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ABSTRACT Recommending effective testers in crowdsourced software testing is a challenge. In this paper,
we study the improvement of crowdsourced software testers’ skills over time. We propose the project
difficulty coefficient to eliminate the influence of the item on the tester’s score. The hyperbolic learning
curve model and exponential learning curve model are used to fit the learning ability of the testers. The
experimental results show that when the test data is large, the exponential learning curve can better simulate
the improvement of testers’ skills.

INDEX TERMS Crowdsourced software testing, learning curve, mooctest.

I. INTRODUCTION
In the process of software product testing, the software prod-
uct manager hopes to obtain a large amount of feedback
as soon as possible, to repair the software product defects
as quickly as possible, and improve the software product
quality [1]. However, the huge cost of recruiting testers often
makes it difficult to recruit large numbers of professional
testers. In addition, due to the overlapping of software prod-
ucts’ speed, especially the tight life cycle of application prod-
ucts, the cycle time of software testing is sharply compressed.
Therefore, how to get test feedback quickly, especially feed-
back from a large number of real users to help improve
the product, and at the same time finish the test task with
low cost and high efficiency, is one of the difficulties in
the current software test field. Crowdsourced can effectively
solve this difficult problem in the field of software testing
over a very large range [2]. Crowdsourced is a distributed
problem-solving and production organization model brought
about by the Internet. In 2006, Howe [3] first proposed the
concept of crowdsourced. ‘‘Crowdsourced’’ is a distributed
problem- solving mode in which a company or organization
outsources the work tasks previously performed by full-time
employees to a group of non-specific solution providers in
a free and voluntary manner through an open Web platform.
There are a vast number of people on the Internet, and they
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can participate in projects as workers [4]–[6]. Crowdsourced
software testing [7] refers to taking everyone as a worker
and using a large number of people or communities on the
Internet to solve the testing problem so that people with
different equipment and testing environment can test the same
app. The crowdsourced model takes the characteristics of
Internet crowd wisdom as the starting point, standardizes the
integration of resources in various industries, makes testing
more efficient, and solves the problem of understaffed and
idle enterprises, thus providing a new method for software
testing. Compared with our previous test method for the
measurement of a significant change is the task of the test
to the Internet, the main reason is that they are different types
of test tasks or different with different attitudes and skills.
The learning efficiency of the test will be different because
of personal reasons.

According to the different initiative, relevance, and diver-
sity of mass testing workers, Cui et al. [8] proposed a selec-
tion method that considers the three aspects of work at the
same time to select appropriate mass testing personnel for
each test task, thus improving the defect detection rate and
critical point coverage of testing requirements, reducing the
testing cost, and improving the testing efficiency.

Crowdsourced software testing is an emerging testing
method that has drawn extensive attention from both the
industrial and academic communities. With the rise of many
successful crowdsource software testing platforms (such as
BaiduMTC, uTest, Mooctest, etc.), testing activities have

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 77127

https://orcid.org/0000-0003-4532-1580
https://orcid.org/0000-0003-3299-5543
https://orcid.org/0000-0003-1975-4905
https://orcid.org/0000-0002-2673-9909


Y. Yao et al.: Study on Testers’ Learning Curve in Crowdsourced Software Testing

become more efficient. Workers can select the tasks they are
interested in to execute and submit test reports and describe
the behaviors and discovered defects of the software system
under test. Through this kind of form, all the workers help the
company to develop and test measurement engineers that find
the defects of the software system. Compared with traditional
testing activities, the significant change brought by crowd
testing is to entrust the tasks of crowd testing to the people
testing workers, who can be located in different regions and
have different experience and skills in software testing.

Although there are many candidates in crowdsourced soft-
ware testing, it is not possible to allow all of them to perform
test tasks due to cost constraints. Therefore, who performs
a test task in crowdsourced software testing, the detection
of defects, and the coverage of key test requirements are
very important. Crowdsource software test projects to peo-
ple on the network for execution, and ask testers to submit
corresponding test defects. However, the number of testers
required for each test project has different requirements on
the capabilities of testers. Participating testers have different
abilities, and the repeated or irregular test defects are also
submitted. The crowdsourced test platform will reward the
testers according to their performance. The testers will stay
on the platform for testing in order to reward or improve their
testing ability.

