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ABSTRACT Convolutional neural networks (CNNs) have been successfully used in remote sensing scene
classification and identification due to their ability to capture deep spatial feature representations. However,
the performance of deep models inevitably encounters a bottleneck when multimodality-dominated scene
classification rather than single-modality-dominated scene classification is performed, due to the high
similarity among different categories. In this study, we propose a novelmulti-granularity fusion convolutional
neural network (MGFN) to automatically capture the latent ontological features of remote sensing images.
We firstly design a multigranularity module that can progressively crop input images to learn multigrained
features, which can describe images to different degrees. Based on a comparison of different granularities,
we then design a maxout-based module to learn the corresponding Gaussian covariance matrices of different
granularities, which can extract second-order features to express the latent ontological essence of inputs
and select the most distinguished inputs. We thirdly provide an adaptive fusion module to fuse all features
via normalization to combine features of different degrees using the adaptive fused module. Finally,
an SVM classifier is used to classify the fused matrix of every input image. Extensive experimentation and
evaluations, particularly for multimodality-dominated scenes, demonstrate that the proposed network can
achieve promising results for public remote sensing datasets.

INDEX TERMS Convolutional neural network, multi-granularity fusion, Gaussian covariance matrix,
remote sensing scene classification.

I. INTRODUCTION
Remote sensing scene classification is one of the most
researched areas and challenging topics in the geoscience and
remote sensing community, since it is a process of classi-
fying remotely sensed images into discrete sets of land use
and land cover categories with semantic meanings [1]–[4].
Characterized by their rich and detailed spatial information,
remote sensing scene images allow effective discrimination
of objects by capturing subtle discrepancies from the con-
tiguous shape of signatures associated with their pixels [5].
To extract features of different objects, a variety of hand-
crafted and learning-based classification algorithms have
been successfully designed in recent [6]–[9]. Of the various
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classification algorithms, deep convolutional neural networks
(CNNs) have been used extensively and typically yield high
classification performances.

A CNN [10]–[12], attempts to express high level fea-
tures, and has been acknowledged as the most successful
deep learning model for remote sensing scene classification
[5], [13]–[16] [17], [18]. Penatti assessed the generalization
power of CNNs using pretrained CNNs as feature extractors
to classify remote sensing images [14]. Jia used an off-
the-shelf CNN model to extract high-dimensional features
and fine-tuned the CNN model with the target dataset [5].
Hu surveyed how to apply pretrained CNNs to remote sensing
scene classification [19]. Zhu provided a tutorial about deep
learning-based remote sensing data analysis [20]. Nogueira
analysed the performances of CNNs under three strate-
gies: full training, fine tuning and using CNNs as feature
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FIGURE 1. Residential images with different densities selected from different
categories in the AID dataset, are composed of the same two modalities:
houses and trees.

extractors [1]. Cheng proposed a method named the bag
of convolutional features to encode convolutional feature
descriptors [21]. Yuan attempted to encode deep features via
the locality-constrained affine subspace coding method [22].
The primary strategy of these methods is to apply a pretrained
CNN to target remote sensing scene images or fine-tune the
pretrained CNNmodel with the target dataset. However, most
of these CNN models, either transferring or not, are designed
and used for single-modality-dominated scenes. The ability
to identify materials in multimodality-dominated scenes that
have similar objects and cannot be accurately classified by
only a single modality remains limited.

Considering the latent ontology of remote sensing images,
two primary challenges must be resolved [4]. The first prob-
lem is the visual-semantic discrepancy that is caused by a lack
of alignment between the hand-crafted or learned features of
an image and its corresponding semantic labels. The classifi-
cation of remote sensing images that cover a large geographic
area with significant unstructured information requires dif-
ferent levels of annotation to express the latent ontological
essence. For example, in the NWPU-RESISC45 dataset [21],
the category Airport may be composed of airplanes and run-
ways, and similarly, railways and railway stations may belong
to the category Railway, while bridges may be categorized as
freeways. Specifically, airports, railways and freeways may
come from the transportation category. Most relationships
in these images can be disassembled into three levels: the
superordinate level (e.g., transportation), the basic level (e.g.,
airport and railway) and the subordinate level (e.g., airplane
and runway) [23], [24]. Therefore, classifying the subordi-
nate or basic level is relatively easy, while more discrimi-
native features are required to recognize superordinate-level
objects. Currently, most deep learning-based classification
methods can learn high-level features but cannot incorporate
them with high-level semantic meanings in category labels
because most remote sensing datasets lack well-constructed
ontological structures.

