger
causality tests. The top panel depicts the fraction of tests identified as
significant, for each one of the four strategies, and as a function of the
fraction of missing values δ. The bottom panel further reports, for each
strategy, the fraction of tests that were also significant in the original
(i.e. without missing values) time series. Results correspond to γ = 0.1,
time series of length 1,000 and 105 random realisations.

results are presented: the fraction of statistically significant
tests (top panel), and the fraction of time each pre-processing
method yields the same result as the one corresponding to
the original time series (bottom panel). Note that the result
of the Granger causality on the original (i.e. without missing
values) time series is here considered as the gold truth, i.e. the
result that one would like to recover in spite of the missing
values. Also note that this is similar but not equivalent to
what presented in Fig. 3, as here the statistical significance
of the test refers to a joint linear hypothesis in which at
least one correlation coefficient, i.e. for at least one time lag,
is different from zero.

Several interesting results can be observed. First of all, and
confirming what observed in Fig. 1, disregarding the fact that
some values are missing results in a dramatic underestimation
of the causality - aqua line in Fig. 4. On the other hand, of the
methods here studied, weighting the regression model is the
best performing one, especially for δ < 0.4; still, and in line
with what observed in Fig. 3, it yields an overestimation of
the causality when the majority of values are missing. Finally,
of the two remaining methods, the use of the median is the
better option, still detecting half of the significant tests for δ
as large as 0.3.

The generality of these results are next evaluated using
three additional models. Firstly, Fig. 5 presents the results
corresponding to the same coupled linear model of Eq. 2,
but here using the Wald test [33] - see also Sec. II for a
definition. Secondly, Fig. 6 Left depicts the causality detected
in a biologically inspired model, specifically synthetic time
series emulating the signal recorded by function Magnetic

FIGURE 5. Effect of missing data handling strategies on bivariate Granger
causality tests, when calculated using the Wald test - see main text, Sec. II
for details. Meaning of panels and colours is as per Fig. 4.

Resonance Imaging (fMRI) in the human brain. Two coupled
time series are initially generated through a Vector AutoRe-
gressive (VAR) stochasticmodel and additive Gaussian noise;
these are then convoluted with the canonical haemodynamic
response function (HRF), defined as a mixture of two gamma
functions; the results are finally downsampled - for a full
definition, please refer to [40], [41]. Thirdly, Fig. 6 Right
corresponds to time series generated by two coupled Lorenz
oscillators, a prototypical example of chaotic oscillator [42],
and defined respectively as:

ẋ1 = σ (y1 − x1) (6)

ẏ1 = x1(ρ1 − z1)− y1 (7)

ż1 = x1y1 − βz1 (8)

and

ẋ2 = σ (y2 − x2)− α(x2 − x1) (9)

ẏ2 = x2(ρ2 − z2)− y2 − α(y2 − y1) (10)

ż2 = x2y2 − βz2 − α(z2 − z1), (11)

with σ = 10.0, ρ1 = 28, ρ2 = 29, and β = 2.667. Note that
oscillator number 2 is driven by oscillator number 1 through
the coupling constant α (here set to 0.5). The two time series
here considered correspond to the channels x1 and x2. In all
these three cases, the considered time series have a length of
1, 000 points.
Both set of results are qualitatively similar to Fig. 4, and

even almost undistinguishable in the case of Fig. 5. It is nev-
ertheless worth noting the drop in the fraction of significant
tests at δ ≈ 0.2 in the case of fMRI synthetic signals, and at
δ < 0.05 in the case of the Lorenz oscillators.
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FIGURE 6. Effect of missing data handling strategies on bivariate Granger causality tests, calculated over synthetic time series representing the dynamics
of coupled brain regions as measured by function Magnetic Resonance Imaging (fMRI, left panel), and coupled Lorenz oscillators (right panel). Meaning
of panels and colours is as per Fig. 4.

