
Received April 30, 2021, accepted May 12, 2021, date of publication May 19, 2021, date of current version June 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082026

Parallel and Distributed Implementation of Sine
Cosine Algorithm on Apache Spark Platform
MOHAMMAD GH. ALFAILAKAWI 1, MARYAM ALJAME 1,2, AND IMTIAZ AHMAD 1
1Computer Engineering Department, Kuwait University, Khaldiyah 13060, Kuwait
2Educational Software Department, Ministry of Education, Kuwait city 12013, Kuwait

Corresponding author: Mohammad Gh. AlFailakawi (alfailakawi.m@ku.edu.kw)

ABSTRACT The Sine Cosine Algorithm (SCA) has experienced wide spread use in solving optimization
problems in many disciplines mainly due to its simplicity and efficiency. However, like many other meta-
heuristics, SCA requires considerable amount of compute time when solving large size optimization
problems. Therefore, in order to tackle such challenging problems efficiently, this work proposes Spark-
SCA, a scalable and parallel implementation of SCA algorithm on Apache Spark distributed framework.
Spark-SCA exploits Spark platform native support for iterative algorithms through in-memory computing
to speed-up computations when handling large optimization problems. Both the design and implementation
details of Spark-SCA are presented herein. The performance of Spark-SCA was compared to standard SCA
on different benchmark functions with up to 1,000-dimension as well as three practical engineering design
problems. Simulation experiments conducted on Amazon Web Services (AWS) public cloud demonstrated
how Spark-SCA outperforms the standard version in terms of solution quality and run time as well as it
competitiveness in exploring solution space of complex optimization problems.

INDEX TERMS Apache spark, cluster, Hadoop, meta-heuristics, sine cosine algorithm.

I. INTRODUCTION
Majority of the challenging real-world problems that arise
nowadays in many disciplines can be classified as optimiza-
tion problems. Such complex problems require the algo-
rithm to efficiently and effectively explore their associated
search space to find good solutions. Population-based meta-
heuristics have been the dominant methods to find opti-
mal or near-optimal solutions to many optimization problems
within a reasonable time [1]. These meta-heuristics derive
their inspiration from mimicking intelligent processes aris-
ing in nature. Meta-heuristics can be divided into evolu-
tionary algorithms (EAs) such as genetic algorithms (GAs),
differential evolution (DE); and swarm intelligence algo-
rithms such as particle swarm (PSO), ant colony (ACO), grey
wolf (GWO) [2], phylogram analysis (OPA) [3], and cuckoo
search (CS) among others [4]. To further improve the perfor-
mance of meta-heuristics, researchers have applied a variety
of techniques such as stochastic operators [5] or hybridiza-
tion to solve specific optimization problems [6]–[8]. Due
to the popularity of meta-heuristics in successfully solving
optimization problems, these algorithms are being introduced

The associate editor coordinating the review of this manuscript and

approving it for publication was Pavlos I. Lazaridis .

in engineering and other curricula to equip students with the
required skills for the market specifically in the emerging
field of machine learning [9].

Since no algorithm can solve all optimization problems as
per the ‘‘No Free Lunch’’ theorem [10], researchers have put
forward new optimization algorithms for solving problems
in diverse fields. The Sine Cosine Algorithm (SCA) [11] is
a new population-based algorithm that utilizes the oscillating
property of the sine and cosine functions to explore the search
space to find a good solution for a given problem. SCA
has attracted a widespread usage in solving many practical
problems due to its simplicity, flexibility, and effectiveness.
SCAwas successfully applied to interesting problems such as
pairwise global sequence alignment, hydrothermal schedul-
ing, feature selection, medical diagnostic, and CMOS ana-
log circuits optimization among others. For a detailed list
of applications, the reader is referred to a recent survey by
Mirjalili et al. [12]. Due to some inherent weaknesses in SCA
for solving certain type of benchmarks, many researchers
have started to find ways to enhance SCA’s exploitation and
exploration capabilities either by introducing new stochastic
operators or by hybridizing it with other algorithms.

A memory guided sine cosine algorithm (MG-SCA) was
proposed in [13] where a memory matrix of personal best

77188 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7426-5402
https://orcid.org/0000-0002-5309-8203
https://orcid.org/0000-0002-0673-7324
https://orcid.org/0000-0001-5091-2567

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

solutions is used to guide solution evolution. A combina-
tion of four different strategies; Cauchy mutation operator,
chaotic local search, mutation and crossover strategies, and
opposition based learning, adapted from DE were employed
to improve SCA performance [14]. An improved symmetric
SCA with adaptive probability selection has been proposed
in [15] to enhance SCA exploitation capabilities through
horizontally flipped symmetric sine and cosine functions.
A multi-core SCA approach that combined three strategies
from three other meta-heuristics to enhance exploration capa-
bilities was proposed in [16]. Another recent technique pro-
posed in [17] combines chaotic local search and levy flight
operator from cuckoo search with standard SCA to boost
its performance. The authors in [18] introduced a multi-
group multi-strategy to enhance SCA capabilities. In their
approach, the population is partitioned into multiple groups
with the same number of individuals and each group executes
in parallel for a certain number of iterations using differ-
ent update strategy and without any communication among
groups. After reaching a certain number of iterations, groups
communicate with each other to replace the worst individuals
by the best one. Experimental results have demonstrated con-
siderable improvement in SCA’s exploratory and exploitative
properties.

Nevertheless, with the ever-increasing scale, dimension-
ality and complexity of today’s realistic problems, meta-
heuristics require enormous amount of time to find good solu-
tions. However, due to their inherent parallelism, population-
based meta-heuristics have the potential to greatly benefit
from parallel platforms such as Field Programmable Gate
Arrays (FPGAs) [19], GPUs [20] as well as distributed plat-
forms such as Apache Hadoop [21] and Apache Spark [22].
The distributed platforms are being preferred over other par-
allel platforms due to their flexibility, scalability and avail-
ability of cloud resources. Therefore, the parallelization of
meta-heuristics on emerging distributed frameworks such as
Apache Spark offers an interesting opportunity to speed-up
computations, handle large optimization problems, or further
improve search ability of algorithms. Spark is an emerg-
ing throughput-oriented distributed computing framework
with enhancement to efficiently support iterative algorithms
through in-memory computing [22]. Different meta-heuristic
algorithms were parallelized using Spark framework demon-
strating good performance for large scale problems. At the
present time, traditional meta-heuristics such as GA [23],
PSO [24], ACO [25], tabu search (TS) [26] as well as more
recent ones such as whale optimization [27] and scatter
search [28] have been successfully parallelized using Spark
platform. However, a Spark based parallelization of SCA is
yet to be implemented which is the topic of this work.

