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ABSTRACT Health index has been widely accepted as a powerful tool for monitoring the condition of
power transformer insulation system based on various diagnostic parameters. While this approach has been
extensively discussed in the literature, not much attention was given to provide effective solutions to the
uncertainty in the used data. According to CIGRE 761, data quality issues may arise due to measurement
accuracy as well as incompleteness and unavailability of the required data. Therefore, this article presents
the implementation and evaluation of a certainty level model for transformer insulation system health
index to deal with data uncertainty. The impact of data unavailability on the health index results is also
investigated. Certainty level of the health index is determined by the criticality level of available data,
and is reported along with the health index result. A method to handle unavailable data by predicting
the oil interfacial tension (IFT) using Random Forest approach is also presented. The proposed certainty
level model is designed to accommodate the predicted value of missed data into the health index model
while considering its prediction accuracy. The robustness of the developed model is validated through its
application in assessing the health condition of six in-service power transformers. The results indicate that
by including the proposed certainty level and the prediction approach to eliminate the issue of uncertain and
missed diagnostic data, an asset management decision can be taken on operating power transformer fleets
with high level of confidence.

INDEX TERMS Power transformers, condition monitoring, health index, data uncertainty, asset
management.

I. INTRODUCTION
Power transformers are costly and vital equipment in power
system electricity grids. To ensure a power system operates
safely and reliably, proper condition monitoring and evalu-
ation schemes for network assets is necessary [1]. This can
be done through measuring specific diagnostic parameters
for each asset in regular basis to assess the overall health
condition of the asset by integrating all diagnostic parameters
into one index, which is often called health index. This index
can be used to sort the transformers according to their failure
probabilities.

CIGRE (International Council on Large Electric Systems)
published a Technical Brochure 761 on condition assessment
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of power transformers [2]. One of the limitations of scoring
and indexing reported in this brochure is the quality of the
used data. Sources of data quality issues includemeasurement
accuracy as well as incompleteness, and missed data. It is
important that the impact of unavailable data on the overall
health index to be understood as this may result in false
diagnoses.

Generally, there are two main approaches to determine
the health index (HI) of power transformers: the conven-
tional HI method based on scoring and weighting, and the
non-conventional HI method based on artificial intelligence
and machine learning. Scoring and weighting is still the most
widely used and straightforward HI approach that has been
presented in several studies in the literature [3]–[10]. The
conventional method of health indexing based on scoring
and weighting relies on personnel expertise. Each HI input
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parameter is scored and weighted to provide an overall
output index reflecting the overall health condition of the
investigated transformer.

A few studies can be found in the literature in regard to
uncertainty in the used data. For instance, studies in [11], [12]
proposed a Bayesian belief network HI that is able to capture
the uncertainties of used data by showing the percentage
of each transformer, judged as a certain category. Study
in [13] proposed a health estimation approach using Markov
chains and evidential reasoning. This model was aimed to
overcome problems such as uncertainty, accuracy and con-
fidence in the inspected results. Study in [14] developed a
soft computing and probabilistic HI and provided confidence
intervals for decision-making under data uncertainty. While
these approaches are interesting and going to the right direc-
tion, the implementation is not as straightforward as scoring
and weighting method currently used by utilities worldwide.
Therefore, practical implementation of such techniques is not
yet to be seen.

On the other hand, some previous studies presented various
prediction approaches for unavailable transformer assess-
ment data. Study in [15] proposed an ensemble classifier
to predict oil interfacial tension (IFT). Studies in [16], [17]
proposed an adaptive neuro-fuzzy inference system (ANFIS)
model to predict paper condition using more widely avail-
able oil assessment data. Study in [18] proposed a k-nearest
neighbors predictive model to estimate furan level using
oil breakdown voltage, acidity, water content, and dissolved
gases. Study in [19] employed an artificial neural network
to predict several oil parameters, such as IFT, acidity, and
breakdown voltage. Study in [20] proposed a support vector
machine model to classify power transformer paper condition
using oil dielectric characteristics and dissolved gases. Study
in [21] presented an exponential relationship between IFT
and acidity of the transformer oil in which one measured
parameter can be used to estimate the other parameter, if not
available.