The second challenge arises from the variances that nat-
urally appear in different categories of the same dataset.
Specifically, there are two major variances that must be
considered: intraclass diversity and interclass similarity.
Remote-sensing scene images are more easily classified with
higher intraclass diversity and interclass similarity, and vice
versa. However, real data typically exhibits the opposite

characteristics. For example, in the AID dataset [25], tthree
categories (Dense Residential,MediumResidential and Spars
Residential) are all composed of the same two modalities
(houses and trees), and the only difference between them
is the number of each modality in each category, as shown
in Figure1. Such categories with high intraclass similarities
are difficult to classify. Another scenario is also possible; for
example, certain Beach images seem more like Desert than
Beach, and vice versa, as shown in Figure2. Such categories
with high interclass diversity are difficult to classify. Because
most existing deep learning-based methods are designed for
scene classification and ignore the special considerations
of higher intraclass similarity and interclass diversity, they
are successfully used to classify single-modality-dominated
scenes but achieve limited performance when classifying
multimodality-dominated scenes, which have similar objects
and cannot be accurately classified by only single modali-
ties. For multimodality-dominated scenes, problems are more
difficult to solve because many categories have hierarchical
ontologies:

To address these problems, we propose a novel multi-
granularity fused convolutional neural network (MGFN) to
capture the latent ontological features of remote sensing
images automatically. To address the first problem, dividing
the images into different levels should be a viable solu-
tion to decrease large visual-semantic discrepancies because
images can be disassembled into the different hierarchi-
cal levels. To address the second problem, focusing on the
superordinate-level or basic-level intraclass diversity and
weighting them more heavily when fusing multiple granular-
ities should be effective.

The primary contributions of this study include the follow-
ing four aspects:

(1) We design a multigranularity module that can progres-
sively crop input images to learn multigrained features that
can describe images to different degrees.

(2) We design a maxout-based module to learn the corre-
sponding Gaussian covariance matrices of different granular-
ities, extract second-order features that can express the latent
ontological essence of the input image, and select the most
distinguished features.

(3) We provide an adaptive fusion module to fuse all
obtained features using normalization to combine features of
different degrees.
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FIGURE 2. Images selected from different categories in the AID dataset. Some images may be more similar with
images different category.

(4)We use several experiments on different remote sensing
scene datasets to evaluate and verify the performance of the
proposed network.

The remainder of this paper is organized as follows. The
related work is described in Section II. We provide a novel
Multi-Granularity Fused convolutional neural Network in
Section III. Experiments are described and the results are
discussed in Section IV, and conclusions are reviewed in
Section V.

II. RELATED WORK
Propelled by the high-level feature learning capabilities of
CNNs, remote sensing scene classification driven by deep
neural networks has drawn remarkable attention and achieved
significant breakthroughs. In this section, we review recent
achievements with regard to deep learning-based remote
sensing scene classification methods without referring to
handcrafted feature-based and mid-level feature learning-
based methods.

Because AlexNet, the first deep CNN designed by
Krizhevskey et al. [26] in 2012, achieved the best results in a
large-scale visual recognition challenge [27],many advanced
CNNs have emerged in remote sensing image scene classi-
fication. There are three primary CNN-based strategies: full
training, using CNNs as feature extractors and fine-tuning.
We briefly introduce and analyse these three strategies in this
section.

A. FULL TRAINING
Full training fully classifies remote sensing scene images
with CNN models. Because these models for remote sens-
ing scene classification have the same function and type
as general CNNs, the reader is referred to the general
papers [5], [28] and [29] for more information. Specifi-
cally, for remote sensing, Wang reduced low- and middle-
level features via principal component analysis to obtain
hierarchical global features and then aggregated these rich
hierarchical features to manage images of different sizes
[30]. Cheng combined CNNs with metric learning to obtain
more discriminative features for remote sensing scene clas-
sification [31]. Yao proposed a weakly supervised learn-
ing method to semantically annotate high-resolution satellite
images [31].

B. USING CNNs AS FEATURE EXTRACTORS
Proposed by Penatti [14], using CNNs as feature extractors
is a strategy that removes the last classification layer of a
pretrained CNN model and regards the remaining layers as
a feature extractor. Features extracted by the remaining lay-
ers can be transferred to remote sensing scene classification
because the features extracted from earlier layers are generic.
Based on Penatti’s work, Castelluccio preferred to replace the
last layer of the pretrained network with a fully connected
layer [28]. Xie transferred a CNN model that was trained on
daytime remote sensing images to night-time images [32].
Hu preferred to extract CNN features from different layers
by encoding multiple scale features that had been extracted
from different layers into global image features [29].

