
IEEE POWER & ENERGY SOCIETY SECTION

Received May 5, 2021, accepted May 17, 2021, date of publication May 19, 2021, date of current version May 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082001

A Transfer and Deep Learning-Based
Method for Online Frequency Stability
Assessment and Control
JIAN XIE , (Student Member, IEEE), AND WEI SUN, (Member, IEEE)
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32826, USA

Corresponding author: Wei Sun (sun@ucf.edu)

ABSTRACT Fast and accurate prediction and control of power system dynamic frequency after disturbance
is essential to enhance power system stability. Machine learning methods have great potential in harnessing
data for online application with accurate predictions. This paper proposes a two-stage novel transfer and
deep learning-based method to predict power system dynamic frequency after disturbance and provide
optimal event-based load shedding strategy to maintain system frequency. The proposed deep learningmodel
combines convolutional neural network (CNN) and long short-term memory (LSTM) network to harness
both spatial and temporal measurements in the input data, through a four-dimensional (4-D) tensor input
construction process including, 1) capture system network topology information and critical measurements
from different time intervals; 2) compute a multi-dimensional electric distance matrix and reduce to a 2-D
plane which can describe the system nodal distribution; 3) construct 3-D tensors based on state variables
at different sample times; and 4) integrate into 4-D tensor inputs. Moreover, a transfer learning process
is employed to overcome the challenge of insufficient data and operating condition changes in real power
systems for new prediction tasks. Simulation results in IEEE 118-bus system verify that the CNN-LSTM
method not only greatly improves the timeliness of online frequency control, but also presents good accuracy
and effectiveness. Test cases in the New England 39-bus system and the South Carolina 500-bus system
validate that the transfer learning process can provide accurate results even with insufficient training data.

INDEX TERMS CNN, deep learning, dynamic frequency, LSTM, spatial-temporal feature, transfer learning.

I. INTRODUCTION
Power system frequency reflects the balance between gen-
eration and load, serving as a critical indicator of power
system stability [1]–[4]. Due to the increasing penetration
of renewable energies, the complexity of the power system
greatly increases with reduced system inertia, which causes
more severe system fluctuation after disturbances. With more
blackouts caused by frequency collapse, it is imperative to
accurately predict system frequency online and rapidly pro-
vide reliable event-based load shedding scheme for real-time
power system frequency control [3].

Themethods for power system dynamic frequency analysis
in literature can be classified as time-domain simulation,
equivalent model, and machine learning (ML) models. First,
time-domain simulation requires detailed mathematical mod-
els of power system components and network equations
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to obtain system dynamic frequency responses. However,
its application for real-time prediction is limited due to
the high computational requirement. Next, the equivalent
model-basedmethod aggregates all the generator swing equa-
tions into an equivalent rotor model, such as the average sys-
tem frequency model [5]. This method dramatically reduces
the complexity of power system models and realizes the fast
prediction of dynamic frequency. However, the prediction
error is inevitable due to neglecting the impact of load and
system topology on dynamic frequency [6]. In [7], an analyt-
ical frequency nadir prediction model is proposed to predict
frequency nadir and time when it reaches. In [8], the rate of
change of frequency of the center of inertia is estimated using
only local frequency.

Adaptive load shedding methods are mainly studied for
load shedding control in recent publications [9]–[11]. These
methods first calculate power deficit or estimate theminimum
frequency after disturbance, then the actual amount to be shed
can be calculated or guided by a pre-defined strategy [12].
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However, this type of scheme is usually based on the equiva-
lent systemmodel and is limited by the accuracy of themodel.

The huge amount of data and the breakthrough in learning
and computing power [13] enable the applications of ML
methods to improve the accuracy and efficiency of power
system dynamic frequency prediction, such as decision tree
(DT) [14], [15], support vector machine (SVM) [16], [17],
and extreme learning machine (ELM) [6]. However, there are
three major limitations, 1) they only transform the input data
into one or two successive representation spaces by simple
transformations, but the refined representations required by
complex problems, such as dynamic frequency prediction,
generally cannot be attained; 2) they cannot consider the
spatial-temporal features, such as network topology, or utilize
time series data, which reduce the prediction accuracy; and
3) they are unable to exploit the prior trained model for
new prediction, which may result in inefficient training or
insufficient training data.

