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ABSTRACT Component-based software development (CBSD) is an alternative approach to constructing
software systems that offers numerous benefits, particularly in decreasing the complexity of system design.
However, deploying components into a system is a challenging and error-prone task. Model-checking is one
of the reliable methods to systematically analyze the correctness of a system. Its brute-force checking of
the system’s state space assists to significantly expand the level of confidence in the system. Nevertheless,
model-checking is limited by a critical problem called state space explosion (SSE). To benefit from model-
checking, an appropriate method is required to reduce SSE. In the past two decades, a great number of SSE
reduction methods have been proposed containing many similarities, dissimilarities, and unclear concepts
in some cases. This research, firstly, plans to present a review of SSE handling methods and classify them
based on their similarities, principle, and characteristics. Second, it investigates themethods for handling SSE
problem in the verification process of CBSD and provides insight into the potential limitations, underlining
the key challenges for future research efforts.

INDEX TERMS Component-based software development, verification of software components, model-
checking, state space explosion.

I. INTRODUCTION
Component-based software development (CBSD) is a vital
emerging topic in software engineering [1], [2]. CBSD is an
alternative approach of constructing systems from prebuilt
software units (components) which offers numerous bene-
fits, particularly in decreasing the complexity of the system
design. However, deploying components into a system is a
challenging and error-prone task. Errors may lead to destruc-
tive results. A single error can lead to an overall system crash,
as in the error that crashed the Arian-5 rocket. There was a
small application in Arian-5 for the inertial reference system
that was trying to assign a 64-bit floating-point number into
a variable with 16-bit space [3]. This small mistake led to
the catastrophic explosion of the aircraft. There are various
other safety-critical systems similar to the Arian-5 that could
have disastrous outcomes if such errors occur; like in nuclear
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power stations, avionic software, aircraft flight control, and
traffic control [4].

Model-checking is one of the renowned approaches for
verifying component-based software systems [5]. It is a brute-
force verification method that is able to automatically and
systematically analyze the specification and state space (SS)
of a given system to demonstrate if its properties are satisfied
completely or otherwise. This approach has been proposed
independently by Clarke et al. [5] and Queille and Sifakis [6].
The brute-force check of SS in model-checking significantly
expands the level of confidence in the system.

However, model-checking is limited by state space explo-
sion (SSE). SSE occurs when a system’s state space increases
exponentially with the number of its components, thus
rapidly surpasses the memory capacity of the computer.
Subsequently, the amount of SS that can be checked by
a model checker will be restricted. However, the promis-
ing advantages offered by model-checking have neverthe-
less encouraged the research community to tackle the SSE
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obstacle and has spearheaded the major direction of model-
checking research [7], [8]. As a result, a massive collection
of methods to alleviate SSE problems in all domains of
software development has been presented. However, it should
be determined which of these methods and algorithms would
be sufficient in CBSD for supporting component-wise soft-
ware development and its justification in order to ensure its
compatibility in component-wise software systems.

In that effort, we first summarized in subsequent sections
all the proposed SSE reduction methods present in literature
and provided a classification based on their principles and
characteristics. The classification offers explanations pertain-
ing to the key features and challenges in the literature that
would aid in understanding model-checking and SSE reduc-
tion methods. The classification can then be utilized in the
development of a new method that is suitable for a particular
application domain.

Additionally, it can be deduced further to determine from
the classification all component-wise software methods that
are utilized the most in CBSD to rectify its suitability for
CBSD along with a discussion pertaining to the key feature
and challenges that are mentioned in the literature.

To this end, we set up the following objectives:
1- reviewing and briefly describing the methods presented
in the literature to address SSE problem in model checking;
2- classifying them based on their principles and charac-
teristics; 3- deducing the key features and challenges of
the methods mentioned in the literature; 4- identifying and
discussing the methods for tackling SSE problem used in
CBSD in order to both analyze gaps and identify suitable
methods for SSE reduction in CBSD.

To complete these steps sufficiently, six research questions
(RQs) have been formulated which are defined in Section II.
Answering these questions aids in enhancing comprehen-
sion, determining the suitability of SSE reduction methods,
and underlying the key features and challenges for future
researches.

The presented study shares similarities with surveys pre-
sented in [9]–[11] for dealing with SSE problem, however,
this paper collects the wide range of SSE reduction methods,
offers explanations for each method, their success factor,
and identifies challenges. Additionally, a discussion of SSE
problems in component-based systems is also covered. Other
review papers alike [12], are based on the tool-sets which is
beyond the scope of this paper.

The remainder of the paper is arranged as the following: in
Section II, the research methodology is presented. Section III
provides an explanation of the basic concepts about SSE used
in this paper. Section IV defines, classifies, and explains the
different methods for alleviating SSE problem. In addition,
it also contains a tabled summary of the key factors and
limitations of these methods. Section V contains a discussion
about tackling SSE problem in CBSD and identifies the
key challenges for future research. Section VI discusses and
concludes the results.

II. RESEARCH METHOD
In this section, the conducted research method is described.
In order to collect studies; we carried out the following
steps: (i) formulating research questions, (ii) identifying key-
words, databases and search strategy, (iii) obtaining inclu-
sion and exclusion criteria to collect and analyse literatures,
(iv) quality assessment and selected studies, and (v) informa-
tion extraction.

A. RESEARCH QUESTIONS
The objective of this work is to classify and briefly describe
SSE reduction methods and the underlying key features and
challenges of the methods in both general and CBSD sys-
tems. The set of corresponding research questions are listed
in Table 1. Answering these RQs establishes an effective
overview of the most current SSE reduction method and
fulfills the objectives of this research.

B. KEYWORDS, DATABASES, AND SEARCH STRATEGY
The keywords and search query for the RQ (1, 2, 3) were
(‘‘model-checking’’ AND ‘‘State space explosion problem’’)
or (‘‘model-checking’’ AND ‘‘the name of each mitigation
methods for SSE, for example, assume-guarantee’’). For RQ
(4, 5, 6), we added ‘‘component-based system’’ to the above
search strings.

To shape the keywords and search query, this work relies on
‘‘Model Checking’’ by Clarke et al. [5], and ‘‘Specification
and verification of concurrent systems in CESAR’’ byQueille
and Sifakis et al. [6], as a basis together with other studies
published by those studies like [13], [14]. One of the reasons
that these books and studies have been selected is a credit to
the authors as pioneering scientists in the model-checking.

