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ABSTRACT The differences in performance among binary-integer encodings in an Isingmachine, which can
solve combinatorial optimization problems, are investigated.Many combinatorial optimization problems can
be mapped to find the lowest-energy (ground) state of an Ising model or its equivalent model, the Quadratic
Unconstrained Binary Optimization (QUBO). Since the Ising model and QUBO consist of binary variables,
they often express integers as binary when using Ising machines. A typical example is the combinatorial
optimization problem under inequality constraints. Here, the quadratic knapsack problem is adopted as
a prototypical problem with an inequality constraint. It is solved using typical binary-integer encodings:
one-hot encoding, binary encoding, and unary encoding. Unary encoding shows the best performance for
large-sized problems.

INDEX TERMS Ising machine, combinatorial optimization problem, Ising model, quadratic unconstrained
binary optimization, binary-integer encoding, quadratic knapsack problem.

I. INTRODUCTION
A. MOTIVATION
Combinatorial optimization problems find the combina-
tion of decision variables that minimize or maximize an
objective function under given constraints. Most problems
are known as NP-hard or NP-complete [1], and the num-
ber of solution candidates exponentially increases with
the number of decision variables. Because combinatorial
optimization problems are ubiquitous in social life and indus-
try [2]–[12], there is a growing interest in developing tech-
nologies that can efficiently and accurately find optimal
or quasi-optimal solutions. Ising machines have recently
attracted attention as efficient solvers that achieve faster
computations than conventional digital computers with the
von Neumann architecture [13]–[25]. Many underlying algo-
rithms for Ising machines have been proposed [26]–[28].
Recently, proposals have also been made for efficient
input formats to Ising machines based on the operation
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principle of Ising machines [29]. Examples include sim-
ulated annealing (SA)-based machines [13]–[17], quan-
tum annealing machines [18]–[20], and photonics-based
machines [21]–[24]. The features of the various Ising
machines are summarized in [30].

In an Isingmachine, each combinatorial optimization prob-
lem is mapped onto the Ising problem. The Ising problem
searches for the lowest-energy (ground) state of the Ising
model or its equivalent model, the Quadratic Unconstrained
Binary Optimization (QUBO) model [31]. The Ising model
was originally introduced in statistical mechanics to describe
the nature of phase transition [32]. The energy functions of
the Ising model and the QUBO model are described by the
quadratic form of spin variables {+1,−1} and binary vari-
ables {0, 1}, respectively. The objective function and the con-
straints in a combinatorial optimization problem are encoded
in the Ising model or the QUBO model [33] and [34].
Since the Ising model and QUBO consist of binary variables,
when solving combinatorial optimization problems involving
integer values with Ising machines, the integer values must be
expressed in binary variables.
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Herein combinatorial optimization problems subject to an
inequality constraint are considered. To write the inequal-
ity constraint as an energy function of the Ising model,
binary-integer encoding has been used to represent inte-
gers in terms of binary variables [3], [33], and [35]–[42].
Various types of binary-integer encoding exist. From a
practical viewpoint, encoding with the best performance
should be adopted. However, the performance of different
binary-integer encodings has yet to be systematically investi-
gated in Ising machines.

B. SUMMARY OF CONTRIBUTIONS
This paper compares the performance among typical
binary-integer encodings in an SA-based Ising machine
called Digital Annealer (DA) [15]. The main contributions
are:
• We provide a systematic method to compare the
binary-integer encoding performance. Our method is
applied to the quadratic knapsack problem (QKP) [43],
[44], which is a prototypical combinatorial opti-
mization problem with an inequality constraint. The
QKP is an extension of the well-known combina-
torial optimization problem, the knapsack problem
(KP) [35], [41], [45]–[47], except that it allows for
quadratic terms in the objective function. The QKP is
better suited than the KP to study the performance of
binary-integer encodings since the objective function is
given in the general function form of the QUBO model.

• We investigate the performance of common types
of binary-integer encoding: one-hot encoding, binary
encoding, and unary encoding. Unary encoding achieves
the best performance for large-sized QKPs.

The rest of this paper is organized as follows. Section II
introduces the QKP. Section III provides the three types of
binary-integer encoding. Here, the QKP is rephrased as the
QUBOmodel. Section IV showsmethods to prepare the QKP
instances and the setup for DA. SectionV presents our results.
Section VI discusses the results and section VII concludes our
study.