Currently, enabled by more powerful computing hardware,
Deep Learning (DL) models have demonstrated superior
performance in solving high-dimensional non-linear prob-
lems [13], such as convolutional neural network (CNN) [13]
and recurrent neural network (RNN) [13]. A key characteris-
tic of CNN is that the convolution layers learn local patterns
of inputs, which presents two powerful properties: 1) the
patterns they learn are translation invariant, and 2) they can
learn spatial hierarchies of patterns. In [18], power system
stability assessment is formulated as a classification problem
and solved by CNN. However, the inputs are operating con-
ditions grouped as 1-dimensional (1-D) vector, which cannot
harness the spatial feature from data. The long short-term
memory (LSTM) network [13] is an effective RNN, which
has been widely applied to solve sequence prediction prob-
lems, such as load forecasting and wind speed prediction.

Power system operation and structure data contain rich
and useful information. Especially during the transient
period, multi-channel time-series streaming data could
be mined for system dynamics analysis. In this paper,
a two-stage CNN-LSTM model is developed to fully exploit
spatial-temporal data for online frequency prediction and
load shedding control. At the first stage, the CNN-LSTM
model is adopted to predict system dynamic frequency till
steady state after disturbance. At the second stage, if the
predicted frequency nadir is lower than thresholds, another
CNN-LSTM model is used to develop a specific load shed-
ding plan for frequency stability control. The CNN-LSTM
architecture [19] integrates the unique characteristics of both
CNN and LSTM, using CNN layers for feature extraction
on input data and combined with LSTM networks to support
dynamic frequency prediction and control.

First, in order to utilize system structure information, elec-
tric distance is used to describe the high-dimensional spatial
position of power system nodes. Then the dimension reduc-
tion algorithm is applied to map system nodes into a 2-D
plane. Next, critical dynamic state variables at a certain time
are selected to construct a 3-D tensor. Finally, a 4-D tensor

can be generated by integrating all 3-D tensors constructed
at different time intervals, which is then used as inputs for
the proposed CNN-LSTM models. The output of the first
CNN-LSTM model is the dynamic frequency response from
the disturbance occurs and a specific load shedding strategy
is the output of the second model.

In addition, due to the inability to store prior learned
knowledge, DL models have to be re-trained when dealing
with tasks in a new scenario, which leads to a long re-training
process. Another issue is the lack of sample data for new sce-
narios, which can lead to poor prediction accuracy. However,
Transfer Learning (TL) could address these challenges by
harnessing the features learned to improve the performance
of pre-trained DL models in new tasks [20], [21]. Aiming
to accelerating and improving the accuracy of the dynamic
frequency and optimal load shedding prediction process in
order to meet the requirements of online prediction and con-
trol for large power grids, this paper takes advantage of TL to
improve the performance of CNN-LSTM model.

In summary, the main contributions of this paper include:
• A novel two-stage CNN-LSTM-based method is pro-
posed to predict power system dynamic frequency and
optimal load shedding strategy, which can fully exploit
both spatial and temporal dynamic measurements to
ensure more accurate and stable predictions.

• In order to fully exploit system network information and
the powerful learning ability of CNN-LSTM, power sys-
tem typology is adopted to generate 4-D input tensors,
as a first try in this paper.

• A transfer learning process is incorporated to address
data shortage challenge and operation condition changes
in real power systems, reduce the computing burden,
save and apply the pre-trained models to new tasks.

The rest of the paper is structured as follows. Section II
describes the basic principles of CNN-LSTM model and
transfer learning. Section III presents the framework of CNN-
LSTM-based power system dynamic frequency prediction
and control. Simulation results are presented in section IV,
and section V concludes this paper.