The search queries have been executed in widely known
electronic database/library resources such as ACM digi-
tal library, IEEEexplore, Science Direct, Web of Science,
Springer link, Google scholar, Citeceer.

C. INCLUSION AND EXCLUSION CRITERIA
In order to select the most important papers within the scope
of this paper, a set of inclusion and exclusion criteria have
been established. It is represented in Table 2.

D. QUALITY ASSESSMENT AND SELECTED STUDIES
After each iteration of the query, a preliminary review is
carried out based on the inclusion and exclusion criteria to
obtain an appropriate literature collection. Although specify-
ing keywords and search queries, it has been observed that
some results returned by the search engine are pertaining
to model-checking concerning other domains or perspectives
such as hardware verification. Some papers also use model-
checking for specific programming languages or verify spe-
cific software. For example, in [15] a compositional approach
has been presented and utilized for automatic verification of
C programs. These papers are excluded as well.

VOLUME 9, 2021 77527



F. Nejati et al.: Handling SSE in Component-Based Software Verification: Review

TABLE 1. Research questions.

TABLE 2. Inclusion and exclusion criteria.

Some of the studies found were based on deductive meth-
ods like theorem proving. However, model-checking is an
algorithmic method for deciding whether a hardware or soft-
ware design meets a formal specification [16]. Due to this,
studies containing methods such as theorem proving are
excluded as well. For more details on difference between
deductive methods and model checking, refer to [17]. The
emphasis of this paper is more on having insight into the

SSE reduction methods and determine the methods that are
suitable for verifying component-based systems.

E. INFORMATION EXTRACTION
We extract the following items from each selected paper:

1) SSE reduction methods: the methods to mitigate SSE
problem.
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2) Method’s description: a brief description of SSE reduc-
tion methods.

3) SSE reduction methods in CBSD: the frequently used
SSE reduction methods in CBSD. With the focus to
show which SSE reduction method has been used fre-
quently in (all domain of) CBSD.

4) Key features and potential challenges: the pros and
cons of the methods that have been obtained in the
literature.

5) Examples: Utilizing study examples/tools and illustra-
tions of other aspects or domains of the methods to aid
in the conceptual comprehension.

III. MAIN CONCEPTS
Formal methods have great potential to verify and ensure the
system’s correctness as early as possible. It removes ambigu-
ity in the system specification and provides preciseness. One
of the well-known formal methods is Model-checking. It is
possible to describe model-checking as a tuple:

MODELCHECKING =<M,S > (1)

whereM is a system model with m states and S is the formal
specification as shown in Figure 1. Let m be a state of the
system model, m ∈ M, then model-checking searches all
states mi for 1 ≤ i ≤ n in M and returns ‘‘Yes’’ if ∀m
satisfy S, (∀mi ∈ M) |H S for 1 ≤ i ≤ n. Otherwise, model-
checking produces counterexample(s). Counterexample(s) is
a declaration that defeats the specified properties on a given
system by presenting it in at least one path in the SS.

FIGURE 1. Model checking.

System model M is a conceptual model to represent and
describe a system. In model-checking, a system model is
originally represented by a Kripke structure, but can be rep-
resented as a state chart [18], Petri net [19], or other possible
graph-like visualization of system’s SS. Using graph-like
representation by individual states is one of the main repre-
sentation paradigms in model-checking called explicit-state
model-checking. Figure 2 shows an explicit-state system
model based on a Kripke structure. The nodes in Figure 2(a)
(named by X ,Y ,Z ) are the states of a system (or a process)
modelled as nodes in the Kripke structure. Figure 2(b) shows
the SS of the modelled system in Figure 2(a).

Another representation paradigm is the implicit model-
checking. In this model, states checking are not individually
represented, but a quantified propositional logic formula is
used to represent the state space graph.

FIGURE 2. A kripke structure and its computation tree [5].

The formal specification in model-checking is represented
by propositional temporal logic which is a kind of logic to
specify and reason over the ongoing properties of the system
being modelled in terms of time. There are two types of
operations that temporal logic supports: The first are logical
operators such as¬,∨,∧, and the second refers to modalities
like Finally, Until, Globally. The set of operators which
expresses properties in only a single future position for every
point in running time is called linear temporal logic (LTL).

FIGURE 3. Example of LTL operators [14].

In Figure 3, three sequences of events of a system (or a
process) is shown with two properties, p and q. LTL checks
only one sequence of event(s) in a single run and does not
switch to another run while checking. For example, in the
first sequence of events in Figure 3, Fp (finally properties
p happens) will be checked. The light blue state, p, will
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FIGURE 4. Example of CTL operators [14].

finally happen after the other states (indicated by dark blue) is
checked. For the second sequence of events in Figure 3, p U q
(p can continue to happen until q happens) will be checked.
The light blue and green states are p and q accordingly. For
the third sequence of events,Gp (globally pmay happen in the
future) among all of the states in the sequence, pmay happen.
Due to this, all the states are in light blue.

On the other hand, there is another type of temporal logic
called computational tree logic (CTL) that is able to check
all possible paths in a single run. In Figure 4(a), the light
blue nodes are all possible paths, which CTL can switch
between any of them during one single run. It checks by
operator AGp (in all paths, the property p may happen). CTL
operators can support one sequence of events in one run
as well. For example, in Figure 4(b), the light blue path is
one sequence of events. This sequence will be checked by
operator EGp (eventually in one of the paths, the property
p may happen) to indicate whether p eventually happens
or not.
System property is defined by temporal logic. Some com-

mon system properties are reachability properties (some par-
ticular position in a system model that can be met), Safety
properties (under particular circumstances, an event will not
happen in any way, like without the key a car won’t start.),
liveness (under certain circumstances, some event will even-
tually happen, like if we press the button of an elevator, it is
bound to arrive ultimately.), fairness (under certain circum-
stances an event will or will not happen infinitely often, like
the gate will be raised infinitely often.) [5].
State space explosion is the most critical problem restrict-

ing model-checking. To define SSE, let a given system
contains n processes and each process has m states (same
states). The size of SS of these n processes might be mn.
Then, the amount of state space of a given system may
increase exponentially with the size of its states (processes)
and consequently exceed the memory capacity of the
system.

IV. RESULTS ON SSE REDUCTION METHODS
This section elaborates the results of SSE reduction methods
that have been found in the research literature. The results
are represented as a classification of SSE reduction methods.
The classification has five dimensions summarized as the
following:

1) Memory handling. Identifies the methods that
are directly engaged in memory expansion and
management.