II. QUADRATIC KNAPSACK PROBLEM
This section reviews the formulation of the QKP, or more
precisely the 0−1 QKP [43]. Informally, the QKPmaximizes
the overall profit in a knapsack so that the overall weight
does not exceed a given knapsack’s capacity. We assume that
there are n items where the item i has a weight wi > 0 for
i = 0, 1, . . . , n− 1, and n × n nonnegative matrix P = {pij},
where pii is the profit achieved if the item i is selected and
pij(i < j) is the profit achieved if both items i and j are
selected. For i > j, pij = 0. When P is a diagonal matrix (i.e.,
pij = 0 for all i 6= j), the QKP is reduced to the KP. Intro-
ducing binary variables xi ∈ {0, 1} provides a mathematical
formulation of the QKP to maximize an objective function,
which is expressed as

n−1∑
i=0

n−1∑
j=i

pijxixj, (1)

TABLE 1. Types of binary-integer encoding.

subject to an inequality constraint,

n−1∑
i=0

wixi ≤ c, (2)

where c is the knapsack’s capacity. The binary variable xi is
1 if the item i is selected. Otherwise, it is 0.

III. BINARY-INTEGER ENCODING AND QUBO MODEL
A. TYPICAL BINARY-INTEGER ENCODINGS
Binary-integer encoding represents integers by binary vari-
ables. Here, we introduce three types of well-known
binary-integer encodings: one-hot encoding, binary encod-
ing, and unary encoding [3]. Each encoding describes integer
I by a linear function of binary variables,

I =
D−1∑
d=0

f (d)yd , (3)

where we introduce auxiliary bits yd ∈ {0, 1}. The function
f (d) is called an encoding function and D is called the bit
depth, where D depends on the choice of f (d).

FIGURE 1. A schematic representation of the binary-integer encodings
explained in Table 1 when I = 6 and c = 7.

The QKP must represent each integer I ∈ [0, c] by binary
variables to express the inequality constraint [eq. (2)] in the
QUBO model. Table 1 shows the encoding function f (d) and
the bit depthD for each encoding. Figure 1 shows a schematic
representation of the binary-integer encodings. First, one-hot
encoding assumes that one bit takes a value of 1, and the
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others are 0. Since the encoding function is given by f (d) =
d , I is an integer between 0 and D − 1. Thus, the bit length
is given by D = c + 1. One-hot encoding is one of the
traditional encoding methods for representing any integers
uniquely [36]. Second, in binary encoding, f (d) = 2d . I
is an integer between 0 and 2D − 1. Binary encoding is
the informationally densest way to represent integers [36].
In most cases, integers from 0 to c are not encodable using
only the term

∑D−1
d=0 2

dyd . For example, integers from 0 to
7 are encodable by this encoding with D = 3, but not
integers from 0 to 10. For integers from 0 to 10, at least
four auxiliary bits are needed. If D = 4, the maximum
value of

∑D−1
d=0 2

dyd is 15. Hence it can represent integers
larger than 10. This is inappropriate for expressing QKPs
because it allows for an overall weight of items that exceeds
the knapsack’s capacity. To avoid this, we set D = dlog2 ce
and subtract a constant C = 2D − 1 − c from I so that
the maximum value of I − C is c [33]. Finally, in unary
encoding, f (d) = 1. The number of bits with yd = 1
gives the integer I , and thus, D = c. Note that the unary
encoding is redundant, and the bit string for a given integer
is not generally unique [37]. For example, the integer 2 is
represented by three bits as (y0, y1, y2) = (0, 1, 1), (1, 0, 1),
and (1, 1, 0).

B. QUBO MODEL FOR QKP
This subsection shows the QUBO model for the QKP. The
QUBO model is defined on an undirected graph, which is
given by G = (V ,E), where V and E are the sets of vertices
and edges on G, respectively. The energy function of the
QUBOmodel is referred to as the Hamiltonian and is defined
by

HQUBO =
∑

(a,b)∈E

Qabzazb, (4)

where za ∈ {0, 1} is a binary variable on the vertex a ∈ V .
The matrix Qab is called the QUBO matrix.
The QKP provides the Hamiltonians representing the

objective function and the inequality constraint. The QUBO
model is given by

HQUBO = Hobjective + AHconstraint, (5)

where Hobjective and Hconstraint are the Hamiltonians for
the objective function and the inequality constraint, respec-
tively. The coefficient A > 0 is a hyperparameter, which
should be appropriately chosen [see Sec. V-B]. In this study,
the only hyperparameter included in the total Hamiltonian is
A, regardless of the encoding method.