How will the test level of the tester be measured, and
is there any regularity in the improvement of the tester’s
learning ability? The research of this paper focuses on the
study of the learning ability of crowdsourced software testers.
A learning curve model is proposed to fit the testing skills of
testers. In this paper, our main contributions are as follows:

1. We demonstrate that the testing ability of crowdsourced
testers in the Mooctest platform will be improved after
participating in multiple testing tasks. As far as we
know, we are the first to consider this in crowdsourced
software testing.

2. We introduce the learning curve model to the tester
testing level of crowdsourced software testing and use
the hyperbolic learning model and exponential learning
model to model the testers’ scores.

3. By modeling the two learning curves, we find that the
hyperbolic learningmodel can better fit the testing level
of testers.

The remainder of this paper is organized as follows.
In Section II, we propose a background knowledge of crowd-
sourced software testing, Mooctest, which is a crowdsourced
software testing platform, and the learning curve model.
Section III presents our study of using learning curves to
describe skill improvement. Section IV discusses the related
work. Finally, in Section VI, we conclude this work.

II. BACKGROUND
A. CROWDSOURCED SOFTWARE TESTING
In the field of crowdsourced software engineering,
researchers have proposed a large number of relevant

application technologies and application fields. Recently,
Mao et al. [4] provided a comprehensive overview of the
field of crowdsourced software engineering, covering a large
number of literature on crowdsourced software engineering
and the introduction of relevant platforms. Crowdsourced
software engineering utilizes a large amount of potential,
pending online work of people in the form of public sum-
mon, bearing the behavior of external software engineering
tasks. Zhang et al. [9] also put forward crowdsourced soft-
ware testing. Crowdsourced software testing is an emerging
technology. In the last decade or so, many software testing
activities have adopted crowdsourcing, such as usability test-
ing [10], [11], functional testing [5], [12], and performance
testing [13], [14].

Crowdsourced software testing is required in many sit-
uations. For example, sometimes the company’s test staff
cannot detect all the vulnerabilities of the system, and then
crowdsourced security testing can use the white hat to detect
vulnerabilities. In addition, usability testing by end-users can
reveal more problems. For example, a teacher using edu-
cational management software may provide more realistic
usability feedback than a software tester with no teaching
management experience. In addition, tester pools can help run
compatibility tests.

As shown in Figure 1, the test task is published by the task
publisher to the test platform, and the crowd worker selects
the test task from the test platform and downloads it to his/her
own device to complete the test. After the test is completed,
the crowd worker submits the test report, which is finally fed
back to the task publisher via the test platform.

FIGURE 1. The procedure of crowdsourced software testing.

B. MOOCTEST
Mooctest mainly provides mobile application testing and
Web application testing services. For four consecutive years,
the platform has been used as a platform for national college
student software testing competitions, attracting more than
390 universities and 41,000 undergraduate and graduate stu-
dents majoring in computer science. It has become one of the
largest crowdsourced software testing platforms in China.

There are three aspects of crowdsourced software testing
projects in Mooctest. One is developer-centered, source-code
oriented to Java, C/C++, Python, and other mainstream pro-
gramming languages; the tester should write corresponding
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TABLE 1. A detailed description of the dataset on the mooctest platform.

test scripts according to the given requirements and jointly
evaluate the test effectiveness with coverage rate and bug
detection rate. Another kind of test project is Android or IOS
application projects; the tester should design test cases given
test requirements, write Appium test scripts, find bugs, and
complete defect report writing, so as to jointly evaluate test
effectiveness with requirement coverage rate and bug detec-
tion rate [15]. The third is testing is Web application projects;
the tester should design test cases for given test requirements,
write Selenium test scripts and Jmeter test scripts, discover
bugs, and complete defect report writing, so as to jointly
evaluate the test effectiveness with the rationality of the test
scheme, requirement coverage rate, and bug detection rate.