Motivated by the demand for a parallel version
of SCA [17], this paper proposes Spark-SCA, a dis-
tributed version of the original SCA on Apache Spark
framework. Experimental results have demonstrated how
Spark-SCA outperformed the standard version of the
algorithm in terms solution quality and run time. The

main contributions of this work can be summarized as
follows:

1) A novel distributed SCA based on Apache Spark is
proposed.

2) The performance of Spark-SCA is compared to its
serial version on several benchmarks as well as three
real engineering problems.

3) The impact of communication cost on the performance
of Spark-SCA is analyzed.

The remainder of this paper is organized as follows:
Section II provides a brief description of the sine cosine
algorithm as well a short overview of Apache Spark platform.
Section III discusses the details of Spark-SCA algorithm.
Section IV presents results showcasing the performance of
the proposed algorithm on unimodal, multimodal, and com-
posite benchmark functions whereas Section V gives the
results for three well-known engineering optimization prob-
lems. Conclusions drawn and future directions are given in
Section VI.

II. BACKGROUND
A. SINE COSINE ALGORITHM (SCA)
Sine Cosine Algorithm (SCA) is a stochastic population-
based optimization algorithm proposed by Mirjalili in
2016 [11]. SCA name comes from the mathematical func-
tions sine and cosine. The Sine Cosine Algorithm begins the
optimization process by generating a set of random solutions
known as the initialization phase. Then, the optimization
process starts where an objective function is applied to these
solutions to evaluate their quality where the sine and cosine
functions are used to modify these solutions to improve their
quality in an iterative fashion. This optimization process is
repeated until a terminating condition is satisfied. The follow-
ing equations represent how SCA algorithm modify current
solutions to reach possibly better ones:

X t+1i =

{
X ti + r1 · sin(r2) · |(r3)P

t
i − X

t
i | r4 < 0.5

X ti + r1 · cos(r2) · |(r3)P
t
i − X

t
i | r4 > 0.5

(1)

where X ti represents the current solution position in dimen-
sion i at the t-th iteration. Similarly, Pti indicates the des-
tination position in the i-th dimension at iteration t , || is
the absolute value and r4 is a random value ∈ [0, 1]. The
parameter r4 is used to control the switching between using
either sine or cosine function to update the solution as indi-
cated in Eq. (1). The remaining random parameters ri; r1, r2,
and r3, are used to determine how solutions characteristic
are modified. In particular, parameter r1 is responsible for
determining the direction (region) of movement described
mathematically by:

r1 = a− ta/T (2)

where a is a constant, t and T represent the current and
maximum number of iterations, respectively. The r2 parame-
ter is used to specify the amount of movement toward/away
from the destination. Parameter r3 is a random weighting

VOLUME 9, 2021 77189

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

FIGURE 1. Search agents movement according to the impact of Sine and
Cosine.

factor that emphasis (r3 > 1) or deemphasize (r3 < 1) the
impact of the destination in defining the distance. Algorithm 1
gives the pseudocode of SCA algorithm. Initially in line 1,
the algorithm starts with initializing a set of random solutions
followed by an evaluation step where the objective function
is calculated and the best solution is saved as the destination
point (lines 3-4). Then, ri parameters are updated and the
value of the destination is calculated using Eq. (1) to update
the current solutions (lines 5-6). These steps, with the excep-
tion of step 1, are repeated until the terminating condition
is reached (line 7) where the best solution is identified and
returned as shown in line 8.

Algorithm 1 SCA Algorithm
1: Initialize a set of search agents (solutions) (X)
2: do
3: Evaluate each search agent using the objective

function
4: Identify the best solution obtained so far (P = X∗)
5: Update r1, r2, r3, and r4
6: Update position of each search agent using Eq. (1)
7: while (t < maximum iterations)
8: Return the best solution obtained as the global optimum

An optimization algorithm should guarantee proper explo-
ration and exploitation of the search space to realize global
optimum. Figure 1 illustrates how the sine and cosine func-
tions affect the movement of search agents with respect to
the destination in the range [−2, 2]. As shown in Figure 1,
exploration is identified by the regions [−2, −1) and (1, 2]
while exploitation happens between [−1, 1]. Figure 1 depicts
how the position of a solution is updated to the next random
location either inward or outward as compared to the destina-
tion. SCA achieves this position update by introducing r2 in
Eq. (1) where r2 is a random number ∈ [0, 2π].

B. APACHE SPARK
Apache Spark [29] is a distributed in-memory computing
framework based on MapReduce paradigm designed for
big data processing. Spark was developed by University
of California, Berkeley [22]. Spark’s in-memory primitives
make it an appropriate framework to query data repeat-
edly without the need for accessing system storage/disk.

Therefore, Spark is a well suited framework for iterative
processing, batch applications, streaming as well as inter-
active queries. Spark as a big data processing framework
has several configuration parameters that control parallelism,
computing resources, compression, and I/O operations [30].
Setting those parameters is a crucial step for performance
improvement and resource utilization. For instance, partition
tuning is essential as it determines the degree of parallelism.
Consequently, setting a sufficient number of partitions leads
to better resource utilization [30]. In fact, allocating optimal
parameters is an NP-hard problem [31]; hence, many recent
studies have emerged to propose parameters tuning methods
including [32]–[36].

FIGURE 2. Apache Spark architecture.

Figure 2 illustrates Spark architecture which is a mas-
ter/slave architecture where the driver node is the master and
worker nodes are the slaves. The driver node converts a Spark
program into multiple tasks and distributes them to worker
nodes on the cluster. Each worker node has an executor that
executes the tasks assigned to it. One of the responsibilities
of SparkContext is to establish a connection to the cluster
manager. Spark supports several cluster managers includ-
ing standalone cluster, Hadoop YARN, Amazon EMR, and
ApacheMesos. The Resilient Distributed Dataset (RDD) [37]
is the essence of Spark which represents an immutable col-
lection of data partitioned across worker nodes on the cluster
as shown in Figure 2. RDDs are created by applying oper-
ations on data. There are two types of operations in Spark,
namely, transformations and actions. Transformations apply
a function on an existing RDD resulting in creating a new
RDD. On the other hand, actions return a value to the driver
program or store it to a storage system such as Hadoop
Distributed File System (HDFS). Each RDD stores its own
lineage, a set of transformations that has been applied to the
RDD. In case of data lost, Spark achieves fault-tolerance by
using the lineage to reconstruct lost data and thus evade the
need for costly data replication or checkpointing. During par-
allel operations, Spark uses shared variables across all worker
nodes on the cluster. Spark has two types of shared vari-
ables, accumulators and broadcast variables. Accumulators
are used to aggregate commutative operations such as coun-
ters or sum values. On the other hand, broadcast variables are

77190 VOLUME 9, 2021

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

cached read-only variables that are available on each worker
node thus allowing efficient data sharing. Spark supports
different programming languages namely Scala, Java, Python
and R [38].