This article aims to deal with data unavailability in power
transformer conventional HI. The proposed certainty levels
are reported along with the HI results of the investigated
transformers. In addition, the impact of unavailable data on
the HI is evaluated, and a guideline to interpret the HI and
certainty level is proposed.

II. UNCERTAINTY ON HEALTH INDEX
HI model is a useful diagnostic tool, if developed properly.
However, handling too much data required by the model is a
challenging task. According to [22], uncertainty of informa-
tion in the HI model is due to three reasons as follows.

A. DATA ACCURACY
Issue of data accuracy can be raised due to incorrect data
entry, or inaccurate measurements. Therefore, validation of
the used data is essential before using them in the HI model.
All entry and typo errors need to be carefully reviewed and

corrected. Questionable measurements need to be retested
and remeasured whenever possible.

The use of several measurements that represent the same
failure mode may have different sensitivity. This issue can be
resolved by using proper weighting factors i.e., more critical
and reliable parameter gets a higher weighting.

B. DATA COMPLETENESS
One of the ways for the HI model to handle missed data is
by leaving out the unavailable parameters then recalibrating
the results which is the most common and straightforward
approach. When using this approach, it is necessary to report
the level of uncertainty along with the HI value, which is not
given much attention in the current literature.

C. DATA TIMELINESS
Ideally, HI calculation should be conducted right after the
measurements of the used parameters. However, several
transformers do not have complete data at each point of
measurements. This issue can be solved with the use of
measurement history as will be elaborated below.

III. METHODOLOGY
This section presents the proposed methodology to handle
uncertainty in the parameters used by the HI model.

A. MULTI EXPERT PARAMETER PRIORITIZATION
The use of analytic hierarchy process (AHP) to capture the
knowledge and experience of experts in power transformer
assessment has been reported in [23]–[25]. A multi-expert
parameter prioritization using AHP has been developed
in [23], [26]. In this study, five experts with vast experience in
transformer condition monitoring and diagnostics have taken
parts to fill in a designed questioners survey, which has been
reported in [26]. The survey is meant to compare the param-
eters to each other through two main criteria: measurement
reliability (MR) and criticality (CR). The MR assesses the
reliability of the results due to each parameter, while the CR
evaluates the criticality of each parameter toward each factor.
Each expert was asked to fill in the comparison matrix (C)
given by (1) with balanced scales of pairwise comparison as
proposed in [27].

C =

∣∣∣∣∣∣∣∣∣∣∣∣

C11=1 C12=1/C21 C13=1/C31 . . . C1n

C21 C22=1 C23=1/C32 . . . C2n

C31 C32 C32=1 . . . C3n

...
...

...
...

...

Cn1 Cn2 Cn2 . . . Cnn=1

∣∣∣∣∣∣∣∣∣∣∣∣
(1)
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n
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n

√
n∏

m=1
Cin
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The comparison matrix in (1) is of nxn dimension in which
each element (Cij) represents the value of each used parame-
ter compared with each other. The main diagonal values are
always unity, as each of these elements is compared with
itself. Each of the lower and higher triangle value is mutually
reversed [23]. The calculation of the experts’ answers into
weighting factors (wi) was carried out by AHP using (2).
To aggregate the results of multiple experts, consensus anal-
ysis was employed. The detailed process of weighting factor
determination is explained in [23] and [26].

The results of these processes are the weightages of the
HI model used in this paper as shown in Table 1. The table
comprises various diagnostic parameters to assess the oil
quality, paper condition, and any possible faults. Weighting
factors have been given to each parameter (Wp) and each
factor (Wf ) based on utility personnel expertise.

TABLE 1. Weighting values of the HI model used in this paper.

Besides using the weighting factor for calculating the HI,
this paper proposes the calculation of the certainty level as
discussed below.

B. CALCULATION OF CERTAINTY LEVEL
A parameter prioritization analysis has been conducted and
the results are listed in Table 1. TheWp values are used to cal-
culate the certainty level (CL) according to data availability
based on the model presented in [28].

