
Received April 3, 2021, accepted May 8, 2021, date of publication May 19, 2021, date of current version May 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081505

On Graph Structures in Fuzzy Environment
Using Optimization Parameter
ATIQ UR REHMAN 1, WOJCIECH SAŁABUN 2, (Member, IEEE), SHAHZAD FAIZI3,
MUHAMMAD HUSSAIN 1, AND JAROSŁAW WA̧TRÓBSKI 4
1Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 53710, Pakistan
2Research Team on Intelligent Decision Support Systems, Department of Artificial Intelligence and Applied Mathematics, Faculty of Computer Science and
Information Technology, West Pomeranian University of Technology in Szczecin, 71-210 Szczecin, Poland
3Department of Mathematics, Virtual University of Pakistan, Lahore 54000, Pakistan
4Institute of Management, University of Szczecin, 70-453 Szczecin, Poland

Corresponding author: Wojciech Sałabun (wojciech.salabun@zut.edu.pl)

The work of Jarosław Wa̧tróbski was supported by the project financed within the framework of the program of the Minister of Science
and Higher Education through the "Regional Excellence Initiative" in the years 2019–2022, under Project 001/RID/2018/19.

ABSTRACT This paper comprises the introduction of weighted mean products of fuzzy graph structures
(FGSs) to construct weighted mean fuzzy graph structures (WMFGSs) with the help of optimization
parameter, and establish some novel results after validating with examples, accordingly. The notions of
regular and mµk -regular FGSs are described, where m ∈]0, 1] represents the degree of all vertices in G̃
under mapping µk , and develop certain properties of regularWMFGSs. In addition, we create a flowchart to
present common application procedures of fuzzy graphical frameworks to classify the advanced city out of
some important Pakistani cities subject to certain parameters.

INDEX TERMS Fuzzy graph structure, weighted mean product, vertex degree, vertex total degree, regular
fuzzy graph structure.

I. INTRODUCTION
A graph is used to represent mathematical networks that
define the association between vertices and edges. A vertex
can be used to symbolize a workstation, while the edges
denote the association between stations. The graph theory
helps explain physical structures, e.g., positioning a certain
number of cars at different corners to be observed at each
corner only once, can be solved across networks where the
positions are interlinked, and the navigation agent moves
from one corner to another within the network.

Graphs often do not reflect many physical processes
adequately because the complexity of various properties
of the structures is obvious. Many real-world phenomena
have emphasized the concept of fuzzy graphs. In 1973,
Kaufmann [1] presented the first picture of a fuzzy graph
under the use of Zadeh’s [2] fuzzy relation. In 1975, a more
detailed description was credited to Rosenfeld [3] who intro-
duced the fuzzy graph theory by considering fuzzy relations
on fuzzy sets. He established some relations regarding prop-
erties of path graph, trees and various graphs. Bhattacharya
introduced the notion of fuzzy cut nodes and fuzzy bridges
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in [4]. A fuzzy graph is a generalization of a crisp graph.
Hence, there exist many similar properties between them, but
they also deviate at several places.

Mordeson and Nair [5] defined some fuzzy graphs and
fuzzy hypergraphs. Mordeson and Chang-Shyh [6] discussed
some operations on the fuzzy graphs. Nagoor Gani and Radha
[7], [8] defined some properties of regular fuzzy graphs and
the degree of a vertex in some fuzzy graphs. Dinesh [9]
presented the concept of fuzzy graph structures and described
certainly associated notions. Fuzzy graphical Frameworks
are much more desirable than crisp graph structures since
they cope with the imprecision and uncertainty of different
real-life situations. Ramakrishnan and Dinesh [10] focused
on the generalization of fuzzy graph structures. Sahoo and
Pal [11] generalized the intuitionistic fuzzy competition
graphs into k-competition and p-competition intuitionistic
fuzzy graphs. Sahoo et al. [12] proposed the notions of cov-
ering and matching in an intuitionistic fuzzy graph based on
strong arcs and introduced several useful properties on it.
Sahoo and Pal [13] introduced the edge irregular intuition-
istic fuzzy graphs, edge irregular intuitionistic fuzzy graphs,
highly edge irregular intuitionistic fuzzy graphs and highly
edge irregular intuitionistic fuzzy graphs. Akram et al. [14]
have presented some theories about certain fuzzy graph
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structures, fuzzy graph structures and m-polar fuzzy graph
structures. Jia et al. [15] proposed a consensus-based multi-
person decision making (MPDM) procedure using consis-
tency graphs (additive consistent and order consistent) in a
fuzzy environment. Soumitra and Ganesh [16] introduced the
Wiener index for a bipolar fuzzy graph and explained their
properties. The Wiener absolute index is created based on the
total accurate connectivity between all the pair of vertices
and the whole bipolar fuzzy graph. Soumitra and Ganesh
[17] improved some important results on different types of
operations of bipolar fuzzy graphs. They explained some
important theorems about the degree of composition, tensor
product, and normal product of two bipolar fuzzy graphs
using examples.