FIGURE 7. Evaluation of the model weighting strategy. The three panels report, from left to right and as a function of the fraction of missing values δ: the
fraction of correct results, the false positive rate, and the false negative rate. Red, orange and yellow lines respectively correspond to γ = 0 (i.e. no
coupling between the time series), γ = 0.1 and γ = 0.2.

In order to understand the overestimation seen for the
weight method in Fig. 4, Fig. 7 presents the evolution as
a function of γ and δ of three additional metrics: (i) the
fraction of times the result coincide with the analysis of the
original time series (left panel); (ii) the false positive rate
(center panel); and (iii) the false negative rate (right panel).
Let us first consider the case of γ = 0, i.e. when the time
series x and y are completely independent; in this case the
number of significant tests should be approximatively equal
to the significance level α, here 0.01. For large values of δ,
there are many false positive cases, and very few false neg-
atives; in other words, the weighting method overestimates
the presence of a causality relation (which is actually not

present at all). Most notably, the opposite happens for larger
values of γ , as for instance for γ = 0.2: the weighted test
almost perfectly recovers the results for the original time
series, yielding a larger number of false negatives; in other
words, it errs towards an underestimation of the causality.
This behaviour is stronger for even larger values of γ - not
shown here for the sake of clarity.

If the previous results corresponded to synthetic data sets
with missing data, one may wonder if similar outcomes are
achieved in the case of extreme values. For that, one can
again start from time series created through the model of
Eq. 2; for then selecting a fraction δ of elements at random,
and substituting them with random numbers drawn from
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FIGURE 8. Effect of extreme values handling strategies on bivariate
Granger causality tests. Top and bottom panels respectively depict the
fraction of tests identified as significant, and the fraction of tests that
were also significant in the original (i.e. without extreme values) time
series. Colour code as per Fig. 4. Results correspond to γ = 0.1 and
105 random realisations.

a distribution N (10, 1). Note that, as stated in the introduc-
tion, missing and extreme values are here defined as those
values that are wrong, with the former ones being encoded by
values within the distribution (usually, zeros), and the latter
ones by values outside it. Fig. 8 reports the results for this
modified model, using the same schema and colour code as
Fig. 4. It can be appreciated that results are qualitatively the
same, with the weighted model being the best strategy to
recover lost causality relationships - albeit at a cost of an
overestimation for large values of δ. From the point of view of
handling wrong data in Granger causality tests, missing and
extreme values seem to be equivalent.

C. TESTING PREPROCESSING STRATEGIES,
NETWORK EFFECTS
Once the four pre-processing strategies have been tested on
bivariate time series, the next natural step is to ascertain
whether they are able to recover the lost values of topological
metrics. Towards this aim, these strategies have been applied
to the system defined in Eq. 3, with γ = 0.3 and a biased
distribution of missing values, thus according to the red lines
of Fig. 2. The results are presented in Fig. 9; the same colour
code as in Fig. 2 has been used, such that deviations from the
black lines indicate a bias in the results. These results point
to a complex picture. Firstly, the approach based on weight-
ing the linear model is able to compensate for the changes
in structure introduced by missing values, even though the
transitivity seems to be underestimated for δ > 0.1.

Secondly, substituting missing values for the median is not
introducing a significant improvement (note that its lines,

dark blue, almost perfectly coincide with the ones of the raw
data, light blue). While this seems surprising at first, it is easy
to identify the reason behind such result. Specifically, Eq. 3
indicates that each time series is composed of values normally
distributed around zero (plus coupling signals, which also
have zero mean). Therefore, when missing values (encoded
as zeros) are substituted by the median of the distribution
(approximatively zero), the net effect is negligible. This high-
lights that the performance of this method (and, eventually,
of all methods) depend not just on the density of missing val-
ues, but also on the probability distribution of the underlying
data, a topic that will be further discussed in the conclusions.

Finally, using a random replacement strategy increases the
biases in the observed structures, with respect to using the raw
(non pre-processed) data. Therefore, this strategy ought to be
avoided in a network context.