III. SPARK-SCA ALGORITHM
The Sine Cosine Algorithm is an optimization algorithm
that begins with a set of random solutions where it uses an
objective function to repeatedly evaluate solutions fitness.
In fact, each iteration depends on the previous one which
signifies the serial nature of algorithm execution. This paper
proposes Spark-SCA, an algorithm that aims to parallelize
SCA serial evaluations in order to reduce execution time. Fit-
ness evaluation process is the bottleneck of any optimization
algorithm as it requires the evaluation of the whole popula-
tion. The algorithm’s time complexity scales as population
size increases, therefore, in this work we employ Apache
Spark to divide SCA population into several subpopulations
where each subpopulation computes its own fitness indepen-
dently. Communication between subpopulations is controlled
by the algorithm and in our implementation it is a function
of the total number of iterations as will be discussed later.
Moreover, during subpopulation fitness evaluation, a Spark
broadcast variable is used to communicate to other subpop-
ulation best fitness individual (destination point) currently
available. Implementation details of the proposed algorithm,
Spark-SCA, are discussed next.

FIGURE 3. Spark-SCA initialization phase.

The pseudocode of Spark-SCA is given in Algorithm 2.
Figure 3 shows flowchart of the initialization phase of Spark-
SCA. Spark-SCA starts with a population size of X and a
number of partitions equal to N . Initialization begins with
generating a random set of agents (solutions). Those agents
are of dimensions D and they are constrained between a
lower and an upper bound of the objective function. During
the initialization phase, Spark parallelize method is used to
divide population X into independent subpopulations over
N partitions. As can be seen in Algorithm 2 in line 1, this

Algorithm 2 Spark-SCA
Input: X = population size, N = number of partitions,

D = dimension size, fn = objective function,
T = maximum number of iterations

Output: best solution (fitness)
1: [A] = sc.parallelize(List.range(1, X), N)
2: [<F, A>] = [A].mapPartitions() F evaluate agents

using fn
3: <Fbest , A > = [<F, A>].glom().map(minBy(key))

.reduce(min(key))
4: FagentBC = sc.broadcast(<Fbest , A>)
5: repeat
6: Update r1, r2, r3, and r4
7: [A] = [<F, A>].map() F update agents position

using Eq. (1)
8: [<F, A>] = [A].mapPartitions() F evaluate agents

using fn
9: <FbestTmp, A> = [<F, A>].glom().map

(minBy(key)).reduce(min(key))
10: if <FbestTmp, A>._1 < (FagentBC .value)._1 then
11: FagentBC .destroy
12: FagentBC = sc.broadcast(<FbestTmp, A>)
13: end if
14: t = t + 1
15: until t > T
16: return best solution (fitness)

step produces an RDD [A] that has the following records:
[agent1, agent2, . . . , agentX]. On each partition, the fitness of
each search agent in the subpopulation is computed in parallel
by applying Spark mapPartitions. Line 2 shows how fitness
computation generates a new RDD [<F, A>] where each
record is a key-value pair where value A represents a search
agent (value) and its fitness as a key (i.e. F). Subsequently,
in line 3, the glom() function returns each partition subpop-
ulation as an array and map(minBy(key)) is used to find the
minimumfitness search agent as a key-value pair<Fbest , A>.
Consequently, each partition will find its fittest agent thereby
N partitions will generate an array of N minimum fitness-
agent [<Fbest , A>]. Next, reduce(min(key)) is applied to find
the overall best fitness between all partitions and broadcast
it to all nodes in the cluster. Finding the best fitness-agent
requires a massive amount of shuffling between partitions
which is very costly, therefore, Spark’s glom() function is
used in the proposed algorithm to reduce shuffling. This
reduction is achieved by finding first the fittest agent in each
partition rather than comparing all agents in all partitions.
Once the best agent per partition is found, a comparison
between best fitness for all partitions is performed in identi-
fying the global best. Such approach for finding best fitness-
agent reduces communication overhead significantly.

After the initialization phase, Spark-SCA starts the opti-
mization phase wherein at each iteration the fittest agent for
each subpopulation is found. Then, the optimization phase

VOLUME 9, 2021 77191

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

FIGURE 4. Spark-SCA improved optimization phase.

starts where ri parameters are updated in line 6 and then,
in line 7, search agents positions are updated by applying
Eq. (1) which utilizes the overall best agent (FagentBC) found
so far. Line 8 and 9 show how the best fitness-agent for each
partition is found in a similar fashion to what was done in the
initialization phase. Then, in line 10, the fittest agent found
in this iteration is compared to the current best ‘‘global’’
fitness-agent. The agent with the minimum fitness among all
partitions is then broadcasted if it was found to be superior
as compared to the current global best. The loop counter is
then incremented (line 14) and the process is repeated until
the maximum number of iterations is reached.

This Spark-SCA implementation suffers from increased
communication overhead. As it can be seen in Algorithm 2,
the broadcast operation is performed after each iteration and
for each subpopulation resulting in a significant amount of
communication in the cluster (N*T broadcasts) and thus
negatively effecting run-time characteristic of the algorithm.
In this next subsection, we present an improved version of
Spark-SCA to overcome such deficiency.

A. IMPROVED SPARK-SCA
The proposed improvement to Spark-SCA is limited
to the optimization phase of the algorithm. Since the
algorithm splits the population between partitions where

each subpopulation improves on its own search agents,
the enhancement proposed is to limit the number of broad-
casts performs by each partition. In other words, instead
of broadcasting best agent information on every iteration,
Spark-SCA will limit broadcasts to occur only after a certain
number of iterations. Algorithm 3 gives the pseudocode
of the improved Spark-SCA algorithm and its flowchart is
illustrated in Figure 4. The improvement has two loops: a
main loop and a partition (inner) loop. In this version of
the algorithm, the broadcast operation is only performed m
times which is a user defined parameter. This means that
each subpopulation will successively operate on improving
its own population for a number of iterations equal to T /m
times before any broadcast is performed, where T represents
the maximum number of iterations.

For example, if T was set to 100 with m = 2, then each
partition will iterate 50 times to find its best local agent before
broadcasting it to the cluster. In Algorithm 3, line 9 shows
how the best local fitness for each partition is set before
starting the inner loop (lines 9-18) where its set initially to
the global best value. During inner loop, Flocal is updated
according to the fittest agent in the partition (i.e. line 12).
This is realized by setting Flocal = Ftmp where this will be
repeated until the limit for the inner loop is reached. The rest
of the algorithm works in a similar manner as before.