In this paper, we introduce a generalized framework to
handle uncertain data with the help of fuzzy sets and graphical
structure. We investigate and present some notions of associ-
ated properties after introducing weighted mean fuzzy graph
structure (WMFGS). Furthermore, the notions of regular and
mµk -regular FGSs are described, and we develop certain
properties of regularWMFGSs.

II. WEIGHTED MEAN PRODUCT
This section provides the basic notions concerning graph
structure, FGSs including weighted mean product of two
FGSs and regular FGSs with a few related properties.
We have also defined the degree and total degree of vertex
in WMFGSs and discussed some properties with examples.
Definition 1: A pair G = (V ,E) of sets of vertices and

edges, respectively, is a graph structure (GS) if set E of
edges carries mutually disjoint subsets Ei i.e., Ei ⊂ E, 1 ≤
i ≤ n, associated with symmetric and irreflexive mapping fi.
Conveniently, a graph structure can be expressed just like a
simple graph labled with fi, 1 ≤ i ≤ n.
Example 1: let V = {u, v,w, x} be a set of vertices for

an undirected graph G, and E1 = {uv, uw,wx}, E2 =
{ux, vw, vx} are two relations defined on V associated with
the functions f1 and f2, respectively. One can easily observe
that E1 and E2 are irreflexive because they do not have
elements as uu, vv, ww, xx, moreover, these relations are
symmetric being in undirected graph. Therefore, V alongwith
E1 and E2 establish a graph structure as shown in following
Figure (1).

FIGURE 1. A graph structure G = (V ,E1,E2).

Definition 2: The structure G̃ = (V ,Ei, λ, µi), 1 ≤ i ≤
n, is an FGS with core GS, G = (V ,Ei), 1 ≤ i ≤ n, where
non empty set V is associated with fuzzy membership function
λ i.e., λ : V → [0, 1], and Ei are completely described by µi
i.e., µi : Ei → [0, 1] , 1 ≤ i ≤ n, determined by µi(uv) ≤
λ(u) ∧ λ(v) for all u, v ∈ V .
Example 2: Let us define a fuzzy set V = {(u, 0.4), (v, 0.4),

(w, 0.6), (x, 0.7)}, associated with λ : V → [0, 1],
in GS shown in figure (1). Then we can define fuzzy
sets E1 = {(uv, 0.35), (uw, 0.4), (wx, 0.5)} and E2 =
{(ux, 0.4), (vw, 0.35), (vx, 0.3)} in G associated with map-
pings µ1 : E1 → [0, 1] and µ2 : E2 → [0, 1], respectively.
Hence, one can easily observe that G̃ = (V ,Ei, λ, µi), i =
1, 2 is an FGS as given in following Figure (2).

FIGURE 2. A fuzzy graph structure G̃ = (V ,Ei , λ,µi ), i = 1,2.

Definition 3: If G̃1 = (V1,E1i, λ1, µ1i) and G̃2 =

(V2,E2j, λ2, µ2j), 1 ≤ i ≤ n and 1 ≤ j ≤ n, are the two
FGSs with core graph structures G1 = (V1,E1i) and G2 =

(V2,E2j), respectively. Then G̃ = G̃1 ∗ G̃2 = (V ,Ei, λ, µi),
1 ≤ i ≤ n, is called WMFGS with core graph structure
G = (V ,Ei), 1 ≤ i ≤ n, where V = V1 × V2 and
Ei = {(u1, v1)(u2, v2) | u1 = u2 and v1v2 ∈ E2j or v1 = v2,
and u1u2 ∈ E1i} for all u1, u2 ∈ V1 and v1, v2 ∈ V2. Fuzzy
membership functions λ and µi are defined as:

λ(uv) = ξ (λ1(u) ∨ λ2(v))+ (1− ξ )(λ1(u) ∧ λ2(v)),

and

µi((u1, v1)(u2, v2))

=


ξ (λ1(u1) ∨ µ2j(v1v2))+ (1− ξ )(λ1(u1) ∧ µ2i(v1v2)),

such that u1 = u2, v1v2 ∈ E2j;
ξ (λ2(v1) ∨ µ1i(u1u2))+ (1− ξ )(λ2(v1) ∧ µ1i(u1u2)),

such that v1 = v2, u1u2 ∈ E1i.

for i = 1, 2, . . . , n, and ξ ∈ [0, 1] is known as optimization
parameter.
Example 3: Let us consider two FGSs G̃1 = (V1,E1i, λ1,

µ1i), i = 1, 2, 3, and G̃2 = (V2,E2j, λ2, µ2j), j = 1, 2,
as shown in Figure (3). The weighted mean product of G̃1 and
G̃2, for ξ = 0, can be constructed as shown in Figure (4).
Definition 4: An FGS G̃ = (V ,Ei, λ, µi), 1 ≤ i ≤ n,

is called a strong fuzzy graph structure (SFGS) if µi(uv) =
λ(u) ∧ λ(v), for all u, v ∈ V and uv ∈ Ei. An SFGS is also
known as µi-strong FGS.
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FIGURE 3. Two FGSs G̃1 and G̃.