D. CONCLUSION: IS THERE AN OPTIMAL STRATEGY?
Combining all the results obtained on these simple synthetic
data sets allows to draw some conclusions, on how missing
and extreme data should be handled when assessing causali-
ties through the Granger test.
• The existence of missing and extreme values cannot
be disregarded, unless they are few and the expected
strength of the causal connection is large. As seen
in Fig. 1, a mere 10% of missing values can have catas-
trophic effects if the causality relation is weak.When the
focus is shifted towards functional networks and their
topological metrics, the latter ones are somewhat more
resilient, but are also affected by the way missing values
are distributed among the time series.

• The Granger causality test behaves similarly under the
presence of missing and extreme values, i.e. wrong
measurements respectively falling inside and outside the
expected data probability distribution - see Fig. 8.

• If missing and extreme values represent more than 20%
of all available data, the only real solution is to resort to
a weighted model for calculating the Granger causality.
This comes at the cost of overestimating weak causali-
ties, and underestimating strong ones. Still, around 80%
of the significant dyadic relations can be recovered (see
Fig. 4 right panel). Network metrics are generally, but
not always, correctly recovered - see e.g. the underesti-
mation of the transitivity in Fig. 9. In any case, results
obtained from time series with more than 20% of errors
have to be interpreted with due care.

• For fractions of missing values below 20%, the best
option is still the weighted model. Nevertheless, in cases
requiring a conservative estimation (that is, when the
cost of obtaining false positives is much larger than
the one of false negatives) and for dyadic relation-
ships, an alternative solution is to substitute missing
values with themedian, which allows to recover between
60 and 80% of the causality links.

• Finally, a random replacement strategy is generally to be
avoided.
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FIGURE 9. Evolution of four topological metrics, as obtained after applying the four strategies here considered, as a function of the fraction of missing
values δ and for γ = 0.3. As in Fig. 2, deviations from the black lines (representing the result without missing values) indicate biases in the observed
topological metrics. Each point corresponds to the average of 500 random realisations; transparent bands to the 25− 75 percentile band.

IV. APPLICATION: PROPAGATION OF DELAYS IN AIR
TRANSPORT NETWORKS
As an example of the impact that missing and extreme val-
ues can have in the calculation of causality relationships,
I here revisit the analysis on the propagation of delays in
air transport proposed in [32]. The characterisation of delay
propagation is one of the most important research topics in
air transport management, due to delays’ negative implica-
tions in the cost-efficiency [43], safety [44], and environment
footprint [45] of air transportation. To illustrate, the Federal
Aviation Administration estimates that US flight delays cost
airlines $22bn yearly. Additionally, 1 minute of ground delay
implies between 1 to 4 kg of fuel consumption and between
3 to 12 kg of CO2 emissions, one order of magnitude higher
in the case of airborne delay [45].

While delays have mostly been studied through large-
scale simulations and models [46]–[51], a new approach
has recently been proposed, based on the reconstruction of
delay functional networks [32], [52]–[54]. Inspired on the
way information transmission is represented in neuroscience
[55], [56], airports are mapped into nodes of a network,
with pair of them connected whenever a (statistically signif-
icant) causality relationship between their delay evolution is
detected. In other words, a propagation process is assumed
to be taking place between airports A and B whenever an
increase in the average delays observed in A is usually
followed by an increase in B. The main advantage of this
approach is that no a priori assumptions are needed, e.g. on
aircraft or passengers connectivity; the analysis instead only
relies on observable time series. On the other hand, it has
to be noted that, if the Granger causality test is used, what
detected is not causality in general but rather a predictive
causality [3].

These initial studies on delay functional networks [32],
[52]–[54] were based on time series describing, for each
airport, the hourly average delay of arriving (or departing)
flights, without taking into account their incompleteness.
This may be due to two main causes. On one hand, many
airports do not operate around the clock, such that some
hours can have no operations associated to them, and the
corresponding average delay would be zero. Yet, this zero
is not equivalent to having no delays, but instead represents

a missing value. In other words, we cannot know what would
be the expected delay at the airport, would a flight have landed
at that time. Similarly, an aircraft arriving late in a period
with few or no other operations can substantially change
the average delay for that period; once again, this does not
correspond to a true status in which all flights are delayed,
but just represents a spurious value.