We have collected 68 test projects on the Mooctest plat-
form for the period of June 2018-June 2019, and the number
of participants is small due to the small number of developers
involved in unit testing projects, mainly mobile application
testing projects, and web testing projects. The testers on the
Mooctest write test scripts by writing test case code and
obtain scores based on the quality of the test scripts written.
They also submit bugs accordingly.

The dataset in the table 1 is collected from the Mooctest
platform, which contains User_ID, Project name, Total num-
ber of test points, Submission Order, Submission time, Score
for the test script, Participating test points, Number of bugs,
Score of bug. There is a lot of data in MOOCTEST, and we
give an example in table 1 to describe the data. A tester whose
User_ID is Jam_001, participated in the crowdsourced soft-
ware test project is Agile Collaboration Management System
Version 1.0. There are 10 test points in the project. He clicked
the submit button at 2019-01-18 19:35:13. However, his test
script did not cover the test steps in the project test require-
ments document, so the score was 0, and the score for the test
points was 0, and he did not submit a bug, so the bug score
was also 0.

C. THE LEARNING CURVE [16]
The learning curve is a mathematical description of a
worker’s performance on a repetitive task. As repetition pro-
gresses, workers tend to take less time to perform tasks due
to familiarity with operations and tools and the discovery of

shortcuts to perform tasks. Dr.Wright discovered the learning
curve by observing and summarizing the experience of the
aircraft production industry, an important economic theory
that is an analysis of labor productivity and efficiency. Some
industrial sectors are known for using log-linear regression
models and modified models to simulate employee learning
processes, namely semiconductor factories, electronics, and
aerospace component manufacturers, chemical industries,
truck assemblers, and automobile parts manufacturing.

In the LC model, the measurement criteria of worker per-
formance as a dependent variable include the time to produce
one unit, the number of units produced per time interval,
the cost of producing one unit, and the percentage of noncon-
forming units. LC parameters can be estimated by a nonlinear
optimization program to minimize the sum of squares error.
When dealing with nonlinear regression problems, the initial
value of parameters may be changed if convergence cannot be
achieved. The goodness of fit of the model can be estimated
by determining the coefficient, the sum of squares of errors,
or the consistency of the model with the validated sample.

Among the univariate models, the log-linear model, the
exponential model, and the hyperbolic model are the most
important.

D. THE LOG-LINEAR MODEL [17]
Wright’s model, also known as the ‘‘log-linear regression
model’’, was the first formal LC model. The model has the
following mathematical representation:

y = C1xb (1)

where Y is the average time (or cost) required to produce x
units, and C1 is the time (cost) required to produce the first
unit. Parameter b (−1 < b < 0) is the slope of LC, which is
used to describe the learning rate of workers. The value of B
close to 1 indicates a high learning rate and rapid adaptation
to task execution.

E. THE EXPONENTIAL MODEL [18]
Compared with the log-linear model, the exponential model
relies more on a complete set of parameters. Compared with
log-linear models, these parameters can extract additional
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information about the worker’s learning process, resulting in
more accurate productivity estimates.

Knecht was credited with pioneering work on the exponen-
tial learning curve by synthesizing exponential and log-linear
functions to improve the ability to predict long-term produc-
tion operations. The formula is given below:

y = C1xbecx (2)

where C is the second constant, and the other parameters are
as defined previously.

Three kinds of exponential LC models are often discussed:
three-parameter exponential, two-parameter exponential, and
constant time model. The three-parameter exponential LC
model is as follows:

y = k
(
1− e−

x+p
r

)
(3)

where y is used to describing the performance of workers
by the number of items produced after x units of operating
time (y>0 and x>0). Three parameters are set in the formula.
LC: k in Equation (3), which is the maximum performance
of workers at the end of the learning process, represented
by the number of items produced in each operating time
(k>0). P corresponds to the previous experience of theworker
assessed in units of time (P>0);.Learning rate R is also given
units of time.