2) Heuristics and probabilistic reasoning. Identifies the
methods that are able to find an approximation of the
exact solution. They are the fastest way to find a close
solution when the exact answer cannot be computed.

3) Scaling down the state space. Identifies the methods
that try to reduce the size of states to be stored in the
memory. The reduction can be based on compression,
symmetry, and similarity omission, using binary deci-
sion diagram (BDD), or hash table.

4) Bottom-up approach. Identifies the methods that start
verification as early as the whole state space is
constructed.

5) Divide-and-conquer approach. Identifies the methods
which decompose the state space into small parts and
address each small part separately.

SSE problem is a bottleneck in model-checking. The
amount of a system’s SS (even a finite system) strongly
depends on its components and is prone to increase in size
exponentially. Consequently, it easily exceeds the computer’s
memory capacity and limits the size that can be verified
by a model checker. Therefore, memory becomes the main
concern for SSE reduction methods. Memory concern can
be addressed from several aspects, for example, expanding
memory capacity, reducing the states that need to be stored in
memory, released memory from the redundant and repeated
states, etc. Generally, a method cannot cover all the aspects,
some methods find and omit redundancies, while others may
focus on memory expansion. Therefore, this work simply
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FIGURE 5. An overview of SSE reduction methods.

classifies these methods according to the aspects that each
method can cover.

A discussion about the classification is provided in detail
in the first subsection and an illustration of it is represented
in Figure 5. Each class is divided into multiple sub-classes
which is in accordance with the current methods for tackling
SSE problem. The RQs (1, 2) are answered in this section.
The second part of this section pertains to RQ 3. The char-
acteristics, key features, and challenges of SSE reduction
methods have been summarized in tables.

A. CLASSIFICATION
The classified SSE reduction methods are described below
based on evaluating the selected studies:

1) MEMORY HANDLING
As previously described, memory is the main concern of SSE
reductionmethods that can be addressed from several aspects.
Some of them are specifically involved in memory and are
contradictory to the other methods like compressing the state
space. These kinds of methods are based on the following
principles: 1- proper memorymanagement to increase perfor-
mance. Memory management is a process of controlling and
incorporating programs by using a sufficient methodology to
fragment, allocate, monitor, and release memory. 2- increase
memory capacity to provide more space for data storage.
It can be achieved by expanding the external memory. The
aforementioned two principles can be achieved through the
following:
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a: EXPANDING EXTERNAL MEMORY
The idea of using an external memorywith a proper algorithm
when the RAM cannot handle all data, might be one of the
solutions to overcome SSE problem. External memory is able
to provide a much larger space. Currently, the capacity of
magnetic disks is increasing enormously at a relative cost.
This fact motivates researchers to utilize external memories
in model-checking. Due to the fact that external memory
cannot be accessed rapidly like internal memory, providing
an efficient external memory algorithm is the main concern
in using thismethod. The algorithmmust organize disk access
carefully and precisely. The efficiency of the algorithm is
determined via the amount of I/Os. In other words, between
the amount of I/Os and time efficiency, there is a relationship
in the sense that the time efficiency will be improved if the
I/O actions are reduced.

Lamborn and Hansen [20] proposed layered duplicate
detection to improve duplicate elimination in external mem-
ory model-checking. This approach determines which states,
while searching in the state space, should be stored in the
RAM, and which of them should be stored on disk. As a
result, it increases the efficiency of the run time and decreases
the amount of disk storage.

Wu et al. [21] proposed an I/O (input/output) efficient
methodology to provide a model checker based on extending
memory. Their methodology is generally based on nested
depth-first (NDF). By combining the following threemethods
the authors have achieved a significant improvement in time
efficiency of I/Os. The first method is sorting a hash table in
linear time. In this method, the already visited states sorted in
a hash table will be merged into a hash table which is saved
and sorted into the external memory. The second method
is detecting duplicates in a cache. Finally, the third method
refers to the managing of the dynamic path. This methodol-
ogy gives performance guarantees for I/O efficiency.

b: GARBAGE COLLECTION REDUCTION
Garbage collection reduction is a memory management
policy that is inspired by utilizing garbage collection in
real-life software systems to improve model-checking meth-
ods. It deletes information about already visited-states and
reclaims allocated memory while model-checking is per-
formed. On the contrary, when garbage collection and mem-
ory reclaiming for idle memory is not utilized, the state space
may grow and limit the verification. Garbage collection has
some advantages, for example, it does not suffer from ineffi-
cient memory fragmentation and complex pointer analysis.

One of the classic collection algorithms is by Mark and
Sweep. In this algorithm, a state can be marked as garbage
when no more transition to it is available [22]. In other
words, it is based on reachability [23] and uses graph-search
algorithms like depth-first search to indicate any state that
must be marked as garbage.

The other collection algorithm is reference counting col-
lection [24]. It discovers the garbage directly by monitoring

and counting the pointers that point to each state. Disabling
to reclaim the cycles of garbage is the major difficulty of this
algorithm [23]. Additional algorithm for garbage collections
is based on finding usability [25]. The most widely used
garbage collections are Java based programs [26].

2) HEURISTIC AND PROBABILISTIC REASONING
In many problems that do not have an exact solution, the hope
is to have at least an approximate answer. In this case, prob-
abilistic reasoning can handle the situation. It is able to find
approximate solution faster than other methods. The solution
may not be optimum, however, is still valuable because it
helps us in cases that the exact solution could not be achieved.
Utilizing this kind of method is a possible way to reduce
the model-checking effort. The rest of this section intro-
duces a few SSE reduction methods based on probabilistic
reasoning.

a: GENETIC ALGORITHMS
A genetic algorithm (GA) in computer science is a meta-
heuristic optimizer that is based on population (a set of
chromosomes) and encouraged by biological evolution. GA
is a subset of a larger category called evolutionary algo-
rithms (EA) and has been used in model-checking [27].
In some cases, an existing exact method (the methods which
try to find an exact solution, not an approximate solution)
can fail to detect an exact or complete solution for a given
problem or there is no solution with lower complexity to
them. Thus, it may be sufficient to find solutions approxi-
mately or to provide faster coverage approaching solutions by
using heuristics such asGA. In analyzing the use of GAor any
EAs in model-checking, one must consider to target find-
ing any solution (any error) not only the optimum solution.
In addition, every reachable state of the entire system must
also be checked.