A. DATA AND THEIR PREPROCESSING
The analysis here proposed is based on the same data set
described in [32], which includes time series of average
delays at the 50 largest European airports. These time series
have been obtained by analysing aircraft trajectories included
in the Flight Trajectory (ALL-FT+) data set provided by
the EUROCONTROL’s PRISME group. All flights crossing
the European airspace are described through their planned
and executed trajectories, with positions reported on average
every 2 minutes. The data set covers the period from 1st

March to the 31st December 2011, including a total of 10.3 ·
106 flights. Only flights landing at the 50 busiest European
airports (in terms of number of operations) have further been
processed.

A time series has been extracted for each airport, represent-
ing the average hourly delay of arriving flights. Delays are
here calculated as the difference between actual and planned
landing time, which correspond to the delays experienced
by passengers. Negative delays, i.e. when an aircraft arrived
before its scheduled time, have not been deleted. Missing
and extreme data have been identified as respectively those
time windows in which no aircraft has landed (12.85% of
the data), and in which the absolute value of the average
delay was larger than one hour (2.68%). The choice of this
last threshold is a subjective one, as no rule exists to define
what an abnormal delay is. Still, an average delay larger than
one hour implies a major disruption of the system, and is a
quite unusual event. The frequency of missing and extreme
values in each airport was weakly correlated, albeit in a non
statistically significant way, to the ranking of the airport, with
a Spearman’s rank correlation of respectively 0.32 (p-value
of .025) and −0.15 (p-value of 0.299); smaller airports thus
have more missing values but fewer extreme values.
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As a final step, it is worth noting that the resulting time
series are not stationary, as delays are usually correlated to
traffic volumes: they are higher during peak hours, week days
and the summer. These peaks occurring at the same time at
different airports may introduce spurious correlations, and
hence spurious causalities. In order to make the time series
stationary, a detrend process has been performed, based on
subtracting the average delay observed in the same day of the
week in the two previous and following weeks, at the same
hour:

d̄(t) = d(t)−
1
4

∑
i∈{−2,−1,1,2}

d(t + 168i), (12)

d(t) being the original time series at time t , and d̄(t) the final
time series. Note that the factor of 168 corresponds to the
number of hours composing one week, and i spans between
twoweeks in the past to twoweeks in the future. According to
this definition, d̄(t) represents the difference (or the surprise)
between the observed and the expected (historical) delay.
Information about the future dynamics of the system should
not generally be used to detrend the time series, as this could
bias the Granger test - which is actually based on comparing
past and future dynamics. This is nevertheless not a problem
in the present analysis, as the maximum delay considered
(i.e. the maximum lag in the ARMAmodel) is of eight hours,
and the detrend process uses information of one week in the
future.

Functional networks are finally reconstructed by evaluat-
ing the Granger causality test between all pairs of airports,
and by creating a link between the corresponding nodes
whenever a significant p-value is obtained (α = 0.01 with
a Šidák correction for multiple comparisons).

B. SCENARIOS DEFINITION
Following the results obtained in Sec. III, three different
scenarios are here considered.

The first one, labelled raw data in the following figures and
tables, involves nomissing and extreme values handling. This
is expected to yield a low number of significant causality
relations and, most importantly, a biased network topology
- for instance a biased assessment of which airports are most
important from the delay propagation view-point. Note that
this is the customary approach, as e.g. in [32], [52]–[54].

The second and third scenarios respectively involve
substituting wrong values for the median of the correspond-
ing distribution (labelled median), and weighting the linear
regression model (labelled weighting). Both methods are
expected to recover a larger number of relationships, with the
latter potentially yielding a better view of the real topology.