B. ILLUSTRATIVE EXAMPLE OF SPARK-SCA
This subsection gives an illustrative example of how
Spark-SCA’s optimization phase works. The benchmark used
in this example is Ackley which is a multimodal benchmark
with lower and upper bound in range [−32, 32]. Table 8 lists
the mathematical description of Ackley benchmark and its
plot is illustrated in Figure 10 in the appendix. For simplicity,
population size for this example was set to 12 agents with
each agent having a dimension of 2. As shown in Figure 5,
the current example has three partitions, the population is
distributed among themwhere each partition gets four agents.
From the initialization phase the global best fitness has been
set to 2.85. Subsequently, the optimization phase starts with
this broadcasted fitness (2.85) and using it as the current best
fitness for each partition. As mentioned in subsection III-A
the inner loop for each partition will repeat the optimization
process for T /m times. Let us demonstrate the optimization
process numerically by considering the third partition. During
the inner loop, at a specific iteration the third partition has
the following agents: [1.19, 0.26], [0.57, 0.34], [0.85, 0.41],
and [0.57, 0.20] as shown in the top right corner of Figure 5.
Spark-SCA processes this subpopulation by calculating the
fitness of its agents and creating fitness-agent key-value pairs.
After that, fitness of the different agents are compared to the
local best and the local best fitness is updated if appropriate.
As depicted in the upper right corner of Figure 5, the first
iteration shown has a minimum fitness equals to 3.63 which
is greater than the local fitness. Thus, the local fitness is
left unchanged and the loop will continue the optimization
process. In the next iteration, the parameters are updated and

77192 VOLUME 9, 2021

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

FIGURE 5. An illustrative example of Spark-SCA optimization phase.

agents’ positions are updated using the current local fitness
(2.85) and Eq. (1). Updating the search agents resulted in
the following new agents [−0.29, 0.05], [0.30,−0.03], [0.04,
−0.09], and [0.30, 0.11] as shown in the lower right corner
of Figure 5. The fitness of these agents is calculated and the
fittest agent in the case has a fitness of 0.53. Assuming this
is the last iteration of the inner loop, the glom() operation
is used to return these agents as an array to be processed
by the main loop of the algorithm. Note that the same pro-
cess is performed by the other two partitions resulting three
different arrays, one for each partition. Then, each partition
will find its own best fitness-agent using map(minBy(key))
transformation. Following that, reduce(min(key)) function is

used to compare the fittest agents from each partition and
find the best among all partitions to be compared with the
current global best. Since the fittest agent in partitions 1, 2,
and 3 has a fitness value of 0.67, 0.81, and 0.53 respectively,
the fitness of partition 3 agent is compared to the global
best fitness of 2.85. Since the new fitness is better than
the current global best, partition 3 agent now becomes the
new global best and is broadcasted to all partitions. Then,
the loop counter will be incremented and the termination
condition is checked. Spark-SCA uses the glom() function
to reduce communication overhead. To demonstrate let us
consider the current example of finding the minimum fitness
between 12 agents that are distributed among 3 partitions.

VOLUME 9, 2021 77193

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

Algorithm 3 Improved Spark-SCA
Input: X = population size, N = number of partitions,

D = dimension size, fn = objective function,
T = maximum number of iterations,
m = inner loop iterations

Output: best solution (fitness)
1: [A] = sc.parallelize(List.range(1, X), N)
2: [<F, A>] = [A].mapPartitions F evaluate agents using
fn

3: <Fbest , A> = [<F, A>].glom().map(minBy(key))
.reduce(min(key))

4: FagentBC = sc.broadcast(<Fbest , A>)
5: repeat
6: Update r1, r2, r3, and r4
7: [A] = [<F, A>].map() F update agent position

using Eq. (1)
8: [<F, A>] = [A].mapPartitions
9: repeat F inner loop in each partition

10: Flocal = FagentBC .value
11: for A in partition do
12: if Ftmp < Flocal then
13: Flocal = Ftmp
14: end if
15: end for
16: Update r1, r2, r3, and r4
17: Update agents position using Eq. (1) and Flocal
18: until i > T /m
19: <FbestTmp, A> = [<F, A>].glom().map(minBy

(key)).reduce(min(key))
20: if <FbestTmp, A>._1 < (FagentBC .value)._1 then
21: FagentBC .destroy
22: FagentBC = sc.broadcast(<FbestTmp, A>)
23: end if
24: t = t + 1
25: until t > m
26: return best solution (fitness)

To find the minimum fitness in the population, the first step
is to find the minimum fitness in each partition. By applying
glom() which will return all agents in each partition in an
array. Then, each partition best fitness is found by applying
map(minBy(key)) on the partition array. After that, all parti-
tions best fitness are returned in one array with three elements
one for each partition. Thereafter reduce(min(key)) is utilized
to find the best fitness between all partitions. In fact, Spark
reduce() operation is an actionwhich requires shufflingwhich
requires a great deal of communication. Hence, rather than
shuffling and comparing the whole population (12 agents),
only 3 agents are shuffled and thus reducing the number of
comparisons to 3 only.

IV. SPARK-SCA EVALUATION
To study the efficiency of Spark-SCA, its performance as
compared to the serial SCAwas evaluated on nine benchmark
functions. The details of these benchmark functions are listed

TABLE 1. Algorithm parameter settings.

in the appendix. For the sake of fair comparison between
the parallel and the serial version, equal number of func-
tion evaluations were used in both implementations. Fur-
ther, experimental results shown are the average values of
best fitness/runtime obtained for the various benchmarks for
30 independent runs. The first subsection compares Spark-
SCA to the standard version whereas the second subsection
evaluates the impact of number of broadcasts as well as
number of nodes on algorithm performance.

A. SPARK-SCA VS. STANDARD SCA
This subsection compares Spark-SCA and the serial version
using benchmark functions with dimensions 50, 250, and
1,000. This experiment is conducted to study the impact of
benchmarks size on algorithms performance. Both imple-
mentations were run on Amazon Elastic MapReduce (EMR)
which is one of AWS tools that provides a fully managed
big data processing framework on top of Amazon Elastic
Compute Cloud (EC2). Both algorithms use EC2 node of type
m4.xlarge which has 4 vCPU and 16 Mem (GiB). The serial
SCA uses a population size of 32 with maximum number
of iterations set to 300. As for Spark-SCA, a population
size of 96 was used with maximum number of iterations
of 100 resulting in a total number of function evaluations
for each implementation to be 9,600. In this experiment, two
versions of Spark-SCA were used where the first one uses a
single broadcast to return the final answer whereas the other
one uses a broadcast operation on every iteration. Table 1
lists the parameter settings for SCA and Spark-SCA with
100 broadcasts (Spark-100) for the case when dimensions
size is equal to 50. In Table 2, Spark-1 and Spark-100 are
used to represent the different versions where the number of
broadcast is 1 and 100, respectively. The SCA column gives
the result for serial SCA. Moreover, the table also reports
the best fitness as well as speedup as compared to the serial
case. Values in bold face represent best value obtained over all
cases considered (SCA, Spark-1, Spark-100). Table 2 shows a
summary of the results obtained. It is apparent from the table
that Spark-100 provides the best fitness for all benchmarks
except for composite benchmarks regardless of problem size.
We believe for the composite benchmarks, the serial version
of the algorithm was able to reach the best fitness due to
the large population size in the serial version as compared to
Spark implementation which allows the algorithm to effec-
tively escape local minima. Another important observation
is that for small size benchmarks (low dimension), run-time