FIGURE 4. The WMFGS of G̃1 and G̃ i.e., G̃ = G̃1 ∗ G̃.

Theorem 1: The product of two SFGSs under weighted
mean operation, results in an SFGS.

Proof: Let G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and
G̃2 = (V1,E2j, λ2, µ2j), 1 ≤ j ≤ n, be two SFGSs then we
have µ1i(u1u2) = λ1(u1) ∧ λ1(u2) for any u1u2 ∈ E1i and
µ2j(v1v2) = λ2(v1) ∧ λ2(v2) for any v1v2 ∈ E2j. Therefore,
using definition of weighted mean product we get:

i. If u1 = u2, v1v2 ∈ E2j

µi((u1, v1)(u2, v2))

= ξ
[
λ1(u1) ∨ µ2j(v1v2)

]
+ (1− ξ )

[
λ1(u1) ∧ µ2j(v1v2)

]
= ξ [λ1(u1) ∨ (λ2(v1) ∧ λ2(v2))]+ (1− ξ ) [λ1(u1) ∧ (λ2(

× v1) ∧ λ2(v2))]

= ξ [(λ1(u1) ∨ λ2(v1)) ∧ (λ1(u1) ∨ λ2(v2))]+ (1− ξ ) [λ1(

× u1) ∧ λ2(v1) ∧ λ1(u1) ∧ λ2(v2)]

= ξ [(λ1(u1) ∨ λ2(v1))]+ (1− ξ ) [(λ1(u1) ∧ λ2(v1))] ∧ ξ [

× λ1(u1) ∨ λ2(v2)]+ (1− ξ ) [λ1(u1) ∧ λ2(v2)]

= ξ [(λ1(u1) ∨ λ2(v1))]+ (1− ξ ) [(λ1(u1) ∧ λ2(v1))] ∧ ξ [

× λ1(u2) ∨ λ2(v2)]+ (1− ξ ) [λ1(u2) ∧ λ2(v2)]

= λ(u1,v1) ∧ λ(u2,v2).

ii. If v1 = v2, u1u2 ∈ E1i

µi((u1, v1)(u2, v2))

= ξ [λ2(v1) ∨ µ1i(u1u2)]+ (1− ξ ) [λ2(v1) ∧ µ1i(u1u2)]

= ξ [λ2(v1) ∨ (λ1(u1) ∧ λ1(u2)]+ (1− ξ ) [λ2(v1) ∧ (λ1(u1
× ) ∧ λ1(u2))]

= ξ [(λ2(v1) ∨ λ1(u1)) ∧ (λ2(v1) ∨ λ1(u2))]+ (1− ξ ) [λ2
× (v1) ∧ λ1(u1) ∧ λ2(v1) ∧ λ2(u2)]

= ξ [(λ1(u1) ∨ λ2(v1))]+ (1− ξ ) [(λ1(u1) ∧ λ2(v1))] ∧ ξ [

× λ1(u2) ∨ λ2(v1)]+ (1− ξ ) [λ1(u2) ∧ λ2(v2)]

= ξ [(λ1(u1) ∨ λ2(v1))]+ (1− ξ ) [(λ1(u1) ∧ λ2(v1))] ∧ ξ [

× λ2(u2) ∨ λ2(v2)]+ (1− ξ ) [λ1(u2) ∧ λ2(v2)]

= λ(u1,v1) ∧ λ(u2,v2).

This shows that µi((u1, v1)(u2, v2)) = λ(u1,v1)∧ λ(u2,v2)
for all (u1,v1)(u2,v2) ∈ Ei. Threrfore, G̃ = G̃1 ∗ G̃2 =

(V ,Ei, λ, µi), 1 ≤ i ≤ n is SFGS. �
Remark 1: For certain value of ξ ∈ [0, 1], an FGS G̃ =

G̃1 ∗ G̃2 may be SFGS while G̃1 and G̃2 are not SFGSs.
Example 4: Let us suppose, we have two FGSs G̃1 =

(V1,E1i, λ1, µ1i) and G̃2 = (V2,E2j, λ2, µ2j), i = 1, j =
1, 2, that do not carry strong conditions as given in following
Figure (5). The weighted mean product of G̃1 and G̃2, for
ξ = 1, can be constructed as shown in Figure (6). From the
Figure (6), we can easily observe that:

µ1((u1, v1)(u1, v2)) = λ(u1,v1) ∧ λ2(u1, v2),

µ1((u1, v1)(u2, v1)) = λ(u1,v1) ∧ λ2(u2, v1),

µ1((u1, v2)(u2, v2)) = λ(u1,v2) ∧ λ2(u2, v2),

µ1((u2, v1)(u2, v2)) = λ(u2,v1) ∧ λ2(u2, v2),

µ1((u1, v3)(u2, v3)) = λ(u1,v3) ∧ λ2(u2, v3),

µ2((u1, v1)(u1, v3)) = λ(u1,v1) ∧ λ2(u1, v3),

µ2((u2, v1)(u2, v3)) = λ(u2,v1) ∧ λ2(u2, v3).