II. THEORETICAL FOUNDATION
A. POWER SYSTEM CENTER OF INERTIA FREQUENCY
By analyzing the measurement and simulation data, we can
find that power system dynamic frequency has certain
spatial-temporal characteristics. The frequency of each gen-
erator oscillates around the center of system inertia, and when
the system stabilizes, the frequency of each generator will
eventually approach to the center of system inertia. When the
emergency controls are applied, the center of inertia (COI)
frequency is usually used to represent the global state of
system frequency [2], [5], [8]. In addition, most load shed-
ding schemes use COI as the index. The definition of COI
frequency fCOI is shown as follows:

fCOI =
n∑
i=1
(Hifi)

/
n∑
i=1

Hi (1)
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where n denotes the number of generators; Hi and fi are the
inertia and rotor speed of the ith generator, respectively.
When a disturbance happens to power systems, generators

share the unbalanced system power based on the correspond-
ing synchronization factor. The amount of unbalanced power
that a generator undertakes is related to the initial operating
state, the electrical distance to the fault point, and the size of
system’s unbalanced power. A generator that is closer to the
fault location with respect to the electric distance will take
more unbalanced power [22]. Synchronization factor SPik
between generator node i and node k is defined as:

SPik = ViVk (Bik cos δik − Gik sin δik) (2)

where V and δ are voltage amplitude and phase angle differ-
ence, respectively; Bik and Gik are the transfer impedance.
Let t0 and tf denote the moment when and after the dis-

turbance occurs. According to (2), the active power of each
generator and each load at t0, the voltagemagnitude and angle
of each node, and the unbalanced power of each generator
at tf are selected as input features. In the transient period,
the power imbalance of a generator 1Pi can be represented
as [23]: 1Pi = Pmi − Pei = 2

Hi
fN

dfi
dt

Hiω̇i = Pm,i − Pe,i − Di (ωi − 1)
(3)

where Pmi and Pei denote the mechanical and electrical power
of ith generator, respectively; and fN denotes the nominal
synchronous speed.

Considering the impact from turbine-governor [24] and
taking the turbine-governor TGOV1 model as an example,
the state equations of frequency after disturbance can be
expressed as:
1θ̇

1ω̇

1ṖT
1v̇

=


0 K12 0 0
K21 K22 K23 0
0 K32 K33 K34
0 K42 0 K44



1θ

1ω

1PT
1v

+


0
K5
0
0


(4)

where T1, T2 and T3 are time constants in TGOV1, R is
the permanent droop, and Dt is the damping coefficient in
TGOV1. Kij are coefficient matrices as referred in [25].

B. OPTIMAL LOAD SHEDDING
In general, the goal of event-based load shedding is to mini-
mize the amount of shed load to maintain system frequency
nadir higher than thresholds. Therefore, theminimum amount
of load shedding is used as the objective function of the
following linear programming optimization model:

min f (Pslj) =
m∑

j=n+1

CiPslj

s.t.



m∑
j=n+1

Pslj = Ps

0 ≤ Pslj ≤ Psjmax

ωmin = ωset

F (θ,V , ω)

(5)

where ωset is the pre-defined threshold of steady state
frequency; Ci is a load-shedding factor to quantitatively
characterize the impacts of load importance at different
load-shedding points; and F (θ,V , ω) is the state space equa-
tions after load shedding, which can be referred in [25].

The pre-defined threshold ωset will influence the optimal
results. According to [26], if the system frequency cannot
reach 59.5 Hz in 30 seconds for a 60-Hz system, the system
will be unsafe and load shedding should be executed to
improve the frequency. Thus, in this paper, the threshold is
chosen as 59.5Hz.

The output in stage 2 is the optimal load shedding strat-
egy. In the sample generation process, optimal load shedding
will be solved in scenarios which require load shedding to
maintain frequency stability, which will be used for training
in stage 2.

C. CNN-LSTM ARCHITECTURE
To extract the rich information from the spatial-temporal
dynamic measurements across different time intervals,
a CNN-LSTM method is proposed with the architecture
shown in Fig. 1. The proposed DL model consists of CNN
and LSTM layers. In the proposed architecture, the fully
connected layer in CNN is replaced by the Conv layers to
learn the generic features, due to the capability of encoding
spatial information, which is a key factor for the following
LSTM. From the architecture, we can see that the temporal
tensors are selected as inputs, and features in these inputs
are first extracted by Conv layers, then pooling layers are
adopted to reduce the spatial size of the representation learned
by CNNs. After that, the flatten layers convert the data into
a 1-D array as the input to the LSTM layer. Finally, temporal
features are extracted by LSTMs, and go through the fully
connected layers for regression analysis.