Using CNNs as feature extractors can create samples for
training because they require no other operations or adjust-
ments. This strategy also performs well due to the general-
ization power of the features learned from the source dataset.
As mentioned in [33]–[35],features extracted from earlier
layers achieve better generalization than those learned in
higher layers. Therefore, this strategy performs better when
the target dataset is similar to the source dataset.

C. FINE-TUNING
Proposed by Jia [5], the fine-tuning strategy fine-tunes the
parameters of higher layers in a pretrained CNN with a target
dataset. Typically, the earlier layers of the pretrained CNN are
preserved because they encode generic features, and higher
layers are fine-tuned to exhibit specific features of the target
dataset. Therefore, the earlier layers continue to contain low
features at the pixel level, while the later layers progressively
learn more specific midlevel characteristics and high-level
characteristics. Based on Jia’s work, Liu proposed a novel
fine-tuning mode with triplet networks, in which triplet net-
works were pretrained on the source images and fine-tuned on
the target images [36]. Additionally, Cheng verified the power
of fine-tuning transfer learning on a new remote sensing scene
dataset [21].

Because fine-tuning adjusts the parameters of the higher
layers in a pretrained CNN model by retraining the model
on the target dataset, this strategy is more complex than full
training and using CNN as a feature extractor. Fine-tuned
parameters can also describe features more precisely.
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FIGURE 3. Overview of proposed model. The main strategy involves extracting granularities under different transformation,
learning corresponding Gaussian covariance matrices and selecting the most distinguished ones, and finally fusing these most
distinguish features for further classifying.

III. PROPOSED MGFN ARCHITECTURE
The core idea of the proposed MGFN is granularly learning
hierarchical features to reduce visual-semantic discrepancies
and then fusing multiple granularities with emphasis on the
most distinguishing diversity. Specifically, we seek a solution
for the two challenges described above. An illustration of the
proposed MGFN is shown in Figure3. In this section, we first
design a multigranularity extraction module that can progres-
sively crop input images to learn multigrained features with
the help of a CNN architecture. Then, we design a maxout-
basedmodule to learn the corresponding Gaussian covariance
matrices of different granularities, extract the second-order
features that can express the latent ontological essence of
the input image, and select the most distinguished features.
We then adaptively fuse all obtained features via normal-
ization using an adaptive fused module. Finally, an SVM
classifier is used to classify the fused matrix of every input
image. The structure of the proposed MGFN model is shown
in Figure3.

A. GRANULARITY EXTRACTION MODULE
Given an input remote sensing scene image X ∈ RH×W×C ,
H ,W and Care the height, width and channel of the image,
respectively. The entire input image is defined to be the first
granularity. With the central point of the previous granularity
g̃i as the core, the next granularity g̃i+1is obtained by cropping
themiddle half elements. All granularities are amplified to the
same size and are obtained via scale transformation.

To avoid feature variance, we perform a rotation trans-
formation for each granularity and formulate the rotation
transformation as:

gti = ϕ
(
g̃i
)

(1)

where gti is tth transformed state of the ith granularity and
ϕ (·) denotes the function of rotation.

FIGURE 4. Granularity extraction module. This module is composed of
two parts: rotation transformation and CNN architecture. The input of this
module is the granularity cropped and zoomed from the input image and
the output is CNN feature learned by CNN architecture.

Because we must learn the features of the transformed
images that have the highest response to classification,
we design a CNN model to extract features by:

Fti = fe
(
gti
)

(2)

where, Fti is the feature of gti extracted by function fe (·).
Obviously, fe (·) denotes the feature extraction process with
CNN architecture. The architecture of granularity extraction
module is shown in Figure4.

B. MAXOUT-BASED MODULE
The maxout-based module is used to learn the corresponding
Gaussian covariance matrices of different granularities to
extract the optimal second-order features that can express the
latent ontological essence of the input image and to select the
most distinguished features. The maxout-based module can
help address the problem of large intraclass variations of the
multi-transformations.

The inputs of the maxout-based module are the CNN fea-
tures that have been extracted by the granularity extraction
module, and the outputs are the maximum optimal second-
order feature S t0i and its corresponding Gaussian covariance
matrix Gt0

i . Because CNN features of the same granular-
ity are extracted differently from rotation transformation,
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FIGURE 5. The maxout-based module. The primary purpose of this module is to extract the latent ontological features for further
classification. We investigate covariant, Gaussian process, logarithmic operation and optimal second-order feature extraction for
maxout operation.

these instances are invariant in different directions. There-
fore, we use maxout [37] to choose the most representative
features; the reader is referred to the original papers [29] for
more information about maxout.