P. Godefroid and S. Khurshid investigated the utilization of
GA in order to explore very large state space for finding errors
such as deadlock and assertions violations [28]. They com-
bined model-checking and GA to guide searching during the
verification problem of a concurrent reactive system. When
there are more than one enabled transitions in the current
state, GA tries to explore them and find the transition which
is the most fitted to be selected by using a fitness function.

Yousefian et al. [29] explored the use of GA for model-
checking of graph transformation systems. In their work,
an incomplete SS is created instead of creating an entire SS to
detect deadlock. Model checker only checks paths with a low
outgoing transition. Another article found in the conducted
search [30] presented a mixed way of genetic algorithm and
assume-guarantee reasoning (this type of model-checking is
introduced later in this paper) to mitigate SSE.

To enhance the results of using EAs in model-checking,
other state-of-the-art algorithms like the Imperialist com-
petitive algorithm [31], Grey-wolf optimization algo-
rithm [32], or Raccoon optimization algorithm [33] may help.
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b: RANDOM WALK
Random walk defines a path that includes a sequence of
random steps to find errors in model-checking [34]. For a
certain type of graph like the Markov chain, random walk
is able to decide reachability and predict error traces by
polynomial algorithms. The complexity of the algorithms
is not better than some other methods for alleviating SSE
problem, instead, it is worst. However, some advantages exist
and are of interest to researchers to use in the verification
processes. For instance, its need for memory space is minimal
which is an advantage. Secondly, parallel random walk is
easy to implement and reduces execution time. Despite the
advantages, it does not guarantee the exploration of all global
states.

A tool for randomization search in SS has been proposed
by Owen et al. [35] called LURCH. The researchers com-
pared the tool with other tools and concluded that LURCH
cannot be preferable as much as the others that have a com-
plete search feature. Nevertheless, futuristics and random
search can be useful to some system models that are massive
and cannot be explored completely. A random walk based
heuristic algorithms are presented in [36], [37]

c: BLOOM FILTER
The two main schemes for probabilistic verification are hash
compaction and bit state hashing, which utilizes the data
structure of Bloomfilter. Bloomfilter is an explicit and proba-
bilistic method for verification activities. It stores compressed
values in a hash table rather than storing full state descriptors.
During the verification process, the states with a non-zero
probability will be deleted. Therefore, some reachable states
are never checked during the verification process and may
result in false-positive outcomes.

An improved probabilistic method based on this method
has been proposed by U. Stern and D. L. Dill in [38]. The
researchers reduce the probability of deleting states by using
a specific hashing design. The design requires a lower number
of probes required in the hash table. Another work of them for
the probabilistic method is presented in [39].

Dillinger and Manolios [40] proposed a method based on
Bloom filter which is more accurate that shows the Bloom
filter can play an important role in model-checking.

d: ANT COLONY
Ant colony method is another probabilistic method to opti-
mize the problems which is mostly used to find the optimum
paths through graph-like models. It can be also applied in
model-checking and verification. Duarte et al. [41] combined
model-checking and the ant colony method to solve the trav-
eling salesman problem.

e: MACHINE LEARNING
Machine learning (ML) is another method used to train the
data set of a verification process. The data set could be
the system modeled through graph-like visualization such

as Kripke structures, CTL or LTL formulas, and the results
obtained from a model-checking tool. Subsequently, ML
trains the data set to predict the results. The related articles
based on the conducted search in this paper for machine
learning in model-checking are [42] and [43].

Another kind of heuristic model-checking method to mit-
igate SSE found through the search result is the continuous-
time Markov chain [44], [45]. A hybrid metaheuristic
approach is also presented in [46]. Heuristic model checking
could be utilized by other SSE reduction methods to get
more optimum results. For example in [47] a heuristics-based
incremental model checking at runtime has been introduced.

3) SCALING DOWN THE STATE SPACE
Scaling down the size of SS to be checked by model checkers
is another way to alleviate SSE problem. One can begin
by representing the SS in another way (implicitly) which
consumes less memory, like symbolic representation instead
of defining them in the original shape (explicitly), which truly
compresses the SS. In the comparison part of this section,
in Table 3, the implicit and explicit methods have been indi-
cated. Furthermore, capturing a critical part of the system [48]
and ignoring irrelevant or useless variables and information in
a system leads to a decrease in the size of the SS. Additionally,
discovering duplicate states and avoiding regenerating them
is another way of reducing SS.

The following briefly discusses some methods for alleviat-
ing SSE problem for the state space scaling down class.

a: SYMBOLIC MODEL CHECKING
This method is utilized to compress the SS of a system by
symbolically (implicitly) representing the SS. It considers a
large number of states in a single step and represents them
as formulas instead of enumerating them one at a time. As a
result, representing them in such a way, reduces the size of the
SS. It was introduced by Burch et al. [49] based on Bryant’s
binary decision diagram (BDD) for Mu-Calculus. BDD is a
data structure used to canonically represent a Boolean for-
mula that is essentially compressed even more than other data
structures, and Mu-Calculus falls into a kind of logic called
modal logic (a type of logic that is able to express modalities
like a possibility and impossibility) which is able to define
the properties in terms of graph-like patterns.

The methods have been used successfully for many prob-
lems such as to derive efficient decision procedures for CTL,
and satisfiability of LTL. For example, a verification tool-set
called ITS-tools by Thierry-Mieg [50] has been developed
based on symbolic model-checking which supports reacha-
bility property and two kinds of temporal logic, CTL and LTL
of the concurrent specification. Symbolic model-checking
also has been used in a diverse range of systems like dis-
tributed control systems [51].

However, the BDD that is a substantial part of symbolic
model-checking extremely relies upon the variable’s ordering
which limits the use of symbolic model-checking. To illus-
trate it more precisely, we use the following example:

VOLUME 9, 2021 77533



F. Nejati et al.: Handling SSE in Component-Based Software Verification: Review

Let two orders of a Boolean functions with 6 variables
[52], [53]:

1− (a.b)+ (c.d)+ (e.f )

2− (a.d)+ (b.e)+ (c.f )

These two Boolean functions have the same number of
variables, but they are different in order. The constructed
BDD for both, as indicated in Figure 6, are not the same
because BDD is sensitive to ordering. For the first function,
the BDD has fewer nodes while for the second function it has
more nodes.

FIGURE 6. Ordering dependency [52].