D. TRANSFER LEARNING PRINCIPLE
In practice, the transfer learning process is usually imple-
mented by freezing some neuron layers in the source ML
model (i.e., a well-trained model) and re-training the last
one or two layers based on the data obtained from new sys-
tems. These frozen layers are usually used to extract features
from inputs. For power system dynamic frequency prediction,
the proposed CNN-LSTMmodel can be trained on one source
system, and then transferred and tested on new systems where
few available sample data can be obtained. The Conv and
LSTM layers of trained CNN-LSTM in one system can be
directly applied to other systems, which could greatly help
reduce the data sampling and training cost, as shown in Fig. 2.
From the mathematical view, it means only parameters in the
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FIGURE 1. CNN-LSTM architecture.

FIGURE 2. Transfer learning process.

last fully connected layer will be updated during the training
process, and the equation is shown in (6).

ωθ =

{
ωθ , other
ωθ − η∇∂L/∂ωθ , ωθ ∈ FC layer

(6)

where ωθ denotes the hypeparameters in the CNN-LSTM
model.

III. TRANSFER AND CNN-LSTM-BASED FREQUENCY
PREDICTION
A. INPUT FEATURE SELECTION
Adequate and high-quality data are the basis for ensuring
the accuracy of ML models. Before building a CNN-LSTM
model, the input data must be filtered and organized based
on the characteristic of power system frequency stability.
Based on the analysis in section II, 5 types of state variables,
including active power Pei, unbalance power of generator
1Pi, active load power Pli, and bus voltage magnitude and
angle Vj and Vgj, are selected as the input features. In addi-
tion, the proposed CNN-LSTMmethod can process temporal
data; therefore, state variables at different times will also

TABLE 1. Input features adopted in CNN-LSTM.

be captured as inputs for CNN-LSTM. In order to make a
trade-off between computational time and solution accuracy,
the time interval is set as ti ∈ [t0, 3ft ], where t0 represents
the moment when a disturbance occurs and ft is the sampling
period. It means that critical state variables from the moment
when disturbance occurs to the third sampling period are
captured. The input features are summarized in Table 1.

B. INPUT TENSOR CONSTRUCTION
As stated in section I, the inputs for CNN-LSTM are 4-D
tensor data, which consists of rich spatial-temporal informa-
tion. In order to construct a 4-D tensor, we first build 3-D
tensors that include system network data and key features at a
given time ti ∈ [t0, 3ft ]; then a 4-D tensor can be constructed
by connecting all the 3-D tensors during t0 and 3ft , which
is similar to videos. The following subsections introduce the
process of generating a 3-D tensor.

1) ELECTRIC DISTANCE CALCULATION
There are strong electrical coupling connections between
power system nodes. The electric distance is a useful index
to describe the spatial distribution of nodes and measure the
connection degree between each node. In addition, the elec-
tric distance determines the unbalanced power distribution
of the power system at the moment of power disturbance,
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which is closely related to system dynamic frequency after
the disturbance. According to [27], electric distance between
nodes i and j can be modeled by:

Dij =
∣∣(Zii − Zij)− (Zij − Zjj)∣∣ (7)

where Zij denotes the node impedance between nodes i and j.
For an n-bus system, electric distance matrix D is an n × n
square symmetric matrix.

2) DIMENSION REDUCTION OF ELECTRIC DISTANCE MATRIX
In the actual power system, the large number of nodes may
cause the curse of dimension. In this paper, a 2-D matrix
is built to describe the distribution of a power system in a
2-D space [28]. Therefore, a dimension reduction process is
applied to the electric distance matrix D, to reduce the high
dimension matrix and maintain the highly correlated nodes
for each node. The dimension reduction methods in literature
include Principal Component Analysis, Linear Discriminant
Analysis, and t-distributed stochastic neighbor embedding
(t-SNE) [13]. In order to maintain the correlation between
highly related nodes in D, the non-linear method of t-SNE
is selected, since it models each high-dimensional object by
a two- or three-dimensional point, so that similar objects are
modeled by nearby points and dissimilar objects are modeled
by distant points with high probability. The process is shown
as follows:

D =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...

dn1 dn2 · · · dnn

⇒ Y =


y11 y12
y21 y22
...