77194 VOLUME 9, 2021

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

TABLE 2. Spark-SCA vs SCA.

characteristic of the Spark versions perform poorly even
for the case where a single broadcast is used. However,
as the size of the problem increases, Spark-1 version out-
performs the serial version in term of run time. Moreover,
Spark-100 implementation does not provide any speedup as
compared to the serial version due to the prohibitive com-
munication cost associated with this implementation of the
algorithm. To validate the significance of the results, a non-
parametric statistical test named the Wilcoxon rank-sum test
is conducted to determine the statistical significance of the
results between the proposed algorithm and the original SCA.
Table 3 lists the p-values of the Wilcoxon rank-sum test
where the desired level of significance p is set to 0.05. In the
Wilcoxon rank-sum test, there is a significant difference
between the two algorithms when the p-value is less than
0.05 otherwise the difference is negligible.Most of the bench-
marks have p-value less than 0.05 which demonstrates that
the enhancement in solution quality obtained by the proposed
algorithm is statistically significant. From this experiment,
it can be concluded that Spark-SCA is only appropriate when
dealing with large benchmarks to reap any run-time benefits
from parallelizing the algorithm. Moreover, it is crucial to
balance communication between worker nodes to find better
quality solution but it should be done in such a way that it
does not offset speedup gains. This fact is demonstrated in the
next section as we study the impact of broadcasts on fitness
and run-time characteristics.

TABLE 3. p-value results of wilcoxon rank sum test.

B. BROADCAST IMPACT ON PERFORMANCE
In this subsection, we study the impact of using different
number of broadcasts on three different cluster sizes. Three
different EMR cluster sizes of four, eight, and sixteen nodes
were used with each cluster having a population size of 96.
The same benchmarks used in the previous subsection are
used again here but limiting the dimension to be 1,000 and
maximum number of iterations equal to 100. The four nodes
cluster has one master node and three slaves with 12 par-
titions, the eight nodes cluster consists of one master node
and seven slaves with 28 partitions, and the sixteen nodes
cluster contains one master, fifteen slaves and number of
partitions equals to 60. Again, these setting were used to
unify the number of function evaluations to be 9,600 for all
implementations. The node type used in this experiment is
m4.xlarge which has 4 vCPU and 16 (GiB) Memory. Table 4
gives the average normalized fitness for the three clusters

VOLUME 9, 2021 77195

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

TABLE 4. Normalized fitness vs. cluster size/broadcasts.

with varying number of broadcast operations. It is apparent
from the table that the cluster with 16 nodes provides the
most fit solution for most benchmarks with the exception
of benchmark F18. As a matter of fact, the fitness for the
16 nodes cluster outperforms all other cases regardless of
the number of broadcasts. This suggests that the enhanced
fitness can be attributed to the fact that the larger cluster ben-
efits from more smaller subpopulations (partitions) working

independent of each other which improves solution diversity
and thus effectively avoiding local optima.

Another interesting observation was the fact that for half
of the benchmarks in the 16 nodes cluster, the best fit-
ness solution was found with either a number of broadcast
equals to 5 or 100. This means that it is possible to limit
the number of broadcasts and still get excellent solution
quality without exhaustive communication cost (compared to

77196 VOLUME 9, 2021

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

FIGURE 6. Speedup vs. cluster size.

100 broadcast case). The advantage of using a limited number
of broadcasts can be clearly observed in Figure 6. It is appar-
ent that performing a broadcast after each iteration results in
the worst possible run-time performance for all cluster sizes.
This means that in order to provide good performance in
term of both run-time and fitness, a combination of large size
cluster with limited number of broadcasts is the best possible
route.

V. ENGINEERING DESIGN PROBLEMS
In the previous section, the performance of Spark-SCA was
evaluated by solving several mathematical optimization func-
tions. In this section, Spark-SCA was applied to three con-
strained engineering design problems namely the welded
beam [39], tension/compression spring [40], [41], and pres-
sure vessel [42], [43] to evaluate the performance of the
proposed algorithm on real optimization problems. The engi-
neering design problems have different constraints and thus
a constraint handling method needs to be employed. Con-
straints divide the candidate solutions into: feasible and infea-
sible. The mathematical formulation of a general constrained
optimization problem is written as the following:

Minimize f (Ex) where Ex = (x1, . . . , xn)t ∈ F ⊆ S ⊆ Rn

Subject to the following constraints:

g(Ex) 6 0 i = 1, . . . ,m

h(Ex) = 0 j = 1, . . . , p

where f (Ex) is the objective function, Ex represents the vector
of solutions, n is solution dimension, F is feasible solution
region, and S is the complete search space. The constraints are
divided into two types, equality and inequality. The number of
inequality and equality constraints of the design problem are
m and p, respectively [44]. In the literature [45], there are var-
ious constraint handling methods such as: penalty functions,
repair algorithms, separation of objectives and constraints,
hybrid methods, and special operators. Among those meth-
ods, the penalty functions is used in this study. According
to [45], the penalty functions have different types including
adaptive, annealing, co-evolutionary, death, dynamic, and
static. For the sake of simplicity, Spark-SCA used the death
penalty function to handle constraints. The vector of solutions

in the death penalty function is represented as:

Ex ∈ S − F

The main advantages of the death penalty function are: low
computational cost and its simplicity. On the other hand, one
of its limitations is that during the optimization process infea-
sible solutions are discarded automatically. Thus, the death
penalty function is not recommended for solving problems
that have dominated infeasible regions.

Results in this section are the average performance of
running the algorithms for 30 runs. In a similar fashion to
what was done in the earlier section, the number of function
evaluations for each algorithm was kept the same. Spark-
SCA implementation was tested on EMR Yarn cluster with
four Amazon EC2 instances with one master node and three
worker nodes. Each EC2 instance was chosen from the gen-
eral purpose family of type m4.xlarge with 4 vCPU and 16
(GiB)Memory. On the other side, serial SCA implementation
was tested on one node of type m4.xlarge.