To distinguish the most representative features of the same
granularities, we transform the CNN features into Gaussian
covariance matrices, which can express the latent ontological
features, before introducing maxout processing. Compared to
the first-order feature captured by traditional deep learning
networks, the second-order feature expressed by Gaussian
covariance matrices preserves more spatial information about
the same granularity. Because the computation of the covari-
ance matrix is shown as the compact summarization of
the second-order information, we first express second-order
CNN features by the covariance matrix as:

C t
i = Fti ¯IF

t
i (3)

where, C t
i denotes the covariance matrix of Fti . F

t
i is the fea-

ture extracted by CNN architecture of a granularity as men-
tioned above and it can be written as Fti =

[
f 1, f 2, . . . , f N

]
.

Ī is defined as

Ī =
1
N

(
I −

1
N
11T

)
(4)

where, 1 is the identity column vector of N dimension.
Obviously, since obtained by post-processing the granu-

larity gti on the base of CNN architecture, covariance matrix
C t
i encodes the second-order statistics of input images, pre-

serving more spatial information then the first-order features
captured by traditional deep learning networks.

Especially, as suggested by [38], the covariance matrix can
be expressed by a single Gaussian model as

Gt
i =

[
C t
i + µµT µ

µT 1

]
(5)

where µ =
∑N

n=1 f n. The elements of the obtained matrix
Gt
i reside on the Riemannian manifold of the SPD matrix.

Therefore, we apply the logarithmic operation to flatten its
spatial structure and use all of the distance measurements in
Euclidean space. We express this process as:

Ĝt
i = Gt

i + trace
(
Gt
i
)
IG (6)

where IG denotes the identity matrix with the same dimen-
sions of Gt

i .

Ĝt
idenotes feature of the ith granularity of the tth trans-

formation of input image. Therefore we prefer to learn the
optimal second-order feature of Ĝt

i , for the further describing
of the input image. We formulate it as

S ti = fS
(
Ĝt
i

)
(7)

where the scalar S ti denotes optimal second-order feature of
Ĝt
i and fS (·) is the function of learning process. Since S ti is the

optimal second-order which can describe the deep features
of input images, the value of S ti indicates the description
degree of different transformations with the same granularity.
Therefore, we adopt the maximum operator to select the best
feature as

S t0i = max
t∈T

S ti (8)

where t0 is the maximum value of all the optimal second-
order features of different transformations. We then employ
the covariance Gaussian matrix of the t0th transformation to
represent the features of the ith granularity as

G̃i = Gt0
i (9)

Obviously, G̃i can express the ith granularity of the input
image to the largest extent.

C. ADAPTIVE FUSION METHOD
The maxout-based architecture can learn and select the most
represented feature of every granularity. Because several
granularities exist for the same input image as described
above, we now design an adaptive fusion method to fuse the
features that have been extracted from all the granularities
on the same input image. The inputs of adaptive fusion
architecture are the optimal second-order features Si and their
corresponding Gaussian covariance matrices G̃i . Since the
optimal second-order feature Si can mostly describe the ith
granularity of one input image and the value of Si means the
description degree, we prefer to assign the fusion weights
according to Si. All the optimal second-order features of
the same image can be written together as a column vector
S = [S1, S2, · · · , Sn]T , with a size of n×1.We first normalize
the optimal second-order feature vector S to a range of [0 1] as

ES =
S∑
S

(10)

A granularity with a larger optimal second-order feature
will obtain a bigger value in vector ES, which can describe
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the degree of importance, and vice versa. Therefore, we fuse
different granularities of the same input image according to ES
as

G+ =
∑
ESi G̃i (11)

where ESi is the ith element of ES as responding to the covari-
ance Gaussian matrix of the ith granularity.
By exploiting the adaptive fusion method, features of dif-

ferent granularities of the same input image can be fused and
describe the input image in a most distinguishable way.

D. CLASSIFICATION LAYER
Since SVM is used to find the relationship and resolve the dif-
ferences between the output space, we classify the obtained
fused matrix G+by transmitting it to an SVM layer. For the
fused matrix of the pth image G+p , we formulate the process
as

hW ,b
(
G+P
)
= P

(
y = j|G+P ;W , b

)
=

1

1+ expW j (G
+

P )
T
+bj

(12)

where j is the current class being evaluated, and W and b
represent the weights and bias respectively. Because many
papers have described SVM classification in detail, the reader
is referred to the paper [28] for more information.