C. RESULTS: DELAY PROPAGATION NETWORKS
The results of applying this functional network reconstruction
process are shown in Fig. 10 and Tab. 1, for the three con-
sidered scenarios. The network reconstructed by weighting
the regression model is the densest of the three, as should be

TABLE 1. Values of four topological metrics (see main text for definitions)
describing the structure of the delay propagation networks, as calculated
through raw data, median and weighted model pre-processing. Numbers
in parenthesis correspond to the Z-Score of the metric, i.e. the distance
between the observed metric and what expected in an ensemble of
random equivalent (same number of nodes and links) graphs [39].

TABLE 2. Ranking of the five most important nodes, as measured
through the corresponding eigenvector centrality [57], [58], calculated
through raw data, median and weighted model pre-processing. Numbers
in parenthesis correspond to the value of the centrality, normalised such
that the most influential node has a centrality of one. Airport are
identified by the corresponding 4-letters ICAO codes.

expected given the efficiency of this strategy in recovering
lost causality connections. While the efficiency (a metric
describing how efficiently the network exchanges informa-
tion [37]) is almost constant in the three cases, this is not true
for the transitivity (density of triangles [36]) and assortativity
(correlation between the degrees of connected nodes [38]).
Specifically, in the latter case the network changes from
assortative (positive metric value, nodes with large number of
links tend to connect between themselves) to disassortative
(negative metric value, nodes with high number of links
tend to avoid themselves). In order words, airports mostly
responsible for the propagation of the delaysmove from being
connected to each other, to becoming the center of separate
communities. Note that this is a major structural change and
not just the result of the higher link density; specifically,
if links are deleted from the weighted model network at
random, until reaching the link density corresponding to the
raw data case, the resulting assortativity is still negative and
equal to −0.179 ± 0.062 (average and standard deviation
over 100 random realisations). The differences in the obtained
connectivity is also graphically represented in Fig. 10, both
for the full network (top panels) and for the sub-network
composed by the tenmost connected airports (central panels).
As previously seen, there is a change in the structure created
by these highly-connected (in terms of delay propagation)
airports, which also reflects in the highly skewed degree dis-
tribution of the median and weighted cases (bottom panels).

As a final analysis, Tab. 2 reports, for the three cases, a list
of the five airports most central in the propagation of delays.
The importance of each airport has been estimated through
the well-known eigenvector centrality, a metric which assigns
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FIGURE 10. Delay propagation networks, as calculated using raw data (left panels), median (central panels) and weighted model (right panels)
pre-processing. Top panels report the graphical representation of the full networks; node colours indicate their number of outbound connections, from
green (loosely connected airports) to red (densely connected airports). Note that, for the sake of clarity, airport positions are not exact - see, for
instance, the case of GCLP (Gran Canaria Airport). Central panels depict the sub-network created by the top-10 most connected airports. Finally, bottom
panels report the degree distribution of nodes, i.e. the histogram of nodes’ number of links.

to each node an importance proportional to the sum of the
importance of neighbouring nodes [57], [58]. Mathemati-
cally, suppose the centrality of node i is represented by ci;
and its connectivity by the elements of the adjacency matrix
A, as introduced in Eq. 3, such that ai,j = 1 if a link exists
connecting node iwith node j. The centrality of node i is then
defined as:

ci =
1
λ

∑
j

ai,jcj, (13)

with λ being a constant. Eq. 13 can be rewritten in vector
notation as the eigenvector equation Ac = λc, hence the
name of eigenvector centrality. In the context of air transport,
this metric is measuring how instrumental is each airport in
the propagation of delays. In other words, an airport in a
central position is more likely to spread the delay it gen-
erates to other airports; but also to receive external delays,
thus effectively acting as a propagation intermediary. This
centrality thus also indirectly measures what would be the
benefit if resources aimed at stopping the propagation were
assigned to each airport. The centrality measure included in
Tab. 2 has been normalised, such that the most influential
node has a centrality of 1. It can be appreciated that different
data pre-processing strategies correspond to different airport
rankings. Specifically, the most central airport when using
the raw data (EDDL, Düsseldorf Airport) loses half of its

importance in a weighted model; and airports like EDDM
(Munich Airport) and EHAM (Amsterdam Airport Schiphol)
raise in importance.