The Hamiltonian for the objective function is simply given
by

Hobjective = −

n−1∑
i=0

n−1∑
j=i

pijxixj. (6)

TABLE 2. n and c values of the QKPs and the total number of binary
variables N for each encoding.

The Hamiltonians for the inequality constraint depend on
the binary-integer encoding. They are given by

H (one−hot)
constraint =

(
D−1∑
d=0

dyd −
n−1∑
i=0

wixi

)2

+

(
D−1∑
d=0

yd − 1

)2

;

H (binary)
constraint =

(
D−1∑
d=0

2dyd − (2D − 1− c)−
n−1∑
i=0

wixi

)2

;

H (unary)
constraint =

(
D−1∑
d=0

yd −
n−1∑
i=0

wixi

)2

, (7)

where D in each encoding is given in Table 1. The constraint
Hamiltonian for one-hot encoding follows the one presented
in [33]. The above Hamiltonians can be zero if and only if the
total weight of the items in the knapsack is less than or equal
to the knapsack’s capacity (i.e.,

∑n−1
i=0 wixi ≤ c).

IV. METHOD
A. PREPARATION OF QKP INSTANCES
We created QKPs with various n and c values (Table 2). The
total number of binary variables N is given by

N = n+ D. (8)

N value for the binary encoding is the smallest, while N
values for the one-hot encoding and the unary encoding are
almost the same. wi and pij(i ≤ j) are randomly chosen from
uniform distributions on {1, 2, . . . , 10} and {0, 1, 2, . . . , 10},
respectively. For each n and c, 50 random instances are gen-
erated.

Practically, wi and pij may be distributed according to a
more complex and wider distribution. However, it is unnec-
essary to solve such problems by Ising machines since the
distribution of wi and pij can be reduced to the one with
a smaller deviation using the following pre-processes. It is
not optimal to select items with extremely large weights but
extremely small profits. By contrast, items with extremely
small weights but extremely large profits should realize opti-
mal solutions. In this way, items with extremely large or
small profit per weight can be ignored since it can be trivially
determined whether or not such items should be selected.
After processing, problems can be broken down into sub-
problems, which have items with similar weights and profits.
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TABLE 3. Digital Annealer parameters.

As such, we assume that wi and pij are generated uniformly
in a limited range of values.

B. SETUP OF AN ISING MACHINE
We used DA [15] as an Ising machine. DA is implemented
on CMOS hardware. Its algorithm is based on SA, and it uses
massive parallelization. The Ising machine has a maximum
of 8192 binary variables on a complete graph. Table 3 shows
the tuning parameters of DA. The number of iterations and
the number of runs are set to 107 and 100, respectively.
Amode based on SA is selected. The initial temperature is set
sufficiently high for the Hamiltonian. Here, an energy scale
of N maxab |Qab| is used to characterize the high temperature
since it gives an upper bound of the energy change for the flip
of a single binary variable. We adjust the initial temperature
by a factor α1, where α1 takes a value of 1, 10, or 100.
On the other hand, the final temperature is set sufficiently
low for the Hamiltonian. An energy scale of minQab 6=0 |Qab|
characterizes the low temperature since it gives the minimum
excitation energy. The final temperature is adjusted by a
factor α2, where α2 takes a value of 1, 0.1, or 0.01. The
temperature is lowered in every N iteration. The temperature
at the n-th update, T (n), is given by

T (n) = exp(−nr)Ti, (9)

where Ti is the initial temperature and r is the decay rate. The
decay rate is set to be consistent with the initial temperature,
the final temperature, and the number of iterations.