Therefore, G̃ = (V ,Ei, λ, µi), i = 1, 2, is an SFGS.
Definition 5: If G̃ is WMFGS of two G̃1 = (V1,E1i, λ1,

µ1i), 1 ≤ i ≤ n, and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, then
the vertex degree in G̃ is defined as

dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))
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FIGURE 5. Two non SFGSs G̃1 and G̃.

FIGURE 6. The WMFGS of G̃1 and G̃2 i.e., G̃ = G̃1 ∗ G̃2.

while µi-degree of a vertex in G̃ is defined as

µi − dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )

× (λ2(vj) ∧ µ1i(uiuk ))

+

∑
vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2i(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2i(vjvl)).
Example 5: If we have two FGSs G̃1 = (V1,E1i, λ1, µ1i),

i = 1, 2, 3, and G̃2 = (V2,E2j, λ2, µ2j), j = 1, as given
in Figure (7)
The weighted mean product G̃ = G̃1 ∗ G̃2, for ξ = 0.5, can
be constructed as shown in Figure (8).

FIGURE 7. Two FGSs G̃1 and G̃.

FIGURE 8. The WMFGS G̃ of G̃1 and G̃2 i.e., G̃ = G̃1 ∗ G̃2.

Now, we can calculate degrees of vertices in G̃ using
definition, as follows:

dG̃(u1, v1) = 0.5(λ2(v1) ∨ µ11(u1u2))+ 0.5(λ2(v1)

∧µ11(u1u2))+ 0.5(λ2(v1) ∨ µ13(u1u3))

+ 0.5(λ2(v1) ∧ µ13(u1u3))+ 0.5(λ1(u1)

∨µ21(v1v2))+ 0.5(λ1(u1) ∧ µ21(v1v2))

= 0.5(0.3 ∨ 0.3)+ 0.5(0.3 ∧ 0.3)

+ 0.5(0.3 ∨ 0.2)+ 0.5(0.3 ∧ 0.2)

+ 0.5(0.4 ∨ 0.3)+ 0.5(0.4 ∧ 0.3) = 0.9,

dG̃(u1, v2) = 0.5(λ2(v2) ∨ µ11(u1u2))+ 0.5(λ2(v2)

∧µ11(u1u2))+ 0.5(λ2(v2) ∨ µ13(u1u3))

+ 0.5(λ2(v2) ∧ µ13(u1u3))+ 0.5(λ1(u1)

∨µ21(v1v2))+ 0.5(λ1(u1) ∧ µ21(v1v2))
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= 0.5(0.4 ∨ 0.3)+ 0.5(0.4 ∧ 0.3)

+ 0.5(0.4 ∨ 0.2)+ 0.5(0.4 ∧ 0.2)

+ 0.5(0.4 ∨ 0.3)+ 0.5(0.4 ∧ 0.3) = 1,

dG̃(u2, v1) = 0.5(λ2(v1) ∨ µ11(u2u1))+ 0.5(λ2(v1)

∧µ11(u2u1))+ 0.5(λ2(v1) ∨ µ12(u2u3))

+ 0.5(λ2(v1) ∧ µ12(u2u3))+ 0.5(λ1(u2)

∨µ21(v1v2))+ 0.5(λ1(u2) ∧ µ21(v1v2))

= 0.5(0.3 ∨ 0.3)+ 0.5(0.3 ∧ 0.3)

+ 0.5(0.3 ∨ 0.4)+ 0.5(0.3 ∧ 0.4)

+ 0.5(0.5 ∨ 0.3)+ 0.5(0.5 ∧ 0.3) = 1.05,

dG̃(u2, v2) = = 0.5(λ2(v2) ∨ µ11(u2u1))+ 0.5(λ2(v2)

∧µ11(u2u1))+ 0.5(λ2(v2) ∨ µ12(u2u3))

+ 0.5(λ2(v2) ∧ µ12(u2u3))+ 0.5(λ1(u2)

∨µ21(v2v1))+ 0.5(λ1(u2) ∧ µ21(v2v1))

= 0.5(0.4 ∨ 0.3)+ 0.5(0.4 ∧ 0.3)

+ 0.5(0.4 ∨ 0.4)

+ 0.5(0.4 ∧ 0.4)+ 0.5(0.5 ∨ 0.3)

+ 0.5(0.5 ∧ 0.3) = 1.15,

dG̃(u3, v1) = 0.5(λ2(v1) ∨ µ13(u3u1))+ 0.5(λ2(v1)

∧µ13(u3u1))+ 0.5(λ2(v1) ∨ µ12(u3u2))

+ 0.5(λ2(v1) ∧ µ12(u3u2))

+ 0.5(λ1(u3) ∨ µ21(v1v2))

+ 0.5(λ1(u3) ∧ µ21(v1v2))