F. THE HYPERBOLIC MODEL
Mazur and Hastie [19] proposed an LC model for the number
of eligible units versus the total number of units produced.
In this model, x describes the number of qualified units, and
r is the number of unqualified units. Thus, y corresponds to
the fraction of the eligible elements times the constant k. The
formula is given below:

y = k
(

x
x + r

)
(4)

The three-parameter hyperbolic model formula is given
below:

y = k
(

x + p
x + p+ r

)
(5)

where y is the number of projects generated by x units of the
operation time, k is the highest performance level, and R is
the learning rate. Mazur and Hastie also proposed adding the
parameter P to Equation (4) to allow for the worker’s previous
experience in performing the task.

III. THE LEARNING CURVE MODELS OF
TESTERS’PERFROMANCE
A. PROJECT DIFFICULTY COEFFICIENT
The difficulty of projects released by crowdsourced test plat-
forms is different. Some projects are test versions, which need
to test more function points and have more bugs. Naturally,
there are more bugs found in a limited time [20]–[22]. How-
ever, some projects are release versions, and there are fewer
function points to be tested. Many bugs have been fixed, and

there are fewer defects. Naturally, there are fewer bugs found
in a limited time.

People are required differently in different projects, and
projects can vary. There are a variety of people working on the
Internet. Some testers are good at app testing, some are good
at security testing, and some are just functional testing. There
are different types of developer testing, mobile application
testing, and web application testing on the muting platform.
Different projects in each category have different levels of
difficulty. Harder project testers naturally submit lower test
reports and scores, and simpler project testers submit higher
test reports and scores. It is not possible to distinguish how
easily the project affects the tester.We combine the number of
people participating in the project with the number of people
finding test function points to calculate how easy the project
is. Use the item difficulty factor [23] to cancel the impact of
difficulty on the tester’s score.

The ability of testers on a crowdsourced software test-
ing platform is affected by the number of projects they are
involved in. The more time and effort a tester puts into a
project, the faster his ability will improve. The testers’ abil-
ity to improve their skills will also be influenced by their
previous experience, age, and learning efficiency of personal
information such as tests, and it may also be affected by the
number of testers, the difficulty of the tests, the limits on test
participation, the total number of test tasks, the time (hours)
and use of testers’ learning, the number of submissions, and
the type of test tasks (as well as preferences and experience).

When Wang et al. [24] analyzed the ability scores of
developers on TopCoder, they found that the improvement
of developers’ skills was not completely related to time, but
also related to other factors such as the difficulty of tasks.
We should also exclude the influence of other factors when
we study the skill improvement of crowdsourcing software
testers.

In order to more clearly reflect the ability of current testers,
the influence of external test conditions, such as test diffi-
culty, on each score of testers is excluded. The difficulty of
each test task, the total number of test tasks, and the number
of test participants are considered comprehensively. Regrade
the overall score for each test to avoid the influence of other
factors.

The project difficulty coefficient(PDC) is set as η, where
η ∈ [0, 1], and si(0 ≤ si ≤ s) refers to the total num-
ber of people who successfully completed the test point
i(0 < i ≤ n). Calculate the PDC:

η =

∑n
i=1

s−si
s

n
(6)

In formula 6, i is the number of test points covered in this
test item, n is the maximum number of test points in the test
item, S is the total number of people participating in the test
item, and Si is the number of test points measured Number of
people.

The number of specific test points can be calculated
by submitting the bugs of each test point in the data set.
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For example, 50 people participate in a test project, S = 50,
and the default test points are 10, n = 10. Five people submit
valid bugs at the first test point, S1 = 5, and 20 people submit
valid bugs at the second test point, S2 = 20. By analogy,
we can get S3 = 10, S4 = 10, S5 = 15, S6 = 20, S7 = 10,
S8 = 10, S9 = 20, S10 = 40. Then the difficulty coefficient
can be calculated according to formula 6, η = 0.68.

The comprehensive score is calculated by multiplying the
PDC by the sum of the bug score and the test script score.
In the same PDC, the higher the test script score and bug
score of the tester, the higher the comprehensive score. The
calculation of the comprehensive score is as follows:

E = η × (Sscore + Sbug) (7)

where E is the comprehensive score, Sscore is the test script
score, and Sbug is the effective bug score.
For some users who still obtain high scores in the difficult

test, the results will be more than 100, and the results will be
calculated according to the highest score of 100. If there is a
decimal point in the result, it will be omitted.