The welded beam design problem aims to minimize the
manufacturing cost. Figure 7 illustrates welded beam prob-
lem with four optimization variables namely weld thickness
(h), joint length (l), bar height (t), and beam thickness (b).
This design problem has four constraints that need to be
taken into consideration: shear stress (τ), bending stress (θ),
buckling load (P), and end of beam deflection (δ). The math-
ematical formulation of the welded beam design problem can
be described as follows:

Let Ex = [x1 x2 x3 x4] = [h l t b]
Minimize f (Ex) = 1.10471x21 x2 + 0.04811x3x4(14.0 + x2)
Subject to the following constraints:

g1(Ex) = τ (Ex)− 13, 600 6 0

g2(Ex) = σ (Ex)− 30, 000 6 0

g3(Ex) = x1 − x4 6 0

g4(Ex) = 0.10471x21 + 0.04811x4x3(14+ x2)− 5.0 6 0

g5(Ex) = 0.125− x1 6 0

g6(Ex) = δ(Ex)− 0.25 6 0

g7(Ex) = 6, 000− P(Ex) 6 0

VOLUME 9, 2021 77197

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

TABLE 5. Welded beam results.

FIGURE 7. Welded beam schematic.

With:

τ (Ex) =

√
(τ ′)2 + (2τ ′τ ′′)

x2
2R
+ (τ ′′)2

τ ′ =
6, 000
√
2x1x2

M = 6, 000(14+
x2
2
)

R =

√
x22
4
+ (

x1 + x3
2

)2

J = 2

{
x1x2
√
2

[
x22
12
+ (

x1 + x3
2

)2
]}

σ (Ex) =
504, 000

x4x23

δ(Ex) =
65, 856, 000

(30× 106)x4x33

P(Ex) =
4.013(30× 106)

√
x23x

6
4

36
196

1−

x3

√
30× 106

4(12× 106)

28

With the following bounds:

0.10 6 h, b 6 2.0

0.10 6 l, t 6 10.0

The tension/compression spring design problem consists
of three design parameters: wire diameter (d), mean coil
diameter (D), and the number of active coils (N) as shown
in Figure 8. The objective of this problem is to minimize the
weight of the spring by optimizing the aforementioned design
parameters. This problem is formulated as the following:

FIGURE 8. Tension/compression spring schematic.

FIGURE 9. Pressure vessel schematics.

Let Ex = [x1 x2 x3] = [d D N]
Minimize f (Ex) = x21 x2 x3 + 2x21 x2
Subject to the following constraints:

g1(Ex) = 1−
x32x3

71785x41
6 0

g2(Ex) =
4x22 − x1x2

12566(x2x31 − x
4
1)
+

1

5108x21
− 1 6 0

g3(Ex) = 1−
140.45x1
x22x3

6 0

g4(Ex) =
x1 + x2
1.5

− 1 6 0

With the following bounds:

0.05 6 d 6 2.0

0.25 6 D 6 1.3

2.0 6 N 6 15.0

As for the pressure vessel problem, the optimization pro-
cess aims to obtain the optimal parameters that lead to min-
imum total cost. The total cost includes the cost of material,
forming, and welding. As illustrated in Figure 9, the pressure

77198 VOLUME 9, 2021

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

TABLE 6. Tension/compression spring results.

TABLE 7. SCA vs Spark-SCA optimization results for the pressure vessel design problem.

TABLE 8. Benchmark functions description.

vessel is composed of a cylindrical vessel with a hemispher-
ical shape head capped at both ends. The pressure vessel
design has four optimization variables namely: thickness of
the hemispherical head (Th), cylindrical vessel thickness (Ts),
inner radius (R), and cylindrical vessel length excluding both
heads (L). According to [42], the pressure vessel optimiza-
tion problem is mathematically modeled by the following
equations:

Let Ex = [x1 x2 x3 x4] = [Ts Th R L]

Minimize f (Ex) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1661x21x4
+ 19.84x21x3

Subject to the following constraints:

g1(Ex) = −x1 + 0.0193x3 6 0

g2(Ex) = −x2 + 0.00954x3 6 0

g3(Ex) = −πx23x4 −
4
3
πx33 + 1296000 6 0

g4(Ex) = x4 − 240 6 0

With the following bounds:

0.0625 6 Ts, Th 6 6.1875

10 6 R, L 6 200

VOLUME 9, 2021 77199

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

FIGURE 10. Graphical plot of benchmark functions.

Solutions of the welded beam design problem using SCA
and Spark-SCA are presented in Table 5. The table specifies
the population size and the maximum number of iterations
used for each algorithm as well as the various values for the
various design variables. Moreover, the table specifies overall
cost and run-time for each algorithm as well as speedup
obtained for Spark-SCA implementation compared to the
serial one. It is apparent from the table that Spark-SCA
provides a minimum speedup of 2 times as compared to the
serial version and it increases as population size is increased.
It can be seen that as the number of agents increases, speedup
increases as well indicating the effectiveness of Spark-SCA
in distributing computations between the different nodes in
the cluster, especially with large number of agents. In term
of the minimum cost obtained, Spark-SCA was able to reach
a value of 1.7607 as compared to 1.7938 found by the serial
version. Despite the fact that the cost difference is not that

significant, Spark-SCA is more efficient in term of run-time
where it requires only one fifth of the time needed for the
serial algorithm.

The results of the compression/tension spring and the
pressure vessel design problems are shown in Table 6 and
Table 7, respectively. The tables are organized in a similar
fashion to the case of the welded beam case. All findings
found in the case of the welded beam case can be clearly
observed in these cases as well. These experiments clearly
show the advantage of using Spark-SCA to solve realistic
design problems especially when run-time characteristics are
of most importance.

VI. CONCLUSION
In this paper, we presented Spark-SCA, a parallel imple-
mentation of the sine cosine algorithm on Spark architec-
ture. Experimental results on various benchmark functions

77200 VOLUME 9, 2021

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

demonstrated that even though Spark implementation may
provide considerable advantages in terms of solution quality,
run-time performance may suffer if communication cost was
not taken into consideration. Moreover, it was shown that a
good practice to consider when optimizing for both fitness
and run time is to limit broadcast operation especially when
the number of nodes is large. It was also observed that even
though Spark-SCA was not able to provide good quality
solutions for composite benchmarks when small size cluster
is used, such shortcoming was alleviated when cluster size
was increased resulting in more partitions and hence better
exploration of the search space. Additional experiments were
conducted on realistic optimization problems in engineering
field. The performance of Spark-SCA for all such prob-
lems was shown to provide superior performance in term
of both run-time as well as solution quality. This proves
the appropriateness of using the distributed version of the
SCA algorithmwhen solving complex real life problems. The
source codes of Spark-SCA algorithm are publicly available
at https://github.com/Maryom/Spark-SCA.

Possible future extension of this work is to study
the implementation of different variants of SCA algo-
rithm by incorporating different update strategies such as
cauchy mutation operator, chaotic local search mechanism,
opposition-based learning strategy and their performance
when implemented on Spark platform. Parallel implementa-
tion of multi-objective SCA is another fertile area for future
exploration.