The more considered and complete parameters, the higher
the CL and the more confident decisions can be made.
By expressing the proposed certainty level, in addition to
the HI value, better asset management scheme can be devel-
oped to determine an appropriate action based on the health
condition of the power transformer [28].

TheCLi for each parameter (i) in Table 1 is calculated using
the correspondingWpi andWfi. After that, the overall CL can
be calculated as per the below equations with results listed
in Table 2.

CL i = Wpi ×Wf i (3)

CL =
sum (Available CL i)

Max CL
× 100 (4)

The same approach can be replicated using different
weighting factors, or even different HI structures. Whenever
there is unavailable information, the HI can still be calculated,

TABLE 2. Contribution of each parameter to the overall certainty level.

and recalibrated. However, the certainty level needs to be
reported along with the HI result as proposed in this paper.

C. HEALTH INDEX CALCULATION
The use of incomplete data for HI calculation can still be
done by reporting its certainty level alongside with the HI
result. The impact of data unavailability is evaluated in this
paper as per the proposed methodology shown in Fig. 1 that
is developed based on the assessment of 157 Indonesian
power transformers of 150 kV rated voltage. The 157 power
transformers encompass complete data as required by the
HI. The HI is first calculated for each transformer with all
complete data, resulting in HI0. Then, the dataset for each
transformer is adjusted to 50 combinations of various sce-
narios of unavailable data as shown in Appendix 1. For each
set of these scenarios, the HI is calculated. Hence, for each
transformer, 51 HI values are obtained (HI0 for complete
data and HI1 to HI50 for various missed data). The impact
of data unavailability is then investigated by comparing the
HI1-HI50 to HI0 as the baseline.

One way to calculate the HI when data is incomplete is by
ignoring unavailable data then recalibrating the obtained HI.
A simplified example of how this approach can be conducted
is presented in [22]. For instance, four failure modes, FM1 to
FM4, are assessed as input parameters to the HI model. In this
simplified example, the aggregation of HI is a simple sum of
each FM score, as shown in (5). Maximum score for each FM
is 25, and hence the maximum HI is 100.

The incomplete data in this example is simulated with
unavailable FM4. With incomplete data, the HI can still be
calculated through a recalibration step using (6).
• FM1 = 25 out of 25
• FM2 = 20 out of 25
• FM3 = 15 out of 25
• FM4 = Unavailable out of 25

HImax = (25+ 25+ 25+ 25) = 100 (5)

HIwith unavailable FM4 = (25+ 20+ 15) ∗ 100/75 = 80 (6)

This calculation ignores the unavailable data, but retains
the maximum value to be 100 by recalibration.

This paper adopts the HI approach using the structure
proposed in [29]. Each parameter is assigned a score Si, then
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FIGURE 1. Flowchart of the proposed methodology.

weighted using parameter weighting factor Wpi. The HI of
each factor is then calculated using (7) which is scored to
obtain SF j. The final HI is then calculated by aggregating
the SF j and Wf j values using (8). The maximum HI value
(100) indicates very good condition, while 0 HI reveals very
poor condition. More details about HI calculation can found
in [29].

HI each factor =

∑n
i=1 SiWpi∑n

1Wi
(7)

HIfinal =

∑n
j=1 SF jWf j∑n
j=1 4W j

× 100% (8)

IV. RESULTS AND DISCUSSIONS
Fig. 2 shows the HI of the investigated 157 Power Transform-
ers with complete data (HI0). The results show that 47 trans-
formers are in a very good condition, 22 in a good condition,
42 are in a concerning condition and need attention while
41 transformers are in a poor condition. Only 5 transformers
are found in a very poor condition.

A. IMPACT OF MISSED DATA
HI1 to HI50 are calculated based on the assumed missed data
scenarios and are compared with the HI0 that is calculated
with the availability of complete data. In this way, the impact
of data unavailability to the HI calculation can be evaluated.

Based on this analysis, Transformer A is in a very good
condition for all assumed scenarios as shown in Fig. 3. In this
case, data availability is not really showing observable impact

FIGURE 2. Health Index (HI0) results of 157 power transformers using
complete data.