The testers who participated in the same five projects
were selected from the Mooctest, and their five scores were
calculated according to the above method. Table 2 shows the
comprehensive scores of 10 randomly selected testers after
calculation.

TABLE 2. The score calculated by PDC.

It can be seen from Figure 2 that the scores of the 10 testers
increased with the increase in the number of participants.
It can be seen that after eliminating the impact of project
difficulty, with the increase of the number of times involved
in the project, the score of the testers in the project will also
be higher.

Spearman correlation coefficient [25] is a nonparametric
(distribution independent) rank statistical parameter, which
was proposed by Spearman in 1904 to measure the strength
of the relationship between two variables.

As can be seen from Table 3, the correlation coefficient
between the test project and 1, 2, 3, 4, 5, and 10 was
1.000 with a significant 0.01 level, which showed that there
was a significant positive correlation between the test project
and them. The correlation coefficient value between the
test project and 6 was 0.975 and showed a 0.01 level of

FIGURE 2. The score was calculated by PDC. The X-axis represents the
number of testers, and the Y-axis represents the score of the project.

TABLE 3. Correlation relationship between final score and score of
difficulty coefficient of project.

significance. Therefore, there was a significant positive cor-
relation between the test project and 6. The correlation coef-
ficient between the test project and 7 was 0.700, close to 0,
and the p-value was 0.188 > 0.05, indicating that there was
no correlation between the test project and 7. The correlation
coefficient between the test project and 8 was 0.900 with a
significance level of 0.05, indicating that there was a signif-
icant positive correlation between 8 and 8. The correlation
coefficient between the test project and 9 was 0.900 with a
significance level of 0.05, indicating that there was a signifi-
cant positive correlation between the test project and 9.

Pearson correlation coefficient [26] is a measure of the
degree of linear correlation between two random variables.
It was proposed by Karl Pearson in the 1880s.

It can be seen from Table 3 that correlation analysis is
used to study the correlation between test items and 10 items
including 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Pearson correlation
coefficient is used to represent the strength of the correlation.
Concrete analysis shows the following: the correlation coef-
ficient between the test item and 1 was 0.985 with a signif-
icance level of 0.01, indicating that there was a significant
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positive correlation between test item and 1. The correlation
coefficient between the test item and 2 was 0.976 with a
significance level of 0.01, which indicated that there was a
significant positive correlation between test item and 2. The
correlation coefficient between test items and 3 was 0.980
with a significance level of 0.01, indicating that there was
a significant positive correlation between test items and 3.
The correlation coefficient value between test item and 4 was
0.996 with a significant 0.01 level, indicating that there was
a significant positive correlation between the test item and
4. The correlation coefficient between test items and 5 was
0.957 with a significance level of 0.05, indicating that there
was a significant positive correlation between test items and
5. The correlation coefficient between test items and 6 was
0.951 with a significance level of 0.05, indicating that there
was a significant positive correlation between test items and
6. The correlation coefficient between test item and 7 was
0.726, close to 0, and the P value was 0.165 > 0.05, which
indicated that there was no correlation between the test item
and 7. The correlation coefficient between test items and
8 was 0.912 with a significant 0.05 level, indicating that there
was a significant positive correlation between test items and
8. The correlation coefficient between test item and 9 was
0.842, close to 0, and the P value was 0.073 > 0.05, which
indicated that there was no correlation between the test item
and 9. The correlation coefficient between test items and
10 was 0.998 with a significance level of 0.01, indicating that
there was a significant positive correlation between test items
and 10.

B. THE HYPERBOLIC LEARNING CURVE
� Formula and variable design

For the tester ω, pω(pω ≥ 0) is used to represent the
tester’s current level and experience, and rω(0 ≤ rω ≤ 1)
is the tester’s learning efficiency (qω = 1

rω
). According

to the hyperbolic learning curve, the formula is modified, and
the tester’s ability Qω (x) can be defined as:

Qω (x) = K
x + pω

x + pω + qω
(8)

As for the factors affecting the testability result of the
testers themselves, it is difficult to obtain accurate data related
to their specialty and age. Since the projects are the same, this
experiment is conductedwith the level and learning efficiency
of the testers as variables. Set two variables in the formula and
the tester’s level, previously verified as pω, rω, to describe the
tester’s learning speed.