...

yn1 yn2

 (8)

where yi1 and yi2 denote the map that reflects the ith variable’s
action set.

3) 4-D TENSOR INPUT CONSTRUCTION
The numerical number of 2-D coordinates obtained in matrix
Y are between 0 and 1. In order to reflect the nodal cou-
pling of the actual system, the elements in Y need to be
enlarged to the appropriate number in terms of integers.
Through the linear normalization method, the decimal node
coordinates in Y are enlarged to the [1, h] interval, and the
normalized node coordinates are rounded to obtain the integer
node coordinates yint . The normalization equation is shown
below:

yint = round
[
1+

(h− 1) (y− Ymin)

Ymax − Ymin

]
(9)

Nowwe obtain the node distribution information according
to the integer coordinate yi1 and yi2. The following task is
to combine state variable information and node distribution
information to obtain a spatial-temporal input. The idea is to
build a h × h matrix for each state variable, and then extract
the corresponding node distribution from Y . Finally, each
state variable measurement is assigned to the corresponding
coordinate in the h × h matrix. For nodes without this input

feature, the matrix element is set with a value of 0. In this
way, a second-order state feature map corresponding to an
input feature at this moment is obtained. From the 4-D ten-
sor construction process, we can see that even though the
input features are different in various systems, the input for
CNN-LSTM is same and it can be used for transfer learning.

Next, we take generator active power as an example to
illustrate the process:

• Step 1: create a h× h null matrixM .
• Step 2: extract generator node distribution from Y :

G =


g11 g12
g21 g22
...

...

gm1 gm2

 (10)

where gij = yn_gi,j, gmi denotes the corresponding coor-
dinates related to ith generator node, and n_gi is the index
of the ith generator.

• Step 3: assign the state variable measurement to
corresponding coordinate based on the following
equation:

M (gi1, gi2) = Pei (11)

• Step 4: repeat the similar process using other input
features. The matrix for the k th input feature at t ,
M t
k , is expressed as:

M t
k (Yi1,Yi2) = S tik (12)

where i = 1, 2, · · · , n represents the ith node;
k = 1, 2, · · · , 6 denotes the k th input feature shown
in Table 1; Yi1 and Yi2 denote the coordinate elements
associated with input feature; and S tik is themeasurement
of k th input feature at t .

• Step 5: integrateM t
k and we can obtain a 3-D tensor at t .

Then, collect measurements at another moment ti+1 and
repeat the 3-D tensor construction process to build other
tensors.

• Step 6: integrate different 3-D tensors to obtain
the 4-D tensor, which are the input data containing
spatial-temporal information.

C. MODEL TRAINING AND TRANSFER LEARNING
After obtaining the 4-D tensor inputs and the corresponding
outputs from a specific test system, we can perform the
training process to obtain a well-trained CNN-LSTM model.
Then, the trained CNN-LSTM layers will be frozen, and only
the last fully connected layer will be re-trainedwhen applying
to a prediction task for a new test system.

D. OVERALL PROCEDURE
The overall flow chat is shown in Fig. 3, and the pseudocode
for sample generation and TL is shown in algorithm 1.
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Algorithm 1 Pseudocode for the Sample Generation and TL
1: function IC(Simulated Data)
2: Input: System node impedance and simulated data.
3: Input Normalization.
4: Compute the electric distance matrix D (12)
5: Dimension reduction of D (13)
6: for t = t0→ tf do
7: while m < 7 do
8: Capture the mth input at t
9: Assign mth input to the corresponding loca-
tion in Y

10: end while
11: Integrate the fulfilled Y into a 3-D tensor.
12: end for
13: Integrate the 3-D tensors into a 4-D tensor.
14: end function
15:

16: function TL(Transfer Learning)
17: Input: Trained CNN-LSTM model, new 4-D tensors,
18: and corresponding COIs, T1, and α.
19: Output:A new trained CNN-LSTM model.
20: Initialize parameters, like the number of layers and

weight.
21: for t = 1→ T1 do
22: Freeze the CNN and LSTM layers and train the

model.
23: end for
24: end function

FIGURE 3. The flowchart of the proposed scheme.