Thus, reduced ordered binary decision diagrams (ROBDD)
are used to reduce decision graphs and provide a more
concise canonical representation for Boolean propositions.
An improved variable ordering of BDD was introduced by
Prasad et al. [54] that is based on graph topology. They
demonstrated that using a graph representation of a given
Boolean function and computing the shortest path among
the variables can improve ROBDD. Further work to improve
ROBDD was presented by Sharma and Singh et al. [55] to
get the most optimum size of ROBDD. However, comput-
ing an optimum order for ROBDD generally falls into the
NP-Complete problem category proved by B. Bolling et al.
in [56] and B. Bolling in [57]. A parallel version of symbolic
model-checking was also presented to improve the sequential
version [58] and [59].

b: BOUNDED MODEL-CHECKING
Bounded model-checking (BMC) has been proposed in
[60], [61] to deal with the complexity of model-checking and
provide error traces. In this method, the length of the trace
to be explored is limited via a fixed amount of states which
will be indicated by 2k ∈ int , as illustrated in Figure 7.
Then, it checks through it to reveal error states. If an error
location could not be reached inside the bound, the amount
of k will be increased and the process will be repeated until
one error is found. The selected k has to be large enough,
otherwise, the method is not able to be completed [62].
However, if k is small enough, it outperforms BDD

FIGURE 7. Bounded model-checking [64].

based model-checking [63]. Furthermore, discovering the k
involves minimal hands-on manipulations. On the other hand
BDD requires a great deal of hands-on effort to find an
optimum ordering. In addition, BMC can handle much more
clauses and variables than BDD methods [62].

Bounded model-checking is the most important industrial
application for the Boolean satisfiability (SAT) solver [65].
SAT solver provides a platform for searching and reasoning
based on propositional logic that is able to solve complex
problems with millions of variables and constraints [66]. SAT
testing falls into NP-complete problems [63] and some recent
works shows that using BMC in SAT leads to successfully
verify security critical systems [67], concurrent systems [68],
multi agent systems [69], generating functional tests [70],
signal temporal logic [71], and parallel and distributed
systems [72].

BMC can also be based on satisfiability modulo theories
(SMT) [73]. SMT allows to compress the formula when
arrays and vectors are involved [74].MBCwas developed and
used in a wide range of communities and domains [68], [72],
[75], [76]. An explicit version of BMC has been proposed in
the literature in [77].

c: PARTIAL ORDER REDUCTION
This method attempts to cut down the state space of concur-
rent asynchronous systems [78]. In asynchronous processes,
interleaving models of executions must consider all possi-
ble orders of events for the sake of preventing the omis-
sion of important ones. Some of these ordering results in
the same state, as shown in Figure 8. To avoid this, partial
order reduction avoids analyzing all sequences and considers
only an incomplete set of events. Its methodology does not
distinguish between traces that only differ by their orders.
For example, in Figure 8 to reach s′ from s, it does not
matter if α is run first or β. The set of events includes only
representatives of enabled transition. Some approaches of
partial order reduction is introduced in stubborn sets [79],
ample sets [80], persistent sets [81], unfolding methods [82],
and sleep sets [83].

Normally, the reduced model of partial order reduction is
explicit and is produced by utilizing methods based on mod-
ified depth-first search [85] or breadth-first search. It can be
combined with other methods such as the on-the-fly model-
checking [86] or symbolic model-checking [80]. This method
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FIGURE 8. Some ordering results in a same state [84].

reduces the memory usage and time requirements. One of the
key factors affecting the efficiency of these methods is the
number of enabled transitions, which may change a predicate
in the verified property [87]. In complex systems, the number
of these transitions increase, and fewer reductions can be
constructed.

d: ABSTRACTION
Abstraction is a method to handle more state space by
abstracting away the entire state space. It is based on the
fact that states indicate computations in series of objects and
obvious relationships that normally many similar behaviors
are between them. The abstraction methods can interpret
these objects in another universe of abstraction to avoid
exploring all of them. However, the result of its execution
must be the same as the original one [88]. In [5], abstraction
is defined as the following: let Si is ith state over the set of
all states S1 . . . Sn. Abstraction will give a surjection h =
(h1, . . . , hn) that groups andmaps each state to corresponding
abstract states. In [89], E. M. Clarke et al. indicated that the
abstraction can be done based on the following aspects: an
equivalence modulo of an integer to address mathematical
operations, symbolic abstraction, and single bit abstraction
to address bit-by-bit logical operations.

As an example for the above kinds of abstraction, consider
the following arithmetic modulo [89]:

(x mod i)+ (y mod i)modi ≡ x + y (mod i)
(x mod i)− (y mod i)modi ≡ x − y (mod i)
(x mod i)(y mod i) mod i ≡ x y (mod i)

To abstract the above modulo and determine the value
of modulo i, we can use the values of modulo i from the
sub-expressions.

Another type of abstraction strategy based on storage
reduction of states has been studied by Holzman et al. [90]
that intends to minimize the size of the used memory during
the construction of the state space. Additionally, another
algorithm called cone of influence is considered as an abstract
method that removes all variables from the systemmodel. The
variables are idle or do not have any influence on the system
properties [5]. Abstractionmethod has been successfully used
to verify in many domains [91], [92].

e: SYMMETRY REDUCTION METHODS
Symmetry reduction method attempts to reduce the amount
of state space. It is based on replacing sets of symmetrically

similar states in a given model via a single representative
class. Consider Figure 9 of a mutual-exclusion for two com-
ponents a, b modeled by a Kripke structure. There are many
obvious symmetries between the components. For example,
when component a is in the critical section, component b is
waiting, equivalently, when the state in b is in the critical
section, a is waiting. It is an adequate way of verification if
we could find such equivalent states and check only one state
from each class instead of checking all individual states.

FIGURE 9. Mutual exclusion.

A constructed model M ′ of system M under symmetry
methods is called a quotient structure and a given prop-
erty fi holds for M (fi |H M ) if and only if, fi holds for
M ′(fi |H M ′). Symmetry reduction methods have two diffi-
culties: orbit problem, and constructive orbit problem. Orbit
problem seeks to find if the two states a and ā are in the equal
orbit [93]. It is not known as NP-complete, but it is harder
than isomorphism problems.