V. RESULTS
A. A-DEPENDENCES OF FEASIBLE SOLUTION RATES AND
AVERAGE ENERGIES
This subsection shows the A-dependences of the probability
of obtaining feasible solutions (FSs) and their average ener-
gies for each encoding. The FSs denote the solutions that
satisfy the inequality constraint in eq. (2). Here, we refer to
the probability of obtaining FSs as the FS rate. Namely, the FS
rate is defined by the ratio of the number of obtaining the FSs
to the number of total runs. Here, the number of total runs
is 100 [see Table 3]. The FS rate is obtained by calculating
Hconstraint since the inequality constraint is satisfied if and
only if Hconstraint = 0. The average energy of the FSs is
evaluated with the value of Hobjective.
Figure 2 shows the A-dependences of the FS rates for

each encoding in the QKPs with (n, c) = (20, 30), (n, c) =
(100, 200), and (n, c) = (800, 1200). For binary encoding
and unary encoding, the FS rates approach 1 as the parameter
A increases. The same trends are observed for all other values

n and c for both types of encoding. Moreover, the values of A
necessary to obtain a high FS rate are smaller for unary encod-
ing than binary encoding, except for (n, c) = (20, 30). For the
problem with (n, c) = (800, 1200), the FS rate approaches 1
around A = 1.6 × 103 in binary encoding [Fig. 2(h)] and
around A = 0.2× 103 in unary encoding [Fig. 2(i)] when α1
and α2 are appropriately chosen. This feature becomes more
pronounced as the values of n and c increase. On the other
hand, in one-hot encoding, few FSs are obtained even when
the parameter A is large except for (n, c) = (20, 30). That is,
FSs can be obtained with a high frequency in binary encoding
and unary encoding at a sufficiently large A, whereas one-hot
encoding cannot provide FSs for problems with large n and c.
Figure 3 shows the A-dependences of the average energies

of the FSs. The average energies increase with A for binary
encoding and unary encoding. The average energies at α2 = 1
are larger than those at α2 = 0.01 and 0.1 for the case of
(n, c) = (800, 1200). This indicates that tuning the final tem-
perature is important to achieve a high-quality performance
for large-sized problems. For small n and c, one-hot encoding
shows qualitatively the same A-dependence of the average
energy as binary encoding and unary encoding.

B. PERFORMANCE COMPARISON
The results in subsection V-A indicate that for each encoding
A has an optimal value, where the FS rate is high and the
average energy of FSs is small. To systematically determine
the optimal strength of A, we set a threshold value for the
FS rate. In this study, we set the threshold value as 0.95. For
a problem instance, we repeatedly solve it while varying the
parameters α1, α2, and A. Then we find the sets of parameters
that give the FS rate above the threshold value, and search the
set of parameters for the optimal set to minimize the average
energy over the FSs. Below, we discuss the performance dif-
ference among the three encodings by comparing the average
energies of the FSs at the optimal values of α1, α2, and A.
Figure 4(a) compares the average energies of the FSs of all

the 50 QKPs between one-hot encoding and unary encoding.
The average energies are compared only when (n, c) =
(20, 30) since this is the only casewhere the FS rate in one-hot
encoding reaches the threshold. The average energies in unary
encoding are smaller than those in one-hot encoding. Namely,
unary encoding shows a better performance than one-hot
encoding.

Figure 4(b) compares the average energies between binary
encoding and unary encoding. For a small-sized problem
[(n, c) = (20, 30)], the performances are similar. However,
the average energies of unary encoding become smaller than
those of binary encoding as the values of n and c increase.
Furthermore, the data for (n, c) = (400, 600) and (800, 1200)
almost overlap, implying that unary encoding shows the high-
est performance even for larger-sized problems.

We compare the encoding methods in terms of the compu-
tation time. The computation in DA is composed of process-
ing done on CMOS hardware and CPU. The time required for
the former is called annealing time, and the time required for
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FIGURE 2. A-dependences of the FS rates: one-hot encoding [(a),(d),(g)], binary encoding [(b),(e),(h)], and unary encoding [(c),(f),(i)]. Top [(a),(b),(c)],
middle [(d),(e),(f)], and bottom row [(g),(h),(i)] show the small-sized problems [(n, c) = (20,30)], medium-sized problems [(n, c) = (100,200)], and
large-sized problems [(n, c) = (800,1200)], respectively. For large A, the A-dependences are almost independent of α1 and α2.

the latter is called CPU time, and the sum of these is the actual
computation time. The annealing time is almost the same for
all the encoding methods since the number of iterations is
fixed in our setup. On the other hand, the CPU time is longer
as the number of bits increases. In the comparison of the
CPU times, when (n, c) = (800, 1200), unary encoding takes
approximately 50 % longer than binary encoding, and almost
the same time as one-hot encoding.