IV. SIMULATION RESULTS
The proposed CNN-LSTM-based power system dynamic fre-
quency prediction and optimal load shedding strategy are first
tested on IEEE 118-bus system, and then the trained model is

transferred and applied on the New England 39-bus system
and South Carolina 500-bus system ACTIVSg500 to test the
performance of transfer learning.

A. SIMULATION MODEL
The IEEE 118-bus system consists of 19 generators, 9 trans-
formers, and 91 loads.

1) SAMPLE GENERATION
In this paper, the dynamic data-sets are simulated on PSS/E,
and a generator tripping disturbance is set at 0s to cause
power loss and dynamic frequency. The simulation time
is 40s and the sample rate is 100Hz. In order to simu-
late different operation status and generate enough sam-
ples, the load level is set to 120 different scenarios: 40%,
40.5%, · · · , 100%. Under different operating modes, genera-
tor tripping faults are applied, and system states and dynamic
frequency response after disturbances are measured and col-
lected. A total of 2,040 sets of sample data are collected,
and there are 990 samples categorized as unstable samples
which require load shedding controls. For these 990 sam-
ples, a pre-optimization process is applied to obtain optimal
sample outputs. In this case, 85.3% of samples are used for
training, and the remaining 14.7% samples are adopted as test
data.

2) BUILD ELECTRIC DISTANCE MATRIX
According to the prediction step, the electric distance matrix
D is calculated based on (7), and the t-SNE method is applied
on D to map the spatial distribution of nodes to a 2-D
dimension-reduced matrix Y , as shown in Table 2.

TABLE 2. Two-dimensional integer node coordinates after dimension
reduction and normalization.

The node distribution of the dimension reduced matrix Y
is shown in Fig. 4. It is shown that node 87 is close to node
111 but far away from other nodes, which is consistent with
the electric distances between these nodes. This also verifies
that the reduced matrix can represent the electric distance
with embedded system network information.

3) CONSTRUCT 4-D TENSORS
As stated in section III, the elements in Y are normalized to
the range between 0 and 100. Define a matrix with dimen-
sion 100 × 100, then put each input feature to the corre-
sponding node coordinate in matrix Y . Elements in Y are
set to zeros for nodes without connections. After setting the
dimension-reduced matrix for ith input feature, we can repeat
steps for another input feature.
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FIGURE 4. Node distribution after dimension reduction.

After completing building the matrices for six input fea-
tures, we can obtain six 2-D tensors which contain state vari-
ables and system network information. Next, these six 2-D
tensors will be integrated into a 3-D tensor that contains the
state information at t . Similarly, by constructing and aggre-
gating multiple 3-D tensors at different sampling moments,
we can obtain the 4-D tensor input for the CNN-LSTM
model.

B. FREQUENCY PREDICTION AND PERFORMANCE
ANALYSIS
In this section, we adopt the CNN-LSTM model to predict
the COI frequency after fault, which can provide more infor-
mation than previous studies in the literature on the minimum
and maximum frequency prediction. In order to test the per-
formance of the CNN-LSTM model, among 2,040 samples,
1,740 samples are randomly selected as the training set, and
the remaining 300 samples are used as the test set. Training
and test process are implemented on the Keras framework.

The structure and parameters of the CNN-LSTM model
need to be pre-set to make a trade-off between training
time and accuracy. After several experiments, the trained
CNN-LSTM model in this paper contains 4 Conv layers,
one LSTM layer, and a fully connected layer to generate the
output.

The proposed CNN-LSTM is compared with ANN and
SVM. CNN-LSTM and ANN can be directly applied to pre-
dict dynamic frequency; while SVM is a single output model,
which we need to be run multiple times to obtain a frequency
curve. Inputs for SVM and ANNA are vectors containing
power system state variables, i.e., generator active powers and
bus voltages. All methods start at the timewhen a fault occurs.

In order to evaluate the prediction performance of three
methods, the following index is adopted: mean absolute per-
centage error (MAPE) and root mean square error (RMSE)
between predicted curves and actual curves, steady state fre-
quency fs and minimum frequency fmin after disturbance.

1) PREDICTION OF MINIMUM FREQUENCY
Minimum frequency is a crucial indicator of system fre-
quency stability. This subsection presents the performance

FIGURE 5. Error comparison of minimum frequency among three
methods.