FIGURE 3. Discrepancy of the Health Index results from various data
availability scenarios for transformer A.

FIGURE 4. Discrepancy of the Health Index results from various data
availability scenarios for transformer B.

on the HI results. This is because when the transformer is in
satisfactory condition, most of the parameters are in a similar
healthy state.

Fig. 4 shows that transformer B has a HI0 corresponds to a
concerning condition. The discrepancy in HI results is more
obvious at CL of about 70% and even more visible at lower
CL values. A similar pattern is observed for transformer C
as shown in Fig. 5. This transformer is in poor condition
when its HI is calculated with complete data (HI0).When less
data are used, the HI discrepancy is more visible. Moreover,
HI calculation shows that transformer C is in good condition
when the CL is around 61%. These results reveal the false
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FIGURE 5. Discrepancy of the Health Index results from various data
availability scenarios for transformer C.

FIGURE 6. Scatterplot of certainty level for Similarity cases of
HI1-HI50 with HI0.

health state that may be reported by the HI when some data
are missed. One way to overcome this issue is by considering
the CL along with the HI.

Fig. 6 shows a scatterplot of certainty level and each simi-
larity to HI0 for all studied HI1-HI50 scenarios. These results
reveal the impact of unavailable data on the HI results. The
similarity is decreasing when the certainty level is decreasing.
An exponential regression line can be obtained with a high
coefficient correlation of R2

= 0.848 as shown in Fig. 6.
In this study, a similarity percentage of 70% is considered as
an acceptable level, then a CL of 80% or higher is necessary
to obtain good agreement between HI0 and the HI calculated
withmissed data. Calculating theHIwith incomplete data and
with a CL less than 80% is considered inaccurate and calls for
the necessity of providing some of these missed data.

B. DATA TIMELINESS IN HEALTH INDEX CALCULATION
Another problem arising on power transformer HI calculation
is the data timeliness. Power transformers are frequently
observed once or twice a year, and more frequently for crit-
ical transformers. However, not all measurements are being

available at each inspection time [2], [22]. This can be an
issue for utility engineers to use the data for HI calculation.

One of the most common ways to assess the trans-
former with unavailable recent data is to use historical data.
Fig. 7 and 8 show examples of the use of historical data to
estimate the transformer current state. However, this may lead
to another uncertainty of whether the state of the parameter is
still relevant to the transformer current condition or not.

FIGURE 7. Using the previous interfacial tension measurement for
unavailable current data.

FIGURE 8. Using the previous colour scale observation for current
unavailable data.

In this paper, all of the used historical data to assess the
transformer current HI were measured in the same year.
Therefore, the uncertainty due to data timeliness is disre-
garded. However, for more accurate analysis about data time-
liness, further investigation is required, which is out of the
scope of this paper.

C. ANALYSIS OF THE PROPOSED MODEL
After assessing the investigated transformers HI and report-
ing the CL as suggested, analysis of the obtained results
is conducted based on the proposed guideline as shown
in Table 3. This guideline is explained through six case studies
as listed in Table 4 with the corresponding HI and CL values
for each transformer.

In Table 4, transformer 1 (TRF1) shows an HI in the
category of very good condition. There are missing values
for 2FAL and IFT. The calculated CL with such missing data
is 83% which is moderate. According to Table 3, no action
is necessary for this transformer. TRF 2 shows similar results
but has more complete measurements and higher CL.

The HI assessment of TRF3 shows a good condition.
The parameters missing are 2FAL, IFT, and oil colour.
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TABLE 3. Guideline for the simultaneous use of HI and CL to assess
transformer condition.

TABLE 4. Case study of six 150 kV power transformers.

The calculated CL (78%) is lower than the acceptable thresh-
old limit. High concentration of C2H6 is detected, revealing
a thermal fault in the oil or paper [30]. TRF3 has been in
service for 14 years only. Based on Table 3, the recommended
action for this transformer is to conduct more testing due to
the uncertainty of the obtained analysis.