According to Equation (8), the test points submitted by
each tester are x, and the number of these submissions is
Qω (x). It can be estimated that the tester’s learning speed is
rω and the value of his prior knowledge is pω.

� Fitting model

In order to construct Qω (x), Equation (8) is deformed as
follows:

Divide both sides of the equation by K (K>0), and the
formula becomes:

Qω (x)
K
=

x + pω
x + pω + qω

(9)

Take the reciprocal of both sides:
K

Qω (x)
= 1+

qω
x + pω

(10)

Subtract 1 from both sides, and the formula becomes:
k

Qω(x)
− 1 =

qω
x + pω

(11)

Take the reciprocal of both sides again, and the formula
becomes:

Qω (x)
K − Qω (x)

=
1
qω
x +

pω
qω

(12)

In Equation (12), let Zω (x) = αωx + βω, αω = 1
qω
, βω =

pω
qω
, and rω = 1

qω
. The linear model can be obtained as

Zω (x) = αωx + βω. Using the linear regression method,
the Qω (x) scatter points are fitted. According to the formula
described in the previous section, the values of αω and βω
can be estimated. The Qω (x) scatter fitting model is shown
in Figure 3.
� Data analysis

According to the least-squares linear regression, estimate the
values of αω and βω, and calculate the pω and rω. The good-
ness of fit is a measure of how well the regression line fits the
observations. The statistical measure of goodness of fit is the
coefficient of determinability (also known as the coefficient
of determination) R2, the maximum value of which is 1.
A value of R2 close to 1 indicates that the regression line is a
good fit to the observed values, while a smaller value of R2

indicates that the regression line is a poor fit to the observed
values. The pω, rω, and R2 values of the 10 testers are shown
in Table 4.

TABLE 4. The values of pω, rω , and R2.

According to the exponential learning model to calculate
the previous experience of pω, rω values beyond the range
of 0 to 1 have improved, but the error shows that while a
hyperbolic linear model has a certain improvement, it still
does not accurately simulate the measurement of platform
testers’ learning ability of ascension.
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FIGURE 3. The hyperbolic learning model for 10 testers. The x-axis represents the number of tests, and the y axis represents the value of Zω (x).

C. THE EXPONENTIAL LEARNING CURVE
� Formula and variable design

For the tester ω, pω(pω ≥ 0) is used to represent the
tester’s current level and experience, and rω(0 ≤ rω ≤ 1)
is the tester’s learning efficiency (qω = 1

rω
). According to

the exponential learning curve, the formula is modified, and
the tester’s ability Qω (x) can be defined as:

Qω (x) = K
(
1− e−

x+pω
qω

)
(13)

Set two variables in the formula and the tester’s level,
previously verified as pω, rω, to describe the tester’s learning
speed.

According to Equation (13), the test points submitted by
each tester are x, and the number of these submissions is
Qω (x). It can be estimated that the tester’s learning speed is
rω, and the value of his prior knowledge is pω.

� Fitting model

In order to construct Qω (x), Equation (13) is deformed as
follows:

Divide both sides of the equation by K (K>0), and the
formula becomes:

Qω (x)
K
= 1− e−

x+pω
qω (14)

Move the 1 on the right to the left and then multiply both
sides by −1, and the formula becomes:

1−
Qω (x)
K
= e−

x+pω
qω (15)

Take the log of both sides:

ln
(
1−

Qω (x)
K

)
= −

x + pω
qω

(16)

Finally, the formula is transformed into:

− ln
(
1−

Qω (x)
K

)
=

1
qω
x +

pω
qω

(17)

In Equation (17), let Zω (x) = − ln
(
1− Qω(x)

K

)
, αω =

1
qω
, βω =

pω
qω
, and rω = 1

qω
. The linear model can be obtained

as Zω (x) = αωx + βω. Using the linear regression method,
the Qω (x) scatter points are fitted. According to the formula
described in the previous section, the values of αω and βω
can be estimated. The Qω (x) scatter fitting model is shown
in Figure 4.
� Data analysis

According to the least-squares linear regression, estimate the
value of αω and βω, and calculate pω and rω. The pω, rω, and
R2 values of the 10 testers are shown in Table 5.