This example illustrates the importance of correctly han-
dling missing and extreme values when analysing real data,
and also the risks one may otherwise incur. A natural way of
exploiting the functional delay networks here reconstructed
is to identify the most central airports, for then increase the
resources there available. These resources could be physi-
cal, as e.g. new runways or more air traffic controllers; but
also virtual, like granting priority to flights at them land-
ing [59], [60]. In both cases, delays at these airports will be
reduced, causing a disruption in the propagation process and
an improvement of the overall dynamics.

The key point is the correct identification of the most
central airports, especially considering that it would be dif-
ficult at best to validate the results of this functional anal-
ysis without modifying the real system. When missing and
extreme values are not accounted for, the resulting central-
ities could be biased. The analysis may then, for instance,
conclude that small airports are more central: this is the case
in Tab. 2 of Düsseldorf Airport (EDDL) and Copenhagen
Airport (EKCH), or of the main conclusions drawn in [53].
The reality may nevertheless be different, with a correction
of missing values leading to an increase centrality of Munich
Airport (EDDM), AmsterdamAirport Schiphol (EHAM) and
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Heathrow Airport (EGLL), that is, of the largest airports in
Europe. In short, the practitioner should be aware that results
obtained without a proper handling of missing and extreme
values may be highly unreliable.

V. DISCUSSION AND CONCLUSION
Granger causality is one of the most famous, and possibly
the most used causality test in science and engineering; still,
the study of its behaviour in the presence of missing and
extreme values has not received a significant attention, espe-
cially the case in which these values are distributed randomly
throughout the time series. This is an important issue as,
on one hand, erroneous values are a common denominator
in many real-world applications [24]; and, on the other hand,
the Granger test can yield wrong results when even a small
percentage of the data is modified - see Fig. 1. Missing
values have an even more profound effect when the Granger
test is used to reconstruct functional network representations,
as the resulting bias is a function of how missing values are
distributed and what topological property is analysed - see
Fig. 2.

This contribution addresses this problem by comparing
three ways for data pre-processing, two based on stan-
dard value substitution, and a novel one based on redefin-
ing the underlying linear model to disregard wrong values.
Additionally, both dyadic and network-based causality rela-
tions have been considered. While a full discussion of the
results is included in Sec. III-D, the synthesis is that the
weighted model is the best option, followed by substituting
wrong values by the median of the distribution.

In order to test these three strategies in a real-world situ-
ation, Sec. IV revisits the problem of detecting delay prop-
agation in an air transport system by means of functional
networks, reconstructed by detecting causality relationships
between observed delay time series. While such analysis is
not new, previous studies [32], [52]–[54] have neglected the
presence of false values, mostly generated by the absence
of landing aircraft in some time windows. As shown in
Tabs. 1 and 2, compensating for those wrong values substan-
tially change the observed propagation structure. Specifi-
cally, hub airports (here understood as those airports most
responsible for the propagation) change from being con-
nected between them, to form independent communities; and
the identity of those airports also substantially change. This
example illustrates the importance of a correct handling of
wrong values, as even a small fraction of them can radically
change the observed results.

It is important to highlight that the guidelines presented
in Sec. III-D should not substitute the complete study, as the
researcher has to take in consideration the idiosyncrasies
of the problem at hand - and of its associated data. For
instance, the strength of the causality relation (represented
by γ in the synthetic models) is usually not known in a real-
world problem, and has to be estimated. Also, the way miss-
ing and wrong values are encoded may affect the results of
data pre-processing strategies, as shown in Fig. 9. Finally, the

same definition of what a missing or an extreme value is
depends on the problem at hand - for instance, missing values
can be clearly labelled, or may appear as normal values as in
the case of zero delays. In synthesis, no data pre-processing
strategy can substitute the judgement of the researcher and
his/her knowledge of the problem at hand.
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