IV. EXPERIMENTS AND ANALYSIS
In this section, the performance of MGFN is assessed
using three well-known remote sensing scene classifica-
tion datasets. We consider the following three compo-
nents when evaluating MGFN’s performance: experimental
datasets, implementation parameters and experimental results
and analysis.

A. EXPERIMENTAL DATASETS
We evaluated the proposed MGFN with three different
remote sensing scene datasets: the UC Merced (UCM)
dataset [39], the Aerial Images Dataset (AID) [25] and the
NWPU-RESISC45 dataset(NR45) [21].

Extracted from large optical images of the US Geological
Survey, the UCM dataset was released in 2010 and is com-
posed of 2100 aerial scene images [39]. The spatial resolu-
tion of the UCM images is 0.3 m with 256 × 256 pixels.
All images were manually labelled to 21 classes, 100 for
each class. Collected from Google Earth imagery, AID was
released in 2016 and consists of 10,000 aerial images [25]. All
imageswere classified into 30 classes, and the number of each
class varies greatly with scene type, from 220 to 420. The
special resolution of AID changes from approximately 0.5 m
to 8m. Released in 2017, NR45 is consisted of 31500 images,
covering 45 scene classes with 700images in each class. The
spatial resolution of NR45 changes from 0.2m to 30m.

We select these three datasets on the consideration of
the overall characteristics. There are 100, 220∼420 and
700 images in the three datasets respectively, with different

TABLE 1. The statistics of three remote sensing scene datasets.

FIGURE 6. The architecture of adaptive fusion method. The main strategy
involves normalizing all the optimal second-order features and weighting
the corresponding Gaussian covariance matrices with these
normalization values.

spatial resolutions. In other words, these three datasets can
represent general remote sensing scene datasets and validate
the applicability of MGFN to some extent.

B. IMPLEMENTATION PARAMETERS
Considering the size of the raw input images, we designed
three granularities of each instance. All the granularities
of different datasets are fixed to 224 × 224 pixels in the
data processing stage, for the further processing in the CNN
architecture. Due to insufficient images, data augmentation
techniques are adopted to avoid overfitting during training.
We employed VGG-D [40] as our core processor in the
granularity extraction module. The VGG-D network is pre-
trained on the large scale imagenet dataset as described in
Section II, to achieve faster training speeds. We retrain and
fine-tune the parameters of VGG-D during training process.

The learning rate of the classification layer is set to be
0.1 initially, and the entire network fine-tuned with a learning
rate of 0.001. The learning rate is annealed by 0.15 every
20 epochs initially and decayed after every 5 epochs during
the fine-tuning stage. The rotation transformation is set to
12 for each granularity and the batch size is set to 12 for
3 granularities. The weight decay is set to be 0.0005 and the
momentum optimizer is 0.9. These parameter values were
selected based on [41]–[43] and [11].

C. EXPERIMENTAL RESULTS AND ANALYSIS
We firstly conduct several experiments to analyze the influ-
ence of granularity extraction module. For every granular-
ity, there are several corresponding transformations. So we
construct different models with different granularities and
transformations. As shown in Figure7, the best results
gained by combining three different granularities, proved the
influence of granularities. Besides, Figure7 also shows the
how the numbers of transformations influence the model
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FIGURE 7. Classification accuracy gained by different granularities with
different transformations.

performance. The classification accuracies increase propor-
tionally with the number of transformations.

We then conduct several experiments to analyze the
effects of maxout-based module and adaptive fusion method.
We randomly select an image and compare the visualization
of it after the process of these two parts as shown in Figure8.
We can see that the maxout-based module can learn the
most representative features of every granularity, as shown in
the second line of Figure8. As a contrast, the third line in the
figure shows the fused state, which is obtained by the adaptive
fusion method of the three granularities. It’s clearly that the
fused state learns more details, compare with the state behind
maxout-based module process.

We compare proposed MGFN with handcrafted feature-
based methods, unsupervised feature-based methods and
deep learning-based methods. Of varied deep learning-based
methods, the pre-trained general-purpose networks perform
better in remote sensing scene classification than special
designed networks because general-purpose networks are
well-designed and well-trained. So we choose the best mod-
ified deep learning models such as AlexNet, GoogLeNet for
comparison.