TRF4 results in a concerning HI condition with complete
diagnostic parameters. This transformer has been in operation
for 20 years. As the parameters are complete, the CL is
100%. The oil quality factor classifies this transformer in
poor condition due to high acidity, low IFT, and pretty dark
oil colour [31]. The recommendation for this transformer is
to provide urgent action such as taking the transformer out

of service to rectify this issue before the health condition
becomes worse.

TRF5 is in poor HI condition, with the oil quality factor
in poor condition (D), while faults factor and paper condi-
tion factor need caution (C). The available data as shown
in Table 4 show that the acidity is very high. High acidity in
this transformer is an indication of oil oxidation that degrades
the insulation paper through hydrolysis process [32]. Due to
several unavailable data such as 2FAL, IFT, and oil colour,
the CL is low. It is recommended that TRF5 needs urgent
testing to confirm its current health condition.

Based on the HI of TRF6, its condition is considered very
poor. The faults factor of this transformer is critical, and
the paper condition is poor. The oil colour is moderately
dark with high concentrations of CO and CO2, which is an
indication for solid insulation degradation [31], [33]. The
dissolved gas analysis (DGA) interpretation using Duval Pen-
tagon indicated a thermal fault in oil above 700 0C. Even
though the 2FAL and IFT parameters are unavailable for this
transformer, the CL is 83% and the recommendation is to take
an immediate remedial action.

Results above indicate that complete data availability
results in more reliable HI. In case of missing data with a CL
of more than 80%, the HI will be close to the HI calculated
with complete parameters. In case of CL less than 80%,
some of the missed data should be measured or estimated as
elaborated in the prediction of the IFT below.

D. IFT PREDICTION MODEL
IFT is a measure of the inter-surface strength between oil
and water. IFT can be used as a detection tool for oil-soluble
sludge. During the early stages of oil aging, IFT changes
rapidly but this change usually stabilizes once a moderate
level of damage is achieved [34]. Because IFT is often
unavailable, a prediction approach using available measured
parameters for most of the Indonesian transformer fleets is
useful.

The proposed prediction model is developed using
357 transformers collected data, consisting of twelve input
features: water content (Water), voltage breakdown (VBD),
colour scale, acidity, carbon monoxide (CO), carbon dioxide
(CO2), hydrogen (H2), methane (CH4), acetylene (C2H2),
ethylene (C2H4), ethane (C2H6), and CO+CO2. These fea-
tures are shown in Table 5, and are used to predict the out-
put oil IFT value. The model is developed by training five
different algorithms, namely support vector machine (SVM),
decision tree (DT), random forest (RF), linear regression
(LR), and artificial neural network (ANN) with the collected
data along with the actual IFT value. A total of 18 feature

TABLE 5. List of used features.
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TABLE 6. Eighteen combinations of features.

combinations as shown in Table 6 are evaluated, and the opti-
mal model with the highest prediction accuracy is selected.

In this analysis, the used validation method is the 5-fold
cross validation. The procedure of the 5-fold cross validation
is conducted by dividing the dataset of N samples into five
groups of N /5 size each. The algorithm is trained using four
groups and tested using one group, then performed repeatedly
for five times. The mean accuracy is used as the accuracy of
the algorithm.

The performance of the proposed model is assessed using
symmetric mean absolute percentage error (SMAPE) to mea-
sure error percentage, then the percentage accuracy is calcu-
lated. Fig. 9 shows the accuracy of various IFT prediction
models based on various feature combinations in Table 6. The
results show that the median of the random forest model’s
accuracy in predicting the IFT value is the highest, which is
88.8%.

FIGURE 9. Boxplot accuracy of IFT prediction models.

Table 7 shows the percentage accuracy of various IFT pre-
diction models. The maximum accuracy obtained is 90.91%
using RF for combination 2, where ten input features were
used. The proposed RF model includes 100 number of deci-
sion trees. Combinations 8 and 10 show relatively good accu-
racy with limited measurements. Combination 8 produces an
accuracy of 90.66%, which used colour, acidity, and CO +
CO2. Removing CO + CO2 resulted in 89.14% accuracy.
In [15], a classification accuracy of 87% was achieved

by predicting the oil IFT using the soft voting classifier.
However, the IFT considered class in this paper was only bad
and good classes. Ref. [19] predicted the IFT value with an
accuracy of 95%. Ref. [35] also presented an IFT prediction
model based on oil spectral response. However, these models

TABLE 7. Accuracy percentage of various IFT prediction models.

require another testing of transformer oil that may not be
carried out in Indonesia. The prediction approach presented
in this paper uses available transformer data in Indonesia
without the need of additional testing.