APPENDIX
All benchmark functions used in this paper are mathemati-
cally described in Table 8. The graphical plot of these func-
tions are also shown in Figure 10.

REFERENCES
[1] N. Khanduja and B. Bhushan, ‘‘Recent advances and application of meta-

heuristic algorithms: A survey (2014–2020),’’ in Metaheuristic and Evo-
lutionary Computation: Algorithms and Applications. Cham, Switzerland:
Springer, 2021, pp. 207–228, doi: 10.1007/978-981-15-7571-6_10.

[2] R.-E. Precup, R.-C. David, E. M. Petriu, A.-I. Szedlak-Stinean, and
C.-A. Bojan-Dragos, ‘‘Grey wolf optimizer-based approach to the tuning
of pi-fuzzy controllers with a reduced process parametric sensitivity,’’
IFAC-PapersOnLine, vol. 49, no. 5, pp. 55–60, 2016.

[3] A. Soares, R. Râbelo, and A. Delbem, ‘‘Optimization based on phylogram
analysis,’’ Expert Syst. Appl., vol. 78, pp. 32–50, Jul. 2017.

[4] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, ‘‘Metaheuristic
research: A comprehensive survey,’’ Artif. Intell. Rev., vol. 52, no. 4,
pp. 2191–2233, Dec. 2019.

[5] B. H. Abed-Alguni, ‘‘Island-based cuckoo search with highly disruptive
polynomial mutation,’’ Int. J. Artif. Intell., vol. 17, no. 1, pp. 57–82, 2019.

[6] M. AlFailakawi, I. Ahmad, L. AlTerkawi, and S. Hamdan, ‘‘Depth opti-
mization for topological quantum circuits,’’Quantum Inf. Process., vol. 14,
no. 2, pp. 447–463, Feb. 2015.

[7] H. Zapata, N. Perozo, W. Angulo, and J. Contreras, ‘‘A hybrid swarm
algorithm for collective construction of 3D structures,’’ Int. J. Artif. Intell.,
vol. 18, no. 1, pp. 1–18, 2020.

[8] M. G. Alfailakawi, I. Ahmad, and S. Hamdan, ‘‘Harmony-search algorithm
for 2D nearest neighbor quantum circuits realization,’’ Expert Syst. Appl.,
vol. 61, pp. 16–27, Nov. 2016.

[9] R.-E. Precup, E.-L. Hedrea, R.-C. Roman, E. M. Petriu,
A.-I. Szedlak-Stinean, and C.-A. Bojan-Dragos, ‘‘Experiment-based
approach to teach optimization techniques,’’ IEEE Trans. Educ., vol. 64,
no. 2, pp. 88–94, May 2020.

[10] D. H. Wolpert and W. G. Macready, ‘‘No free lunch theorems for
optimization,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[11] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving
optimization problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133,
Mar. 2016.

[12] S. M. Mirjalili, S. Z. Mirjalili, S. Saremi, and S. Mirjalili, ‘‘Sine cosine
algorithm: Theory, literature review, and application in designing bend
photonic crystal waveguides,’’ in Nature-Inspired Optimizers: Theories,
Literature Reviews and Applications. Cham, Switzerland: Springer, 2020,
pp. 201–217, doi: 10.1007/978-3-030-12127-3_12.

[13] S. Gupta, K. Deep, and A. P. Engelbrecht, ‘‘A memory guided sine
cosine algorithm for global optimization,’’ Eng. Appl. Artif. Intell., vol. 93,
Aug. 2020, Art. no. 103718.

[14] H. Chen, M. Wang, and X. Zhao, ‘‘A multi-strategy enhanced sine
cosine algorithm for global optimization and constrained practical
engineering problems,’’ Appl. Math. Comput., vol. 369, Mar. 2020,
Art. no. 124872.

[15] B. Wang, T. Xiang, N. Li, W. He, W. Li, and X. Hei, ‘‘A symmetric sine
cosine algorithm with adaptive probability selection,’’ IEEE Access, vol. 8,
pp. 25272–25285, 2020.

[16] W. Zhou, P.Wang, A. A. Heidari, M.Wang, X. Zhao, and H. Chen, ‘‘Multi-
core sine cosine optimization: Methods and inclusive analysis,’’ Expert
Syst. Appl., vol. 164, Feb. 2021, Art. no. 113974.

[17] H. Huang, X. Feng, A. A. Heidari, Y. Xu, M. Wang, G. Liang,
H. Chen, and X. Cai, ‘‘Rationalized sine cosine optimization with
efficient searching patterns,’’ IEEE Access, vol. 8, pp. 61471–61490,
2020.

[18] Q. Yang, S.-C. Chu, J.-S. Pan, and C.-M. Chen, ‘‘Sine cosine algorithm
with multigroup and multistrategy for solving CVRP,’’ Math. Problems
Eng., vol. 2020, pp. 1–10, Mar. 2020.

[19] M. G. Alfailakawi, M. El-Shafei, I. Ahmad, and A. Salman, ‘‘FPGA-based
implementation of cuckoo search,’’ IET Comput. Digit. Techn., vol. 13,
no. 1, pp. 28–37, 2019.

[20] M. Essaid, L. Idoumghar, J. Lepagnot, and M. Brévilliers, ‘‘GPU paral-
lelization strategies for metaheuristics: A survey,’’ Int. J. Parallel, Emer-
gent Distrib. Syst., vol. 34, no. 5, pp. 497–522, Sep. 2019.

[21] Y. Khalil, M. Alshayeji, and I. Ahmad, ‘‘Distributed whale optimization
algorithm based on MapReduce,’’ Concurrency Comput., Pract. Exper.,
vol. 31, no. 1, p. e4872, Jan. 2019.

[22] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, ‘‘Apache spark: A unified engine
for big data processing,’’ Commun. ACM, vol. 59, no. 11, pp. 56–65,
2016.

[23] H.-C. Lu, F. J. Hwang, and Y.-H. Huang, ‘‘Parallel and distributed archi-
tecture of genetic algorithm on apache Hadoop and spark,’’ Appl. Soft
Comput., vol. 95, Oct. 2020, Art. no. 106497.

[24] J. Al-Sawwa and S. A. Ludwig, ‘‘Parallel particle swarm optimization clas-
sification algorithm variant implementedwith apache spark,’’Concurrency
Comput., Pract. Exper., vol. 32, no. 2, p. e5451, Jan. 2020.

[25] T. Wen, H. Liu, L. Lin, B. Wang, J. Hou, C. Huang, T. Pan, and Y. Du,
‘‘Multiswarm artificial bee colony algorithm based on spark cloud comput-
ing platform for medical image registration,’’ Comput. Methods Programs
Biomed., vol. 192, Aug. 2020, Art. no. 105432.