Constructive orbit problem (COP) is a representative func-
tion that replaces a set of symmetrically similar states in a
givenmodel by a single representative which is minimal. This
problem falls into NP-hard problems [94].

f: HASH TABLES
A set of effective reachable states in contrast to the amount
of possibly reachable states of a given state space is few.
All effective states are stored somewhere in the system’s
memory. Oneway to retrieve these sparse states, which can be
visited before and will be needed several times during check-
ing, is by using hash tables. A hash table is an alternative to
direct addressing into an ordinary array. This property of the
hash table provides a simple way to examine an arbitrary state
in a given array in O(1) time [95]. It can be considered as a
yes-no method that is able to improve reachability analysis in
verification processes.

G. J. Holzman in [96] speeds up the process of generating
an exhaustive list of all visited states during a search for errors
and check new generations of states against all pre-analyzed
states by a hash table. Through a hash table, the states can be
accessed quickly and decrease the amount of state for check-
ing. To compress information more, they ignored storing the
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hash key itself (states) and only used the hash value (the
address computed) to identify a state. The hashing discipline
has been used to improve state storage and state comparison.
Another example is the SPIN model checker [97] that utilizes
hash functions.

4) BOTTOM-UP APPROACH
A verification process that can be done in a bottom-up man-
ner prior to the entire state space construction. The state
space will be checked bit by bit and the global properties
can be deduced by combining their results. In the bottom-
up approach, it deletes the states that are already checked
from memory and can be re-verified when needed. On the
other hand, the verification information from the verified-
states can be reused without the need to re-verify. In contrast
to compositional verification, bottom-up approaches do not
involve system decomposition. The following two bottom-up
approaches in alleviating SSE problem is discussed:

a: ON-THE-FLY METHOD
This method is an explicit method that is able to verify a
system without storing the complete construction of the state
space in memory. On-the-fly model-checking starts checking
from an initial state and searches adjacent states to gain
local knowledge about the state space in a stepwise manner.
The key factor here is storing only the current path and
verification along with the construction of the system state
space. In other words, it does not postpone the verification
until the state space construction is completed. Therefore,
the counterexample of the properties that do not hold can be
found and generated as early as possible. This property is the
most important advantage of the on-the-fly method [98].

Another advantage of the method is that it reduces the
memory requirements substantially because it already elimi-
nates visited states from memory. On the other hand, elim-
inating already verified states may increase the run time
during error searching. Since this method does not store the
already-visited states in memory and may need to regener-
ate them over and over, then the time of exploration grows
dramatically.

The methods themselves often employ depth-first-search
(DFS) algorithms for searching through the state space. The
run time of this method relies upon the number of states
and the number of transitions. The DFS algorithm is divided
into two categories: Nested DFS and strongly connected
component (SCC). Nested DFS, firstly searches for accept-
ing states. Secondly, it searches for cycles around accepted
states. Despite the memory efficiency of this algorithm,
it may lead to finding a very long trace of a counterexample.
In [99], the authors proposed a method to achieve a minimal
counterexample.

SCC-based on-the-fly methods find a strongly connected
component from an initial state to a given state. If any viola-
tion is found, then it produces a counterexample trace that is
strongly connected, and it includes at least one component.
In comparison with nested DFS, it utilizes more memory,

a larger stack, and finally a longer counterexample.
J. Geldenhuys introduced Tarjan’s algorithm [100] to
improve this kind of model-checking. Furthermore, Gelden-
huys and Valmari [101] improved Tarjan’s algorithm in terms
of finding an accepting cycle sooner and producing a shorter
counterexample. On-the-fly methods have been combined
with other methods such as symmetry reduction [102].

b: INCREMENTAL VERIFICATION
Incremental verification is one of those approaches that iter-
atively generates the SS of the system and verifies them until
the overall properties of the system are satisfied. The key
concept here is twofold: 1- preservation of the system prop-
erties when new increments have been added; 2- providing
an appropriate way to avoid re-verifying the system when
new increments in the higher level of verification have been
added. Consequently, it reduces the whole verification effort.
Incremental verification is discussed in detail in section V.
[103] is a research falling under this class and is discussed
in section V.

5) COMPOSITIONAL VERIFICATION
Compositional verification is a kind of divide-and-conquer
approach which deals with SSE problem. It divides a large
and complex problem into sub-problems and verifies each
part separately. Contrary to its name, this method decomposes
a given system into small components and then verifies the
local properties of each component. One of the articles in
this direction is [104]. The verifying of local properties of
the sub-systems contributes to the deduction of the entire
system property. Obviously, by using this approach the whole
SS does not need to be constructed and the sub-systems are
not as big as the system itself. Consequently, the state-space
volume will be significantly reduced. In addition, it provides
more insight into the system interactions. Compositional ver-
ification has several alternative methods which are explained
below:

a: INTERFACE RULE
It makes an abstraction interface of component constraints
and then proves the preservation of each local component by
an interface rule. The idea behind using the interface abstrac-
tion is that in the composition process, only the properties are
observable for other components should be checked. By hid-
ing the rest of the properties, a huge amount of states will be
reduced. Interface theory provides strong logical operations
which are sound. The soundness of that is proved in [105].
Figure 10 shows a general schema for the interface rule
method. P1 and P2 are two processes or two components
which is equipped with their interface rules A1 and A2.

b: PARTITIONED TRANSITION RELATIONS
This method is based on the image of the states that produces
a set of all successors of states A and pre-image which pro-
duces the predecessor of the set of states A′ with a transition
relation T [106]. Let the sets A and T which are given by
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FIGURE 10. Abstraction.

a Boolean formula, then the image of A can be computed by
the following formula:

∃m[A(m) ∧ T (m,m′)] (2)

which existential m (∃m) determines the quantification over
all variables in the set of variables m.
In the first step, it constructs the transition relation Ni of

each component i when exploring the system model and then
composes all individual results to produce a global transition
relation. In this way, the global transition relation will never
be constructed explicitly. The formulas and steps for the
synchronous systems are as the following, (3), as shown at
the bottom of the page.

Clearly, each step depends on the previous step and the
final partitioning strongly depends on the order that the vari-
ables are out qualified. It can be computed by optimum order-
ing of BDD (OBDD), however, finding an OBDD is complex
and it needs special algorithms to find an optimum ordering.
In [105], [107], the authors have presented an algorithm
to compute an OBDD and improve the partition transition
relations.

c: LAZY PARALLEL COMPOSITION
For all processes in thismethod, a restricted transition relation
will be created. The restricted transition is more concise than
the global transition relation itself [105]. Let R be a global
transition relation and S a set of states. R′ can be a restricted
transition relation for the image s if it always satisfies the
condition:

R′|s = R|s (4)

The formula indicates that R and R′ concur on transitions
starting from the state s, however, R′ has fewer nodes than R.
This method simplifies the transition relation of each compo-
nent by using the constraint operators before constructing the

global transition relation.