The classification accuracy (CA) and corresponding stan-
dard deviation (SD) of the proposed MGFN are shown
in Table2, and compared to several benchmark methods on
the most challenging dataset NR45. Among the listed hand-
crafted feature-based methods, the colour histogram method
achieves the best performance, even though the accuracy
remains below 30%. Due to their subjectivity, handcrafted
feature-based methods achieve the worst performance in
classification. Unsupervised feature learning-based meth-
ods perform better than all the listed handcrafted feature-
based methods, as shown in the table. However, because
these methods are inadequate, and it is difficult to com-
pletely classify images with a single index, the accuracy of
unsupervised feature learning-based methods is still below
50%. Conversely, deep learning-based methods overshadow
both handcrafted feature-based and unsupervised feature-
based methods, demonstrating their superior performance.
The transferred AlexNet, which was pretrained on the large-
scale ImageNet dataset, achieves an accuracy of 76.69% with

FIGURE 8. The visualization of the outputs of maxout-based module and
adaptive fusion method procedure. The method introduced in [35] is used
for visualization.

a 10% training split, and 79.85% with a 20% training split.
A deeper transferred CNN, the GoogLeNet model, achieves
similar classification results to AlexNet because a deeper
CNN can learn deeper features of the source dataset, which
is not favourable to the target remote sensing scene dataset.

The proposedMGFN achieves an accuracy of 90.92%with
a 10% training split, and 93.41% with a 20% training ratio,
thus achieving better performance than other deep learning-
based methods. This result is possibly due to the following
reasons: (1) the granularity extraction module provides a
chance to extract features of the same input image hierarchi-
cally, reducing visual-semantic discrepancy; (2) the maxout-
based module extracts the optimal second-order features and
selects the most distinguishable features, describing the latent
ontological essence of input images; (3) the adaptive fusion
method fuses multiple granularities with emphasis on the
most distinguishing diversity; and (4) the number of input
images is 3 times the number of transformed images, and they
play a similar role to that of a data argument.

To verify the effectiveness of the proposed MGFN ade-
quately, we compare it with existing deep learning methods.
The CA and SD of different deep learning strategies for
remote sensing scene classification are shown in3.

As shown in Table3, all the deep learning models per-
forms better on UCM dataset than on other two datasets
AID and RN45. That is because the UCM dataset has a
fixed spatial resolution 0.3m. Images with 0.3m spatial res-
olution can describe a lot of geomorphic details, leading
to the high classification accuracy for nearly all the deep
learning models. Nevertheless, the special resolution of AID
changes from approximately 0.5 m to 8 m and the spatial
resolution of NR45 changes from 0.2 m to 30 m. Different
spatial resolutions bring great difficulties for image classifi-
cation. High intraclass diversity and low interclass similarity
of AID and NR45 increase the difficulty of classification.
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TABLE 2. Overall Classification Accuracy(CA) of different models on the most challenging dataset NR45. ‘‘SD’’ denotes the standard deviation of the
classification accuracy.

TABLE 3. Overall Classification Accuracy of different models on different datasets.

The accuracy of deep learning models on these two datasets
is 84% 92% and 81% 89%, much lower than that of UCM.
Since the accuracy of UCM is high, the improvement of
proposed MGFN is relatively small compared with AID and
NR45. And as for AID and NR45, the proposed MGFN gains
1.01% and 1.02% respectively, confirming the validity of
proposed MGFN.Compared to the performance of AlexNet,
GoogLeNet and VGG-D in Table2, the deep learning mod-
els perform better on the same NR45 dataset. These differ-
ences primarily arise in the classification layer: the models
in Table2 are combined with the softmax classifier, and those
in Table3 are combined with the SVM classifier. Models with
the SVM classifier perform better than those with softmax.
The proposed MGFN achieves the best CA on all datasets;
thus, these experimental results demonstrate the effectiveness
of the proposed MGFN adequately.

V. CONCLUSION
In this paper, we proposed a novel MGFN framework to
address the visual-semantic discrepancy and variance chal-
lenges in remote sensing scene classification. We designed
the granularity extraction module to learn hierarchical fea-
tures to reduce visual-semantic discrepancies and built the
maxout-based module to extract the optimal second-order
features and select the most distinguishable features to
describe the latent ontological essence of input images. Then,
we proposed the adaptive fusion method to fuse multiple
granularities with emphasis on the most distinguishing diver-
sity. Experiments demonstrated that we seek a solution for
the two challenges mentioned above. In the future, we plan to
investigate compressing this model to accelerate the training
process while maintaining classification accuracy.