= 0.5(0.3 ∨ 0.2)+ 0.5(0.3 ∧ 0.2)

+ 0.5(0.3 ∨ 0.4)+ 0.5(0.3 ∧ 0.4)

+ 0.5(0.6 ∨ 0.3)+ 0.5(0.6 ∧ 0.3) = 1.05,

dG̃(u3, v2) = 0.5(λ2(v2) ∨ µ13(u3u1))+ 0.5(λ2(v2)

∧µ13(u3u1))+ 0.5(λ2(v2) ∨ µ12(u3u2))

+ 0.5(λ2(v2) ∧ µ12(u3u2))+ 0.5(λ1(u3)

∨µ21(v1v2))+ 0.5(λ1(u3) ∧ µ21(v1v2))

= 0.5(0.4 ∨ 0.2)+ 0.5(0.4 ∧ 0.2)

+ 0.5(0.4 ∨ 0.4)+ 0.5(0.4 ∧ 0.4)

+ 0.5(0.6 ∨ 0.3)+ 0.5(0.6 ∧ 0.3) = 1.15.

By direct evaluation, one can verifies the above results as
follows:

dG̃(u1, v1) = 0.35+ 0.3+ 0.25 = 0.9,

dG̃(u1, v2) = 0.35+ 0.35+ 0.3 = 1.0,

dG̃(u2, v1) = 0.4+ 0.35+ 0.3 = 1.05,

dG̃(u2, v2) = 0.35+ 0.4+ 0.4 = 1.15,

dG̃(u3, v1) = 0.35+ 0.45+ 0.25 = 1.05,

dG̃(u3, v2) = 0.45+ 0.4+ 0.3 = 1.15.

Now µi-degrees of vertices in WMFGS G̃ are estimated
using definition as follows:

µ1 − dG̃(u1, v1) = 0.5(λ2(v1)

∨µ11(u1u2))+ 0.5(λ2(v1) ∧ µ11(u1u2))

+ 0.5(λ1(u1) ∨ µ21(v1v2))+ 0.5(λ1(u1)

∧µ21(v1v2))

= 0.5((0.3 ∨ 0.3)+ (0.3 ∧ 0.3)

+ (0.4 ∨ 0.3)+ (0.4 ∧ 0.3)) = 0.65,

µ1 − dG̃(u1, v2) = 0.5(λ2(v2) ∨ µ11(u1u2))+ 0.5(λ2(v2)

∧µ11(u1u2))+ 0.5(λ1(u1) ∨ µ21(v2v1))

+ 0.5(λ1(u1) ∧ µ21(v2v1))

= 0.5((0.4 ∨ 0.3)+ (0.4 ∧ 0.3)

+ (0.4 ∨ 0.3)+ (0.4 ∧ 0.3)) = 0.7,

µ1 − dG̃(u2, v1) = 0.5(λ2(v1) ∨ µ11(u2u1))

+ 0.5(λ2(v1) ∧ µ11(u2u1))+ 0.5(λ1(u2)

∨µ21(v1v2))+ 0.5(λ1(u2) ∧ µ21(v1v2))

= 0.5((0.3 ∨ 0.3)+ (0.3 ∧ 0.3)

+ (0.5 ∨ 0.3)+ (0.5 ∧ 0.3)) = 0.7,

µ1 − dG̃(u2, v2) = 0.5(λ2(v2) ∨ µ11(u2u1))+ 0.5(λ2(v2)

∧µ11(u2u1))+ 0.5(λ1(u2) ∨ µ21(v2v1))

+ 0.5(λ1(u2) ∧ µ21(v2v1))

= 0.5((0.4 ∨ 0.3)+ (0.4 ∧ 0.3)

+ (0.5 ∨ 0.3)+ (0.5 ∧ 0.3)) = 0.75,

µ1 − dG̃(u3, v1) = 0.5(λ1(u3) ∨ µ21(v1v2))+ 0.5(λ1(u3)

∧µ21(v1v2))

= 0.5((0.6 ∨ 0.3)+ (0.6 ∧ 0.3) = 0.45,

µ1 − dG̃(u3, v2) = 0.5(λ1(u3) ∨ µ21(v2v1))+ 0.5(λ1(u3)

∧µ21(v2v1))

= 0.5((0.6 ∨ 0.3)+ (0.6 ∧ 0.3) = 0.45,

µ2 − dG̃(u2, v1) = 0.5(λ2(v1) ∨ µ12(u2u3))+ 0.5(λ2(v1)

∧µ12(u2u3))

= 0.5((0.3 ∨ 0.4)+ (0.3 ∧ 0.4) = 0.35,

µ2 − dG̃(u2, v2) = 0.5(λ2(v2) ∨ µ12(u2u3))+ 0.5(λ2(v2)

∧µ12(u2u3))

= 0.5((0.4 ∨ 0.4)+ (0.4 ∧ 0.4) = 0.4,

µ2 − dG̃(u3, v1) = 0.5(λ2(v1) ∨ µ12(u3u2))+ 0.5(λ2(v1)