[26] Y. Lu, B. Cao, C. Rego, and F. Glover, ‘‘A tabu search based clustering
algorithm and its parallel implementation on spark,’’ Appl. Soft Comput.,
vol. 63, pp. 97–109, Feb. 2018.

[27] M. AlJame, I. Ahmad, and M. Alfailakawi, ‘‘Apache spark implementa-
tion of whale optimization algorithm,’’ Cluster Comput., vol. 23, no. 3,
pp. 2021–2034, Sep. 2020.

[28] X. C. Pardo, P. Argüeso-Alejandro, P. González, J. R. Banga, and
R. Doallo, ‘‘Spark implementation of the enhanced scatter search meta-
heuristic: Methodology and assessment,’’ Swarm Evol. Comput., vol. 59,
Dec. 2020, Art. no. 100748.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computing with working sets,’’ HotCloud, vol. 10, no. 10,
p. 95, Jun. 2010.

[30] H. Herodotou, Y. Chen, and J. Lu, ‘‘A survey on automatic parameter
tuning for big data processing systems,’’ACMComput. Surv., vol. 53, no. 2,
pp. 1–37, Jul. 2020.

[31] T. Weise, ‘‘Global optimization algorithms-theory and application,’’
Self-Published Thomas Weise, Tech. Rep., 2009. [Online]. Available:
http://www.it-weise.de/

VOLUME 9, 2021 77201

https://github.com/Maryom/Spark-SCA
http://dx.doi.org/10.1007/978-981-15-7571-6_10
http://dx.doi.org/10.1007/978-3-030-12127-3_12

M. Gh. Alfailakawi et al.: Parallel and Distributed Implementation of SCA on Apache Spark Platform

[32] A. Gounaris and J. Torres, ‘‘A methodology for spark parameter tuning,’’
Big Data Res., vol. 11, pp. 22–32, Mar. 2018.

[33] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, ‘‘How data vol-
ume affects spark based data analytics on a scale-up server,’’ in Big
Data Benchmarks, Performance Optimization, and Emerging Hardware,
J. Zhan, R. Han, and R. V. Zicari, Eds. Cham, Switzerland: Springer, 2016,
pp. 81–92.

[34] T. B. G. Perez, W. Chen, R. Ji, L. Liu, and X. Zhou, ‘‘PETS:
Bottleneck-aware spark tuning with parameter ensembles,’’ in
Proc. 27th Int. Conf. Comput. Commun. Netw. (ICCCN), Jul. 2018,
pp. 1–9.

[35] N. Nguyen, M. M. H. Khan, and K. Wang, ‘‘Towards automatic tuning of
apache spark configuration,’’ in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), Jul. 2018, pp. 417–425.

[36] Z. Yu, Z. Bei, and X. Qian, ‘‘Datasize-aware high dimensional config-
urations auto-tuning of in-memory cluster computing,’’ in Proc. 23rd
Int. Conf. Archit. Support Program. Lang. Oper. Syst., Mar. 2018,
pp. 564–577.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,’’ in Proc.
9th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012,
pp. 15–28.

[38] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:
Lightning-Fast Big Data Analysis. Sebastopol, CA, USA: O’Reilly Media,
2015.

[39] K. M. Ragsdell and D. T. Phillips, ‘‘Optimal design of a class of welded
structures using geometric programming,’’ J. Eng. Ind., vol. 98, no. 3,
pp. 1021–1025, Aug. 1976, doi: 10.1115/1.3438995.

[40] J. S. Arora, Introduction to Optimum Design, 4th ed. Boston, MA, USA:
Elsevier, 2017.

[41] A. D. Belegundu and J. S. Arora, ‘‘A study of mathematical pro-
gramming methods for structural optimization. Part I: Theory,’’ Int.
J. Numer. Methods Eng., vol. 21, no. 9, pp. 1583–1599, Sep. 1985.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.
1620210904

[42] B. K. Kannan and S. N. Kramer, ‘‘An augmented Lagrangemultiplier based
method for mixed integer discrete continuous optimization and its applica-
tions to mechanical design,’’ J. Mech. Des., vol. 116, no. 2, pp. 405–411,
Jun. 1994. [Online]. Available: https://ci.nii.ac.jp/naid/80007711575/en/

[43] D. R. Moss, Pressure Vessel Design Manual. Amsterdam,
The Netherlands: Elsevier, 2004.

[44] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, ‘‘A survey of evolution
strategies,’’ in Proc. 4th Int. Conf. Genet. Algorithms. San Mateo, CA,
USA: Morgan Kaufmann, 1991, pp. 2–9.

[45] C. A. C. Coello, ‘‘Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: A survey of the state of the art,’’
Comput. Methods Appl. Mech. Eng., vol. 191, nos. 11–12, pp. 1245–1287,
Jan. 2002.

MOHAMMAD GH. ALFAILAKAWI received the
B.S. degree in electrical engineering and com-
puter engineering from the University of Missouri,
Columbia, MO, USA, in 1996, and the M.S. and
Ph.D. degrees in electrical engineering from the
University of Wisconsin–Madison, in 1999 and
2002, respectively. From 2012 to 2015, he has
served as the Vice Dean of Academic Affairs for
the College of Computing Sciences and Engineer-
ing. He was the Director of the Engineering Train-

ing and Alumni Center, College of Engineering and Petroleum, Kuwait
University, from 2009 to 2012. He is currently an Associate Professor
with the Computer Engineering Department, Kuwait University, where he
teaches courses in logic design, embedded systems, computer architecture
and organization, and testing and fault-tolerant computing. He is also the
Chairman of the Computer Engineering Department, College of Engineering
and Petroleum, Kuwait University. His current research interests include
nonvolatile memory technology and test, defect-based testing, reversible
circuit optimization, and computational optimization.

MARYAM ALJAME received the B.Sc. and M.Sc.
degrees from the Computer Engineering Depart-
ment, Kuwait University, in 2012 and 2018,
respectively. She is currently an iOS Developer
with the Ministry of Education. Her research inter-
ests include machine learning, bioinformatics, and
parallel and distributed computing.

IMTIAZ AHMAD received the B.Sc. degree
in electrical engineering from the University of
Engineering and Technology, Lahore, Pakistan,
in 1984, the M.Sc. degree in electrical engineer-
ing from the King Fahd University of Petroleum
& Minerals, Dhahran, Saudi Arabia, in 1988,
and the Ph.D. degree in computer engineering
from Syracuse University, Syracuse, NY, USA,
in 1992.

Since 1992, he has been with the Department
of Computer Engineering, Kuwait University, Kuwait, where he is currently
a Professor. His research interests include the design automation of digital
systems, parallel and distributed computing, machine learning, and software-
defined networks.

77202 VOLUME 9, 2021

http://dx.doi.org/10.1115/1.3438995