ACKNOWLEDGMENT
The authors would like to thank all of the team members of
the D605 Laboratory.

REFERENCES
[1] K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, ‘‘Towards better

exploiting convolutional neural networks for remote sensing scene clas-
sification,’’ Pattern Recognit., vol. 61, pp. 539–556, Jan. 2017.

[2] Q. Tan, J. Ling, J. Hu, X. Qin, and J. Hu, ‘‘Vehicle detection in high
resolution satellite remote sensing images based on deep learning,’’ IEEE
Access, vol. 8, pp. 153394–153402, 2020.

[3] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, ‘‘Deep
learning in remote sensing applications: A meta-analysis and review,’’
ISPRS J. Photogramm. Remote Sens., vol. 152, pp. 166–177, Jun. 2019.

[4] P. Li, D. Zhang, P. Chen, X. Liu, and A. Wulamu, ‘‘Multi-adversarial
partial transfer learning with object-level attention mechanism for unsu-
pervised remote sensing scene classification,’’ IEEE Access, vol. 8,
pp. 56650–56665, 2020.

[5] S. Jia, H. Liu, and F. Sun, ‘‘Aerial scene classification with convolutional
neural networks,’’ in Proc. Int. Symp. Neural Netw., 2015, pp. 258–265.

[6] J. Wang, Q. Qin, Z. Li, X. Ye, J. Wang, X. Yang, and X. Qin, ‘‘Deep
hierarchical representation and segmentation of high resolution remote
sensing images,’’ inProc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2015, pp. 4320–4323.

[7] W. Yang, X. Yin, and G.-S. Xia, ‘‘Learning high-level features for satellite
image classification with limited labeled samples,’’ IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 8, pp. 4472–4482, Aug. 2015.

[8] M.Vakalopoulou, K. Karantzalos, N. Komodakis, andN. Paragios, ‘‘Build-
ing detection in very high resolution multispectral data with deep learning
features,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2015, pp. 1873–1876.

[9] L. Khelifi andM.Mignotte, ‘‘Deep learning for change detection in remote
sensing images: Comprehensive review and meta-analysis,’’ IEEE Access,
vol. 8, pp. 126385–126400, 2020.

[10] G. Sumbul and B. Demir, ‘‘A deep multi-attention driven approach for
multi-label remote sensing image classification,’’ IEEE Access, vol. 8,
pp. 95934–95946, 2020.

[11] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

VOLUME 9, 2021 76045



Z. Zeng et al.: MGFN: MGFN for Remote Sensing Scene Classification

[12] H. Zhao, F. Liu, H. Zhang, and Z. Liang, ‘‘Research on a learning rate
with energy index in deep learning,’’ Neural Netw., vol. 110, pp. 225–231,
Feb. 2019.

[13] F. Hu, G.-S. Xia, J. Hu, Y. Zhong, and K. Xu, ‘‘Fast binary coding for the
scene classification of high-resolution remote sensing imagery,’’ Remote
Sens., vol. 8, no. 7, p. 555, Jun. 2016.

[14] O. A. B. Penatti, K. Nogueira, and J. A. D. Santos, ‘‘Do deep features
generalize from everyday objects to remote sensing and aerial scenes
domains?’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2015, pp. 44–51.

[15] K. Qi, W. Liu, C. Yang, Q. Guan, and H. Wu, ‘‘Multi-task joint sparse
and low-rank representation for the scene classification of high-resolution
remote sensing image,’’ Remote Sens., vol. 9, no. 1, p. 10, Dec. 2016.

[16] Y. Liu, Y. Zhong, F. Fei, and L. Zhang, ‘‘Scene semantic classification
based on random-scale stretched convolutional neural network for high-
spatial resolution remote sensing imagery,’’ in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 763–766.

[17] H. Zhao, F. Liu, H. Zhang, and Z. Liang, ‘‘Convolutional neural network
based heterogeneous transfer learning for remote-sensing scene classifica-
tion,’’ Int. J. Remote Sens., vol. 40, no. 22, pp. 8506–8527, Nov. 2019.

[18] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, ‘‘Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2015, pp. 4959–4962.

[19] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, ‘‘Transferring deep convolutional
neural networks for the scene classification of high-resolution remote sens-
ing imagery,’’ Remote Sens., vol. 7, no. 11, pp. 14680–14707, Nov. 2015.

[20] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer,
‘‘Deep learning in remote sensing: A comprehensive review and list of
resources,’’ IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8–36,
Dec. 2017.