∧µ12(u3u2))

= 0.5((0.3 ∨ 0.4)+ (0.3 ∧ 0.4) = 0.35,

µ2 − dG̃(u3, v2) = 0.5(λ2(v2)

∨µ12(u3u2))+ 0.5(λ2(v2)

∧µ12(u3u2))

= 0.5((0.4 ∨ 0.4)+ (0.4 ∧ 0.4) = 0.4,

µ3 − dG̃(u1, v1) = 0.5(λ2(v1) ∨ µ13(u1u3))+ 0.5(λ2(v1)

∧µ13(u1u3))

= 0.5((0.3 ∨ 0.2)+ (0.3 ∧ 0.2) = 0.25,
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µ3 − dG̃(u1, v2) = 0.5(λ2(v2) ∨ µ13(u1u3))+ 0.5(λ2(v2)

∧µ13(u1u3))

= 0.5((0.4 ∨ 0.2)+ (0.4 ∧ 0.2) = 0.3,

µ3 − dG̃(u3, v1) = 0.5(λ2(v1) ∨ µ13(u3u1))+ 0.5(λ2(v1)

∧µ13(u3u1))

= 0.5((0.3 ∨ 0.2)+ (0.3 ∧ 0.2) = 0.25,

µ3 − dG̃(u3, v2) = 0.5(λ2(v2) ∨ µ13(u3u1))+ 0.5(λ2(v2)

∧µ13(u3u1))

= 0.5((0.4 ∨ 0.2)+ (0.4 ∧ 0.2) = 0.3.

Theorem 2: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and
G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such that
λ1 ≤ µ2j, then a vertex degree in WMFGS G̃ = G̃1 ∗ G̃2 is
evaluated as

dG̃(ui, vj) = ξ (dG1 (ui)λ2(vj)+ dG̃2
(vj))+ (1− ξ )(dG2 (vj)

× λ1(ui)+ dG̃1
(ui)).

Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,
and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that λ1 ≤ µ2j, then µ1i ≤ λ2. Furthermore, by definition of
vertex degree inWMFGS G̃, we have

dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj))+ (1− ξ )(µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

× ξ (µ2j(vjvl))+ (1− ξ )(λ1(ui))

= ξ
∑

uiuk∈E1i,
vj=vl

(λ2(vj)+ µ2j(vjvl))+ (1− ξ )
∑

vjvl∈E2j,
ui=uk

× (µ1i(uiuk )+ λ1(ui))

= ξ (dG1 (ui)λ2(vj)+ dG̃2
(vj))+ (1− ξ )(dG2 (vj)λ1(ui)

+ dG̃1
(ui)).

�
Theorem 3: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and

G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that λ1 ≤ µ2j, and λ2 remains constant as ‘β’, then a vertex
degree in WMFGS G̃ = G̃1 ∗ G̃2 is evaluated as

dG̃(ui, vj) = ξ (dG1 (ui)β + dG̃2
(vj))+ (1− ξ )(dG2 (vj)λ1(ui)

+ dG̃1
(ui)).

Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,
and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that λ1 ≤ µ2j and λ2 is a constant function denoted by β,

furthermore, λ1 ≤ µ2j H⇒ µ1i ≤ λ2. Hence, by definition
of vertex degree inWMFGS G̃, we have

dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))

=

∑
uiuk∈E1i,

vj=vl

ξ (β)+ (1− ξ )(µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

× ξ (µ2j(vjvl))+ (1− ξ )(λ1(ui))

= ξ
∑

uiuk∈E1i,
vj=vl

(β + µ2j(vjvl))+ (1− ξ )
∑

vjvl∈E2j,
ui=uk

(µ1i(uiuk )

+ λ1(ui)) = ξ (dG1 (ui)β + dG̃2
(vj))+ (1− ξ )(dG2 (vj)

× λ1(ui)+ dG̃1
(ui)).

�
Theorem 4: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and

G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such that
λ2 ≤ µ1i, then a vertex degree in WMFGS G̃ = G̃1 ∗ G̃2 is
evaluated as

dG̃(ui, vj) = ξ (dG̃1
(ui)+ dG2 (vj)λ1(ui))+ (1− ξ )(dG̃2

(vj)

+ dG1 (ui)λ2(vj)).
Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,

and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that λ2 ≤ µ1i, then µ2j ≤ λ1. Furthermore, by definition of
vertex degree inWMFGS G̃, we have

dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))

=

∑
uiuk∈E1i,

vj=vl

ξ (µ1i(uiuk ))+ (1− ξ )(λ2(vj))+
∑

vjvl∈E2j,
ui=uk

× ξ (λ1(ui))+ (1− ξ )(µ2j(vjvl))

= ξ
∑

uiuk∈E1i,
vj=vl

(λ1(ui)+ µ1i(uiuk ))+ (1− ξ )
∑

vjvl∈E2j,
ui=uk

t (λ2(vj)+ µ2j(vjvl)) = ξ (dG̃1
(ui)+ dG2 (vj)λ1(ui))

+ (1− ξ )(dG̃2
(vj)+ dG1 (ui)λ2(vj)).