Overall, the random forest-based model outperforms other
algorithms and the combinations of features result in high
prediction accuracy. Random forest (RF) is a classification
and regression method, comprising a combination of multiple
decision trees where each tree is generated using a random
vector that is sampled independently of the input vector.
In regression, tree predictors use numerical values instead
of the class labels used by the RF classifier [36]. Several
studies have also presented the implementation of RF in the
power transformer assessment. In [37] an RF technique for
transformer failure discrimination is presented and achieved
an accuracy of 98%. The study in [18] compared several
machine learning methods to predict furan levels in trans-
former oil, where the RF model produced a good accuracy.
Research in [38], [39] developed a partial discharge recog-
nition model using a variety of machine learning methods,
of which RF achieved the highest accuracy.

Another advantage of the RF is that it is easy tomeasure the
relative importance of each feature to the target. Fig. 10 indi-
cates that the feature with the highest relative importance
is the oil colour, followed by acidity, then CO and CO2,
and other measurements. The high feature ranking of colour,
acidity, CO, and CO2 for IFT prediction agrees well with
several previous studies. In [15], it was found that IFT has
a high correlation with acidity, dissipation factor, and colour.
An increase in oil acidity followed by a decrease in IFT is
shown in [21]. The colour of the transformer oil changes from
clear light (for new oil) to dark (for used oil) [19]. IFT is very
sensitive to the presence of degradation products dissolved in
oil. Meanwhile CO and CO2 are used as indicators for paper
degradation.
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FIGURE 10. Rank of features based on relative importance using Random
Forest.

FIGURE 11. Samples of IFT prediction using Random Forest model.

Fig. 11 shows 20 IFT prediction results using the proposed
RF model based on the measured oil colour and acidity
parameters. Appendix 2 illustrates twenty samples of trans-
formers data in which oil IFT value is estimated using the
proposed Random Forest model. The results show the high
accuracy of the predicted value compared with the actual
measured value (target).

Table 8 shows a case study on Transformers 1 and 6,
in which the IFT measurement is not available and is esti-
mated using the developed RF model. Available measure-
ments for oil colour and acidity are used to predict the value
of oil IFT.

TABLE 8. Implementation of the IFT prediction model for certainty level.

TABLE 9. Fifty combinations of data unavailability.

For TRF1, the predicted IFT is 41.61 mN/m, with a score
of 1. For TRF6, the acidity is relatively higher, and the oil
colour is darker. The prediction model produces an IFT value
of 29.53 mN/m, with a score of 2. By performing IFT predic-
tion, the CL of the two transformers is increased from 82 to
87. However, direct measurement for IFT is recommended
to increase the confidence level of the resulting transformer
health index.
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TABLE 10. Twenty samples of transformers data for the proposed IFT
prediction using Random Forest model.

V. CONCLUSION
Amethod to handle uncertainties due to data unavailability in
calculating transformer health index is proposed. In addition,
the impact of unavailable data is evaluated and resulted in
an exponential regression line with a high correlation coeffi-
cient. More unavailable data resulted in less accurate health
index. In this case, it is recommended to utilize the certainty
level along with the health index to obtain a better judgment
of the transformer condition assessment. An interpretation
guideline using the health index and certainty level is also
proposed.

Interfacial tension prediction model is also developed to
handle the unavailable data. Various machine learning algo-
rithms are used to develop the prediction model based on
several collected field data. Among the investigated algo-
rithms, random forest-based prediction model achieved the
highest accuracy in estimating the oil IFT based on oil colour
and acidity. The developed certainty level model can also
accommodate the results of the IFT prediction into the health
index result.

By using the certainty level together with the HI value,
a proper asset management decision can be taken on the
transformer even with some missed data.

APPENDIX
See Tables 9 and 10.
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