FIGURE 6. Comparison of minimum frequency prediction among three
methods.

comparison of minimum frequency predictions from dif-
ferent methods. Fig. 5 shows the prediction error and the
box plots of MAPE of minimum frequencies from three
methods. Fig. 6 presents an example of the dynamic fre-
quency prediction, in which the minimum frequency part
is magnified for comparison, and CL denotes the proposed
CNN-LSTMmethod. These comparisons show that the result
fromCNN-LSTM is closest to the true curve (red) in both val-
ues of X-axis andY-axis. It means that the CNN-LSTM-based
method shows the accurate minimum frequency value
and time.

The powerful performance of CNN-LSTM comes from the
fact that the proposed CNN-LSTM model can extract rich
spatial-temporal correlation characteristics from the tensor
inputs, explore the local features of the data, and combine the
local features into global characteristics for prediction. On the
other hand, the fully connected structure in ANN results in an
inefficient training process and the poor prediction accuracy.

C. LOAD SHED AMOUNT PREDICTION AND ANALYSIS
Based on the prediction results, there are 141 cases in test
samples that need to shed load in order to maintain frequency
stability. Therefore, the measurements of these 141 cases are
inputs to the second stage CNN-LSTM model for optimal
load shedding strategy. The predicted optimal load shedding
amount on load 54 is compared with the actual output value
of the sample, as shown in Fig. 7. The optimal load shedding
amount of each load node prediction is very close to the
optimization results in test samples, with themaximumpower

75718 VOLUME 9, 2021



J. Xie, W. Sun: Transfer and DL-Based Method for Online Frequency Stability Assessment and Control

FIGURE 7. Prediction of load shedding amount.

FIGURE 8. Effect of load shedding with the proposed CNN-LSTM method.

error only within 0.015 pu, which indicates that the model can
provide highly accurate prediction results.

The control effect of load shedding on test case 10 is
shown in Fig. 8. From this figure, it can be seen that the
proposed load shedding method can ensure that the minimum
frequency is maintained above 59.5Hz after a fault occurs.

D. TRANSFER LEARNING PERFORMANCE
The CNN-LSTM model has demonstrated powerful perfor-
mance when both training and test data come from the same
system. However, in actual power systems, the characteris-
tics and distribution of measurements from different systems
are inconsistent,resulting in the issues of taking a long time
to obtain new training data and re-train the model for the
application to a new system. In addition, there are insuffi-
cient measurements in some power systems, which can lead
to a poor performance of DL models. Therefore, transfer
learning is designed and applied to IEEE 39-bus system and
South Carolina 500-bus system. There are 10 generators and
46 lines in IEEE 39-buy system, and theACTIVSg500 system
is built from a real power system [29].

In order to validate whether the features learned from
IEEE 118-bus system are similar to that from other systems,
we extract and compare the 3-D tensors from different sys-
tems. It is noted that there are some similarities between
different inputs. For example, Fig. 9 shows the bus voltage
feature map from different systems, which demonstrates the
similarity exists across different systems. The vertical axis
represents the voltage value in the dimension reduced electric
distance matrix. The similarity is the linear increase tendency
of voltage feature map. Since the status feature maps from

FIGURE 9. Comparison of feature maps.

different systems are similar, it is possible to transfer and
apply the trained model to other systems, which can signifi-
cantly reduce the training and sample generation cost.

After verifying that it is feasible to transfer the
CNN-LSTM model for applications to other systems, steps
to apply the trained model in the last section to another two
test systems for frequency prediction are shown as follows.

1) PREPARING NEW TRAINING AND TEST DATA
Sample data are generated based on the steps introduced in
the last subsection. There are 1,800 and 2,100 samples for
IEEE 39-bus system and ACTIVSg500 system, respectively.
In order to validate the superiority of the transferred model,
non-transferred CNN-LSTM is adopted to perform the same
prediction task, and only 300 samples are used for training
and all the other samples are used for testing in both TL and
non-TL models.