�
Theorem 5: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and

G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such that
λ2 ≤ µ1i, and λ1 remains constant, say ‘β’, then a vertex
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degree in WMFGS G̃ = G̃1 ∗ G̃2 is evaluated as

dG̃(ui, vj) = ξ (dG̃1
(ui)+ dG2 (vj)β)+ (1− ξ )(dG̃2

(vj)

+ dG1 (ui)λ2(vj)).
Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,

and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that λ2 ≤ µ1i and λ1 is a constant function denoted by β,
furthermore, λ2 ≤ µ2j H⇒ µ2j ≤ λ1. Hence, by definition
of vertex degree inWMFGS G̃, we have

dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))

=

∑
uiuk∈E1i,

vj=vl

ξ (µ1i(uiuk ))+ (1− ξ )(λ2(vj))+
∑

vjvl∈E2j,
ui=uk

× ξ (β)+ (1− ξ )(µ2j(vjvl))

= ξ
∑

uiuk∈E1i,
vj=vl

(β + µ1i(uiuk ))+ (1− ξ )
∑

vjvl∈E2j,
ui=uk

(λ2(vj)

+µ2j(vjvl)) = ξ (dG̃1
(ui)+ dG2 (vj)β)+ (1− ξ )

× (dG̃2
(vj)+ dG1 (ui)λ2(vj)).

�
Theorem 6: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and

G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such that
mu2j ≤ λ1 and mu1i ≤ λ2, then a vertex degree in WMFGS
G̃ = G̃1 ∗ G̃2 is evaluated as

dG̃(ui, vj) = ξ (dG1 (ui)λ2(vj)+ dG2 (vj)λ1(ui))+ (1− ξ )

× (dG̃1
(ui)+ dG̃2

(vj)).
Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,

and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that mu2j ≤ λ1 and mu1i ≤ λ2, therefore, by definition of
vertex degree inWMFGS G̃, we have

dG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj))+ (1− ξ )(µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

× ξ (λ1(ui))+ (1− ξ )(µ2j(vjvl))

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj))+ (1− ξ )(µ2j(vjvl))+
∑

vjvl∈E2j,
ui=uk

FIGURE 9. Two FGSs G̃1 and G̃.

× ξ (λ1(ui))+ (1− ξ )(µ1i(uiuk )) = ξ (dG1 (ui)λ2(vj)

+ dG2 (vj)λ1(ui))+ (1− ξ )(dG̃1
(ui)+ dG̃2

(vj)).

�
Example 6: If we have two FGSs G̃1 = (V1,E1i, λ1, µ11),

and G̃2 = (V2,E2j, λ2, µ2j), j = 1, 2, 3, as given in Figure (9)
The weighted mean product G̃ = G̃1 ∗ G̃2 for ξ = 0.5, can
be constructed as shown in Figure (10).

FIGURE 10. The WMFGS G̃ of G̃1 and G̃2 i.e., G̃ = G̃1 ∗ G̃2.

From Figure (9) we can easily observe that µ2j ≤ λ1, j =
1, 2, 3, and µ11 < λ2. Therefore, the vertex degree in G̃ can
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be evaluated under the use of following formula:

dG̃(ui, vj) = 0.5(dG1 (ui)λ2(vj)+ dG2 (vj)λ1(ui))+ 0.5

× (dG̃1
(ui)+ dG̃2

(vj)).

dG̃(u1, v1) = 0.5(dG1 (u1)λ2(v1)+ dG2 (v1)λ1(u1))+ 0.5

× (dG̃1
(u1)+ dG̃2

(v1))

= 0.5((1)(0.8)+ (2)(0.6))+ 0.5(0.5+ 1.3)

= 1.9,

dG̃(u1, v2) = 0.5(dG1 (u1)λ2(v2)+ dG2 (v2)λ1(u1))+ 0.5

× (dG̃1
(u1)+ dG̃2

(v2))

= 0.5((1)(0.7)+ (2)(0.6))+ 0.5(0.5+ 1.1)

= 1.75,

dG̃(u1, v3) = 0.5(dG1 (u1)λ2(v3)+ dG2 (v3)λ1(u1))+ 0.5

× (dG̃1
(u1)+ dG̃2

(v3))

= 0.5((1)(0.9)+ (2)(0.6))+ 0.5(0.5+ 1.2)

= 1.9,

dG̃(u2, v1) = 0.5(dG1 (u2)λ2(v1)+ dG2 (v1)λ1(u2))+ 0.5

× (dG̃1
(u2)+ dG̃2

(v1))

= 0.5((1)(0.8)+ (2)(0.7))+ 0.5(0.5+ 1.3)

= 2,

dG̃(u2, v2) = 0.5(dG1 (u2)λ2(v2)+ dG2 (v2)λ1(u2))+ 0.5

× (dG̃1
(u2)+ dG̃2

(v2))

= 0.5((1)(0.7)+ (2)(0.7))+ 0.5(0.5+ 1.1)

= 1.85,

dG̃(u1, v3) = 0.5(dG1 (u2)λ2(v3)+ dG2 (v3)λ1(u2))+ 0.5

× (dG̃1
(u2)+ dG̃2

(v3))

= 0.5((1)(0.9)+ (2)(0.7))+ 0.5(0.5+ 1.2)

= 2.