TABLE 5. The values of pω, rω , and R2.

According to the exponential learning model to calculate
the previous experience of pω, rω values beyond the range
of 0 to 1 have improved, but the error shows that while a
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FIGURE 4. The exponential learning model for 10 testers. The x-axis represents the number of tests, and the y axis represents the value of Zω (x).

hyperbolic linear model has a certain improvement, it still
does not accurately simulate the measurement of platform
testers’ learning ability of ascension.

D. COMPARISON
From Figures 3 and 4, we can find that the fitting effect of the
exponential learning curve is better than that of the hyperbola
learning curve. The discrete points are closer to the fitting
curve, which is the exponential learning curve. The 10 sets of
data used by the two models are the same. Table 6 shows the
comparison of the two models.

TABLE 6. Comparison of the parameter between the two models.

Compared with the hyperbolic model, the negative value
of pω in the exponential model is reduced, but there is still
a negative phenomenon. Based on the actual situation of the
Mooctest platform, this phenomenon may be due to the fact
that most of the test users are students in school, and most
of them have no previous relevant experience. In addition,

the number of each person participating in the test is small,
leading to a small amount of data in each group of experi-
ments, and there is large uncertainty. Two models in compar-
ison, the exponential model of pω and rω, are more in line
with expectations, and the error is smaller, so the exponential
model is more suitable for describing the tester’s ability to
learn. To verify this, the next section will select the testers
whose initial score is higher and verify the simulation of the
tester many times.

E. IMPROVED EXPERIMENT
In the case of randomly selected testers, the pω value was
negative due to low initial performance or low participation
in projects. In the selection of testers, we choose experienced
testers. Their experience is judged by the test script score
and bug score in the dataset. Because experienced testers can
skillfully use the test framework and have certain test ideas,
their test script score and bug score are high. we selected
10 projects that the testers had good initial scores and partici-
pated in together. Table 7 shows 10 testers who have a higher
score after calculation by PDC.

Due to the limited space, only parameter comparison tables
of the two models are presented here instead of two images
with scatter fitting.

As can be seen from Table 8, the pω value in the hyperbolic
model is still negative, which is not consistent with the actual
testers’ initial experience. The pω value in the exponential
model is positive, which is consistent with the actual testers
having some initial experience, and the learning rate of rω is
also consistent with the actual. This experiment once again
verified that, compared with the hyperbolic learning model,

77134 VOLUME 9, 2021



Y. Yao et al.: Study on Testers’ Learning Curve in Crowdsourced Software Testing

FIGURE 5. Values of two model parameters.

TABLE 7. A higher initial score calculated by PDC.

TABLE 8. Comparison of the parameter between the two models.

the exponential learning curve can better describe the learning
ability of testers in the crowdsourced test platform under the
condition of large data volume, and it is more suitable to
represent the improvement of testers’ skills.

As can be seen in Figure 5, hyperbolic learning curve
fitting does not work well for previous experience. Seven of
the previous experience values are negative, which does not
correspond to the pω greater than 0. When the exponential
learning curve is fitted, all of the previous experience val-
ues are greater than 0 and the values are very high, which
corresponds to the situation of the tester we selected. For the
learning rate, the set learning rate should be between 0 and 1,
while nine values in the hyperbolic model are greater than 1.
Therefore, it does not conform to the actual situation. The
learning rate of the exponential learning curve is between
0 and 1, mostly concentrated around 0.3, so the exponential
learning curve model is more suitable for fitting to the testers
of the crowdsourced software testing.