VI. DISCUSSION
Here the results are discussed from two perspectives: unary
encoding and the FS rate in one-hot encoding.

Unary encoding outperforms binary encoding, although
the total number of binary variables N in unary encoding
is larger than that in binary encoding [Tables 1 and 2]. This
is counterintuitive since the dimension of the solution space
rapidly increases with N . There are two possible reasons for
the higher performance of unary encoding. One is that the
value of the coefficient A required to obtain a high FS rate
in unary encoding is smaller than that in binary encoding.

A small value of A improves performance since the aver-
age energy increases with A. The other is its redundancy.
The number of FSs is larger in unary encoding than in the
other encodings because there are multiple ways to repre-
sent an integer in unary encoding. This may make it easier
for the Ising machine to find the FSs, resulting in a better
performance.

One-hot encoding fails to obtain the FSs even for large
A [Figs. 2(d) and 2(g)]. Although the number of FSs for
one-hot encoding is the same as that for binary encoding,
this behavior is observed only in one-hot encoding. To clarify
the reason, we conducted additional analysis based on the
local-minimum structure of the energy function. Here, a solu-
tion in a local minimum is the one whose energy does not
decrease under the flip of any single binary variable. From
the argument in ref. [33], all the FSs are in local minima for
large A in our experiment. In the case of (n, c) = (800, 1200),
we have approximately 70 solutions, which are not feasible
but are in a local minimum in the 100 runs of DA. (The
remaining 30 solutions are neither feasible nor in a local
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FIGURE 3. A-dependences of the average energies of the FSs. Types of binary-integer encodings and the values of n and c are the same as those
in Fig. 2. Fig. (g) lacks data since the FSs cannot be obtained.

FIGURE 4. Comparisons of the average energies at the optimal values of A, α1, and α2 (a) between the one-hot
encoding and the unary encoding for (n, c) = (20,30) and (b) between the binary encoding and the unary encoding
for various values of n and c .

minimum.) None of the 70 solutions satisfy the one-hot con-
straint:

∑D−1
d=0 yd = 1. This implies that the one-hot constraint

creates a number of infeasible local-minimum solutions.Mul-
tiple local minima cause the spin-flip dynamics in SA to be
slow. Thus, one-hot encoding gives a stronger initial-state
dependence than the other encodings, making it difficult

to find the FSs by DA. In addition, although the studied
model only has one parameter characterizing the constraint
term, another parameter can be introduced for one-hot encod-

ing such as H (one−hot)
constraint =

(∑D−1
d=0 dyd −

∑n−1
i=0 wixi

)2
+

B
(∑D−1

d=0 yd − 1
)2
. In this case, the structure of the local
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minima will depend on the additional parameter B. Future
analysis of the local-minimum structure while varying B
should be considered.

VII. CONCLUSION
The performances of three types of binary-integer encodings
(one-hot encoding, binary encoding, and unary encoding)
were evaluated. The QKPs were formulated into Ising prob-
lems by utilizing each binary-integer encoding. Then the
QKPs were solved using an SA-based Ising machine, DA.
To compare their performances, the optimal values of the
hyperparameters (α1, α2, and A) are systematically deter-
mined. Unary encoding provided the best results, especially
for large-sized problems, whereas one-hot encoding failed to
find FSs even for sufficiently large A.
There are several potential reasons for the high perfor-

mance of unary encoding. In the future, we plan to clarify
the important properties of unary encoding to achieve the
high performance. In addition, we will investigate whether
the performance is independent of the type of combinatorial
optimization problem or the choice of Ising machine.

APPENDIX A
OPTIMAL VALUES OF THE HYPERPARAMETERS
The appendix provides the details of the optimal values of the
hyperparametersA, α1, and α2 for all sizes of the problemswe
studied. Table 4 shows the average values over the 50 prob-
lems for each encoding. Table 4 also shows the mode values
of α1 and α2. Note that, in one-hot encoding, optimal hyper-
parameters cannot be determined since a sufficient number of
FSs were not obtained except for the case of (n, c) = (20, 30).

TABLE 4. The optimal values of A, α1, and α2.
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