[21] G. Cheng, J. Han, and X. Lu, ‘‘Remote sensing image scene classifi-
cation: Benchmark and state of the art,’’ Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Oct. 2017.

[22] B. Yuan, S. Li, and N. Li, ‘‘Multiscale deep features learning for land-
use scene recognition,’’ J. Appl. Remote Sens., vol. 12, no. 1, p. 1,
Feb. 2018.

[23] N. Xin-Lin, ‘‘An introduction to cognitive linguistics,’’ J. Chengdu College
Educ., vol. 17, no. 8, pp. 1245–1253, 2006.

[24] F. G. D. Matos, ‘‘Cognitive linguistics: An introduction,’’ Delta Docu-
mentao De Estudos Em Lingüística Teórica E Aplicada, vol. 23, no. 2,
pp. 397–398, 2006.

[25] G. S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and
X. Lu, ‘‘AID: A benchmark data set for performance evaluation of aerial
scene classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7,
pp. 3965–3981, Jul. 2017.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Int. Conf. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[27] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[28] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, ‘‘Land
use classification in remote sensing images by convolutional
neural networks,’’ 2015, arXiv:1508.00092. [Online]. Available:
http://arxiv.org/abs/1508.00092

[29] F. Hu, G.-S. Xia, Z. Wang, X. Huang, L. Zhang, and H. Sun, ‘‘Unsu-
pervised feature learning via spectral clustering of multidimensional
patches for remotely sensed scene classification,’’ IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2015–2030,
May 2015.

[30] G. Wang, B. Fan, S. Xiang, and C. Pan, ‘‘Aggregating rich hierarchical
features for scene classification in remote sensing imagery,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 9, pp. 4104–4115,
Sep. 2017.

[31] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, ‘‘When deep learn-
ing meets metric learning: Remote sensing image scene classification
via learning discriminative CNNs,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 5, pp. 2811–2821, May 2018.

[32] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon, ‘‘Transfer learning
from deep features for remote sensing and poverty mapping,’’ in Proc. 30th
AAAI Conf. Artif. Intell., 2016, pp. 3929–3935.

[33] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolu-
tional neural networks,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2014,
pp. 947–958.

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.

[35] A.Mahendran andA. Vedaldi, ‘‘Understanding deep image representations
by inverting them,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 5188–5196.

[36] Y. Liu and C. Huang, ‘‘Scene classification via triplet networks,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 1,
pp. 220–237, Jan. 2018.

[37] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio, ‘‘Maxout networks,’’ in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1319–1327.

[38] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, ‘‘Stacked
convolutional denoising auto-encoders for feature representation,’’ IEEE
Trans. Cybern., vol. 47, no. 4, pp. 1017–1027, Apr. 2017.

[39] Y. Yang and S. Newsam, ‘‘Bag-of-visual-words and spatial extensions
for land-use classification,’’ in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst. (GIS), 2010, pp. 270–279.

[40] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556v6. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556v6

[41] W. Zhou, Z. Shao, C. Diao, and Q. Cheng, ‘‘High-resolution remote-
sensing imagery retrieval using sparse features by auto-encoder,’’ Remote
Sens. Lett., vol. 6, no. 10, pp. 775–783, Oct. 2015.

[42] N.Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-
tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2005, pp. 886–893.

[43] J. Sivic, ‘‘Video Google: A text retrieval approach to object matching in
videos,’’ in Proc. 9th IEEE Int. Conf. Comput. Vis., Oct. 2003, p. 1470.

[44] N. He, L. Fang, S. Li, A. Plaza, and J. Plaza, ‘‘Remote sensing scene
classification using multilayer stacked covariance pooling,’’ IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 12, pp. 6899–6910, Dec. 2018.

ZHIGUO ZENG was born in Hunan, China,
in 1977. He received the M.S. degree in informa-
tion and communication engineering from Cen-
tral South University, in 2011. He is currently
pursuing the Ph.D. degree with Air and Mis-
sile Defense College, Air Force Engineering Uni-
versity. His main research interests include deep
learning in convolutional neural networks and
computer vision.

XIHONG CHEN was born in 1961. He is currently
a Professor and a Ph.D. Supervisor with Air and
Missile Defense College, Air Force Engineering
University.

ZHIHUA SONG was born in Hebei, China,
in 1982. He received the B.S. degree in missile
engineering, and the M.S. and Ph.D. degrees in
military operations research from Air Force Engi-
neering University, in 2004 and 2010, respectively.

76046 VOLUME 9, 2021