IV. RELATED WORK
In crowdsourced software testing, there are many researchers
studying the recommendations of testers. Cui et al. [27]
proposed a multi-target crowd worker selection method
(MOOSE) to select crowd testers by maximizing the cover-
age of testing requirements, minimizing the cost, and max-
imizing the bug detection experience of the selected group
workers. The experiment found that the selected workers
could improve the detection rate by 17%. Wang et al. [24]
proposed a recommended method for the skill improve-
ment of crowdsourced software developers, modeled the skill
improvement of developers through the learning curvemodel,
and confirmed that the negative exponential learning curve
was suitable for describing the skill improvement of employ-
ees. Wang et al. [28] proposed a new characterization of
crowd workers that leverages testing environment, competen-
cies, and domain knowledge. Based on this, they proposed
the multi-targeted crowd worker recommendation method
(MOCOM), which aims to recommend a minimum number

VOLUME 9, 2021 77135



Y. Yao et al.: Study on Testers’ Learning Curve in Crowdsourced Software Testing

of crowd workers for a crowdsourced testing task that can
detect the maximum number of bugs.

The learning curve has a wide range of applications and can
be used to improve the skills of researchers and testers; it can
also play a certain role in prediction and guidance. Bach et al.
used the learning curve to test the learning performance of the
robot. Jinn et al. proposed the best business benefit and the
best economic benefit according to the model learning curve.
Bohn and Terwiesch [29] evaluated the effect of learning
throughout the production process of a new product model.
Using an improved log-linear LCmethod, Kannan and Paloc-
say [30] compared the productivity of different cell layouts
in the experiment. In addition, Franceschini and Galleto [31]
used the LCs to estimate the reduction in nonconforming
product patterns in juice production plants as workers’ skills
improved. Zong et al. [32] proposed a new automatic log
analysis method to improve the efficiency of fault analysis
based on the knowledge learning ability of fault analysis engi-
neers in the nuclear power industry. The warehouse material
order picking system uses artificial intelligence and automa-
tion technology, according to the learning curve of artificial
language selection and semi-automatic selection, to acceler-
ate the learning process of manual operation automation [33].
There are applications of the learning curve in various fields.
Due to the limited space, these are some examples. Our
work is to apply the learning curve in crowdsourced software
testing to testers in terms of learning skills improvement. To
our knowledge, this is also the first time it has been used in
crowdsourced software testing workers.

V. THREATS TO VALIDITY
Threats to external validity are relevant to the generality of
this study. In the first place, our experimental data come from
one of the largest crowdsourced testing platforms in China.
Our findings may not be extensible beyond the environment
in which we conducted our experiments. However, we used a
variety of data to control for this threat.

In the second place, the main threat to conceptual valid-
ity consisted of two parameters. These two parameters are
designed according to different learning curve models: a pri-
ori experience in testing, i.e., testers in the test platform are
usually involved in test projects and test project accumulation
can improve their skills, so a certain amount of experience
is assumed to better match the testing reality. By conducting
experiments on both random and high initial skills, it can be
found that higher initial skills can be a better fit, but since
most of the testers in the crowdsourced test platform are
students, the test data is relatively homogeneous, which will
have some influence on the experimental results. Also, due to
the age, major, and test preference of the testers, the learning
time and forgetting curve cannot be collected for the time
being. We do not consider the influence of these factors here.

VI. CONCLUSION AND FUTURE WORK
In this paper, we studied how crowdsourced software testers’
skills are improved over time. Specifically, we proposed the

project difficulty coefficient to eliminate the influence of
the item on the tester’s score. The hyperbolic learning curve
model and exponential learning curve model were used to fit
the learning ability of the testers. The experimental results
showed that when the test data is large, the exponential
learning curve can better simulate the improvement of testers’
skills. At the same time, considering the initial experience
and learning efficiency of different testers for projects in
attended more tests, more test tasks on testers testing skills
can better simulate the testers’ skills upgrading, in order to
more effectively recommend suitable projects for the test
platform.

As the data used in this paper is from the Mooctest plat-
form, students in a school account for the majority of the data,
and their testing experience is not rich enough, resulting in the
negative value of the initial experience fitted. The number of
tests that users participate in is not enough, which may bring
uncertainty. In future work, we will acquire more data sets
to further analyze and simulate the improvement of skills.
We will consider other factors such as the learning time of
testers. In addition, the forgetting phenomenon of testers will
be simulated by using the forgetting curve model, and the
conclusion will be more realistic.
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