2) IEEE 39-BUS SYSTEM
Fig. 10 shows the comparison of frequency prediction for
the 157th test sample. It is clear that the prediction based on
transfer learning performs better. This advantage is enabled
through the powerful learning ability of local patterns, while
non-transferred ML models suffer from insufficient training
samples with reduced prediction accuracy. In order to verify
the advantages of the proposed transfer CNN-LSTMmethod,
the proposed method and three other methods including
ANN, SVM and EL are applied to the IEEE 39-bus system.
There are only 300 samples for training in all four methods,
and a 30 dB measurement noise is imposed on all inputs.
Table 3. shows the results under different conditions. It can be
observed that the proposed transfer CNN-LSTM method can
always maintain a highly accurate result. Therefore, the con-
clusion can be drawn that the proposed transfer CNN-LSTM
method has superior robustness to other existed methods.

3) ACTIVSg500 SYSTEM
Similarly, we can obtain the prediction result for
ACTIVSg500 system. Tables 4 compares the RMSE and
MAPE for the minimum frequency prediction in two test
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FIGURE 10. Comparison of dynamic frequency curves in IEEE 39-bus
system.

TABLE 3. Test accuracy of different methods on IEEE 39-bus system.

TABLE 4. Minimum frequency accuracy variation comparison.

systems. It can be seen that the transferredmodel can improve
the performance when facing the disadvantage of insufficient
training data.

In addition, from the experiment, the TL model can obtain
the optimal solution within 50 iteration steps, which is much
faster than that of the non-TL model which takes about
230 steps to converge. This indicates the convergence rate can
be significantly accelerated by transfer learning.

E. RELIABILITY IN REAL POWER SYSTEMS
As measurement noise and time delay exist in real power
systems [9], it is imperative to improve the robustness and
computational efficiency. In order to evaluate the robustness
of CNN-LSTM method under the noise condition, different
levels of white Gaussian noise are added to the corresponding
inputs. The measurement noise level is described based on
signal-to-noise ratios (SNRs) with the unit dB.

Fig. 11 shows the comparison of the RMSE index of
dynamic frequency prediction from each method under dif-
ferent noise levels. The comparison results clearly show
that the robustness of ANN and SVM usually decreases
with the increase of prediction accuracy, and the pro-
posed CNN-LSTM method shows significant advantages
than the other two methods. This advantage comes from
the fact that the CNN-LSTM’s local connection and pooling
make the features more robust to noise and deformation.

FIGURE 11. Box plot comparison for RMSE of dynamic frequency.

In [30], the authors point out that the structure of the network
will greatly affect the robustness of the model. ANN is a
fully connected neural network, which may be the reason
why ANN is less robust. The local connection and pool-
ing of CNN makes the features more robust to noise and
deformation [30].

For measurement delays, the proposed two-stage
CNN-LSTM method can quickly predict system dynamic
frequency after fault, and present the optimal amount of load
to be shed to recover frequency after a fault. The computa-
tional time by CNN-LSTM and load shedding algorithm is
0.024 and 0.0105s. Considering that the wide area measure-
ment communication delay time is about 60ms and the circuit
breaker operation time is 60ms, the proposed algorithm can
complete dynamic frequency prediction and load shedding
control within 150ms, which meets the requirement of online
emergency control.

V. CONCLUSION
This paper proposed a transfer and CNN-LSTM-based
method to accelerate and improve the accuracy of the
dynamic frequency and optimal load shedding prediction pro-
cess. The proposed method exploits system spatial-temporal
information and mines the local features of inputs, which
highly improves the performance compared with other
machine learning methods. In addition, the proposed trans-
fer learning process significantly enhances the generaliza-
tion ability of the proposed CNN-LSTM, and overcomes the
shortage of insufficient data and operation condition changes
in real power systems, which provides remarkable training
with sample generation savings. Simulation results on IEEE
118-bus test system, New England 39-bus test system, and
ACTIVSg500 system validate the effectiveness of the pro-
posed CNN-LSTM method. The comparisons show the pro-
posed approach has superior accuracy because of the ability to
exploit spatial-temporal information. Moreover, the proposed
method is applicable to online frequency stability assess-
ment and control to prevent frequency collapse. With more
and more renewable energy integrated with modern power
system, future work will be focused on investigating the
impact of renewable energy generation on transient stability
and extend the method to prediction of other states such as
voltage.
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