R′ =
∧
i...n

constraint(Ri, S) (5)

R′ must concur with the global relation transition R in the
set of states S. As a result, producing successors of S by using
the restricted transition R′ produces the same result as using
R. The total formula and steps that they take in comparison to
the partial transition relation method is as the following:

∃m′[A(m′) ∧ (T1(m,m′)|s︸ ︷︷ ︸
step1

∧T2(m,m′)|s︸ ︷︷ ︸
step2

)] (6)

In the formula, it is obvious that every step is independent,
and it can be considered as an improvement of partition
transition relations.

d: ASSUME-GUARANTEE REASONING
It has been proposed by Pnueli [108] where it verifies a
single component of the system at a time. However, during
the verification, a component needs to be associated with the
assumption that the environment has a certain behavior, then
if the other components of the system guarantee the behavior,
it can be deduced that the behavior holds true for the entire
system. Thus, two kinds of properties should be checked:
firstly, the specific assumptions about the environment behav-
ior. Secondly, guarantees that the assumptions hold. The basic
rule of assume-guarantee can be formulated as the following:

〈true〉M ′〈g〉 〈M〈f 〉
〈true〉M ‖ M ′〈f 〉

(7)

This method is discussed in detail in section V.

B. COMPARISON
These methods for mitigating SSE problem so far have
involved addressing the memory concern. For example,
by using a specific data structure like BDD, using heuristics,
adding external memory, or dividing the problem into sub-
problems. These methods are completely different and the
only shared characteristics between them are the way the
SS is represented. The SS representation can be divided into
twomain paradigms in model-checking, explicit and implicit.
Table 3 compares the reviewed methods based on them.
The success factor and challenges of the reviewed methods

are summarized in two separate tables. Table 4 and 5 contains
a list of the key features and challenges of each method that
have been obtained in the literature and described in this
section respectively.

∃mρ(n−1)[· · · ∃mρ(1)[∃mρ(0)[A(m) ∧ Tρ(0)(m,m′)]︸ ︷︷ ︸
A1

∧Tρ(1)(m,m′)]

︸ ︷︷ ︸
A2
...

∧ · · · ∧ Tρ(n−1)(m,m′)]

︸ ︷︷ ︸
An

(3)
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TABLE 3. Explicit and implicit methods.

TABLE 4. Success factors of SSE reduction methods.

V. RESULTS ON HANDLING SSE IN CBSD
This section elaborates on the results of handling SSE in
CBSD that have been found in the research literature. The
search is conducted on all domains of CBSD as the focus of
this research is to find the SSE reductionmethods. The results
indicate that despite the fact that deciding properties like live-
ness and deadlock-freeness in CBSD is NP-hard [120], [121];
model-checking have been successfully utilized to evaluate
this kind of properties of CBSD. A particular subset of CBSD
verification is concerned with addressing SSE problem. The
methods that have been explained in the previous section
could be used in CBSD as well. However, regarding the

selected studies in this research, the frequently used methods
in CBSD are assume-guarantee reasoning, interface rule, and
incremental verification. The component-wise representation
of the SS of these kinds of methods is one of the reasons
for their popularity in CBSD. Assume-guarantee and inter-
face rule are subsets of compositional verification which
falls into the divide and conquer category. The philosophy
behind these two methods is dividing a system into some
sub-components, addressing the local properties of a subset
of components independently, and then deducing the entire
properties of the system properties. Incremental verifica-
tion falls into a bottom-up category that is able to exploit
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TABLE 5. Challenges of SSE reduction methods.

TABLE 6. Challenges of SSE reduction methods in component-based verification.

lower level verification information when small changes are
applied, or components are added. Table 6 represents the
characteristics of these three methods. In this section, these
methods are described followed by the key features and
potential challenges.
Assume-guarantee reasoning- involves three steps start-

ing with D (Three-D): 1- Decomposing a given system S into
its sub components C1,C2, . . . ,Cn, 2- Deriving assumption
Ai about the environment for each Ci, 3- Defining rules to
prove that properties of Ci guarantees the requirements ϕ of
system S under assumption Ai.

Step 1 breaks up the entire system into sub-components.
Applying the divide and conquer methods over CBSD which
is already composed of multiple components may facili-
tate the decomposition step, but it is still a tedious task.
Cobleigh et al. [118], [119] determined that finding an appro-
priate decomposition of a given system to verify by such
methods is challenging.

Step 2 is the process of capturing the behavior that a given
component Ci collects about its environment Ai. The most
important key point resulting in a successful assumption
check is detecting the appropriate assumptions for every
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component. Thus, a challenging question arises here: How
to detect an appropriate assumption? The assumptions have
been traditionally generated by users that have hard limited
the assume-guarantee reasoning practically. Some proposals
have been proposed to develop the assumptions automatically
such as using learning assumptions [122], [123].

Step 3 is defining the rules to prove that the sub-component
Ci guarantees its correct behavior under assumption Ai.
Having rules to decide about the correctness of assumption
is necessary. Thus, this question must be answered precisely:
How to develop this kind of proof rules? The rules can be
provided based on a set of theoretic operations [124].

FIGURE 11. Interdependency between components.

Another challenge of this method is shown in Figure 11.
Suppose a system with three components Sum, Sub, and
Multiple. It is compulsory to proof satisfaction of compo-
nent Sum to verify component Sub. Likewise, verifying com-
ponent Multiple depends on Sum and Sub. This represents
the problem of interdependent assumptions between com-
ponents. Mutual interdependency between the components,
like the dependency between component Sum and Multiple
is another problem that is called circularity. Tackling this
problem needs a set of sound and complete rules. In [117],
the researchers prove that solving a long chain of circularity is
difficult.

Other works based on assume-guarantee reasoning involve
an algorithm based on a prefix-closed set of traces [124],
an algebraic theory [125], [126], an algorithm named
AGMC [127], an assume-guarantee verification for SOFA
component model [128], interconnected systems [129] and
SSE reduction for time systems [130]–[132].
Interface rule reasoning- Interface rule which has been

presented in [5] is a set of abstract constraints for each
single component in the systems. It restricts the behavior of
components and assures the protection of local properties.
The first key challenge is generating abstract constraints. This
method can be used in compositional verification strategies
by decomposing the interface of the system into sub-parts
which represent the global properties. Then, the composition
of individual components should satisfy the global properties
of the interface. The second challenge of this method is
decomposition.

The interface rules must include appropriate information
to fulfill the compositional verification goal. It can be either
traditionally prepared by users manually or generated auto-
matically. Some works based on this method are discussed
below.

Jin [117] proposed a formal framework for specifying
and verifying component-based systems based on interface
automata (IA). IA has been used to describe interaction proto-
cols of components and preserve the local properties of them
to verify them independently. Another work on verifying
component-based systems via interface rule is presented by
Isazadeh and Karimpour [133]. They have proposed a formal
model to specify the interface rule for communication proto-
cols of components and then verify components according to
this interface rule.

Ben-Hafaiedh et al. [134] have developed a framework for
interface rule reasoning (in term of contract-based reasoning)
for component-based design. In order to introduce such inter-
face rule, they make benefit from a notation of I/A automata
proposed byHenzinger and take into account sets of notations
of constraints about composability and compatibility.

Another work presented in [135] on compositional verifi-
cation of component-based in X-MAN. This work consists
of two steps: 1- Vertical verification and Horizontal verifica-
tion. Vertical verification guarantees that each atomic com-
ponent satisfies its constraints (presented by an interface).
2- Horizontal verification which uses component constraint
to verify the entire system. In this work, they suppose that the
interface rules have been already attached to each component
in the repository. Other works in interface based verification
are [136]–[138].
Incremental verification- as its name implies, incremental

verification incrementally checks the system behaviour. It can
be done during design process. If a CBSD is constructing
incrementally, verification can be done during the construc-
tion and iteratively check properties of unfinished system
until the system is completed. Thus, for incremental verifica-
tion of CBSD, it is vital to support incremental construction.
In [139], property feasibility of incremental construction have
been proved. Let system S be constructed by inci incre-
ments from initial inc0 where inc1 ⊆ inc2 ⊆ inc3 . . . and
inci ⊆ inci+1 which means inci+1 contains the behaviours of
inci [139]. We say ϕ is the properties of the system S such
that ϕinc1 ⊆ ϕinc2 ⊆ ϕinc3 ⊂ . . . where ϕinc1 ⊆ ϕinc2 means
the properties that is satisfied in inci is preserved in the next
step of construction inci+1. Thus, preservation of the system
properties when new increments are added is one of the key
challenges in incremental verification.

Second, providing an appropriate way to avoid re-verifying
the system when new increments in the higher level of ver-
ification are added is required. Verifying the whole system
after every small change is not efficient. Therefore, providing
a rule to deal with this issue can be considered as an effective
improvement in formal verification, because it leads to reduce
the whole verification effort significantly.

An incremental verification based on interaction invariants
for component-based design has been proposed in [140].
It is an invariant-based method for verification in the BIP
component-based model. The interaction invariants involve
locations of multiple components and express constraints
on global SS induced via interactions. A method called
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binary behavioral constraints (BBC) has been proposed to
symbolically compute the interaction invariants. Themethods
completely define the influence of interactions of a composite
component on the other component’s behavior To reuse
those invariants when new increments have been added they
decompose the BBC and use two new methods to enhance
scalability. Finally, the constraints and computations are rep-
resented by BDD. As discussed in Section 4, BDD strongly
depends on input ordering and without it, the BDDmay grow
and quickly exceed the memory capacity. Despite proposing
a sufficient technique to reduce the BDD, ordering BDD
falls into NP-problems and does not have exact
solutions [56], [57].

Other work concerning incremental verification for
dynamic CBSD is defined in [141]. This work can verify
CBSD whose components and structure change dynamically
at runtime. The method, called INVEST, improved com-
positional verification by adding an incremental strategy to
reverify a system after any removal, modification, and addi-
tion of components. Initially, the system will be verified
by typical compositional verification and assume-guarantee
reasoning. The incremental verification executes when any
changes occur in the system.

VI. DISCUSSION AND CONCLUSION
This work on one hand reviews, briefly discusses, charac-
terizes, and classifies existing methods of SSE reduction
methods into five categories. On the other hand, it inves-
tigates the methods for alleviating SSE problem that have
been utilized in CBSD. In section 3, RQ (1, 2, 3) have been
answered. The state-of-the-art mitigation methods for SSE
problem have been identified and explained. The key features
and challenges of them are summarized as well. All these
information have led to setting up a classification for common
SSE reduction methods. RQs (4, 5) have been discussed
in section 4. We demonstrated the common SSE reduction
methods in CBSD and the potential challenges that have been
obtained in the literature.

The general clue for this research is that despite proposing
many methods for solving the bottleneck of model-checking,
SSE problem still remains an obstacle in the worst case and
has not been solved completely yet. This research provides a
basis for many stakeholders such as component-based devel-
opers that need to select the most appropriate method for
verifying their system, organizations that desire to create
model checkers, and researchers seeking to set their research
directions.

Having all the aforementioned information about SSE
reduction methods, now we are in the position to discuss
the proper method to be utilized in CBSD. Among the com-
mon methods for alleviating SSE problem in CBSD, is by
using compositional verification in the form of either the
assume-guarantee or interface rules. However, in such meth-
ods, the entire verification problem should be decomposed
into the smaller task of its components and checked indi-
vidually. Then, after decomposition, some difficulties such

as interdependency between components, circularity, finding
assumptions will arise. Utilizing such methods in order to
verify CBSD obviously is limited by several issues.

On the other hand, applying incremental verification in
CBSDmay have some advantages. To begin with, such meth-
ods, omit the tedious task of breaking up the verification
problem. Verifying a system in a bottom-up manner or bit-
wise during incremental construction reduces the verification
effort, rather than decomposing the system after the entire
construction is finished and then verifying each part individ-
ually. The implementation of incremental construction and
verification by [139], [140] has determined the possibility of
this.

Another advantage of incremental verification is that coun-
terexamples and error traces can be found as early as possible.
In other words, the counterexamples can be created before
the whole system is constructed. It is very useful to reveal
error states before going through the higher levels of con-
struction. However, all component-based models have yet to
support incremental construction. Thus, providing a way to
incrementally construct and verify component-based systems
is a major direction for our future work. It might be possible
by utilizing a component-based model with encapsulation
mechanisms like what is presented in [142]–[145].
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