The direct evaluation of the degrees of vertices in G̃ pro-
vides following values:

dG̃(u1, v1) = 0.65+ 0.65+ 0.6 = 1.9,

dG̃(u1, v2) = 0.6+ 0.6+ 0.55 = 1.75,

dG̃(u1, v3) = 0.7+ 0.65+ 0.55 = 1.9,

dG̃(u2, v1) = 0.7+ 0.65+ 0.65 = 2.0,

dG̃(u2, v2) = 0.65+ 0.6+ 0.6 = 1.85,

dG̃(u2, v3)7 = 0.7+ 0.7+ 0.6 = 2.0.

One can easily observe that the degrees of vertices eval-
uated from the formula, established in Theorem 6, and the
direct calculations are exactly same.
Theorem 7: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and

G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such that
µ2j ≥ λ1, then a vertex total degree in WMFGS G̃ = G̃1 ∗ G̃2
is evaluated as

dG̃(ui, vj) = ξ (dG1 (ui)λ2(vj)+ tdG̃2
(vj))+ (1− ξ )(dG2 (vj)

× λ1(ui)+ tdG̃1
(ui)).

Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,
and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that µ2j ≥ λ1, then µ1i ≤ λ2, λ1 ≤ λ2. Therefore, the vertex
total degree inWMFGS G̃ is given as

tdG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))+ λ(uivj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj))+ (1− ξ )(µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

× ξ (µ2j(vjvl))+ (1− ξ )(λ1(ui))+ ξ (λ1(ui) ∨ λ2(vj))

+ (1− ξ )(λ1(ui) ∧ λ2(vj))

= ξ
∑

uiuk∈E1i,
vj=vl

(λ2(vj)+ µ2j(vjvl))+ (1− ξ )
∑

vjvl∈E2j,
ui=uk

× (µ1i(uiuk )+ λ1(ui))+ ξ (λ2(vj))+ (1− ξ )(λ1(ui))

= ξ (dG1 (ui)λ2(vj)+ dG̃2
(vj)+ λ2(vj))+ (1− ξ )(dG2 (vj)

× λ1(ui)+ dG̃1
(ui)+ λ1(ui))

= ξ (dG1 (ui)λ2(vj)+ tdG̃2
(vj))+ (1− ξ )(dG2 (vj)λ1(ui)

+ tdG̃1
(ui)).

�
Theorem 8: if G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n, and

G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such that
µ1i ≥ λ2, then a vertex total degree in WMFGS G̃ = G̃1 ∗ G̃2
is evaluated as

tdG̃(ui, vj) = ξ (dG2 (vj)λ1(ui)+ tdG̃1
(ui))+ (1− ξ )(dG1

× (ui)λ2(vj)+ tdG̃2
(vj)).

Proof: Suppose that G̃1 = (V1,E1i, λ1, µ1i), 1 ≤ i ≤ n,
and G̃2 = (V2,E2j, λ2, µ2j), 1 ≤ j ≤ n, are two FGSs such
that λ2 ≤ µ1i, then µ2j ≤ λ1, λ1 ≥ λ2. Thus, the vertex total
degree inWMFGS G̃ is given as

tdG̃(ui, vj)

=

∑
uiuk∈E1i,

vj=vl

ξ (λ2(vj) ∨ µ1i(uiuk ))+ (1− ξ )(λ2

× (vj) ∧ µ1i(uiuk ))+
∑

vjvl∈E2j,
ui=uk

ξ (λ1(ui) ∨ µ2j(vjvl))

+ (1− ξ )(λ1(ui) ∧ µ2j(vjvl))+ λ(uivj)

=

∑
uiuk∈E1i,

vj=vl

ξ (µ1i(uiuk ))+ (1− ξ )(λ2(vj))+
∑

vjvl∈E2j,
ui=uk

× ξ (λ1(ui))+ (1− ξ )(µ2j(vjvl))+ ξ (λ1(ui) ∨ λ2(vj))

+ (1− ξ )(λ1(ui) ∧ λ2(vj))
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=

∑
uiuk∈E1i,

vj=vl

(λ1(ui)+ µ1i(uiuk ))+ (1− ξ )
∑

vjvl∈E2j,
ui=uk

(λ2(vj)

+µ2j(vjvl))+ ξ (λ1(ui))+ (1− ξ )(λ2(vj))

= ξ (dG2 (vj)λ1(ui)+ dG̃1
(ui)+ λ1(ui))+ (1− ξ )(dG1 (ui)

× λ2(vj)+ dG̃2
(vj)+ λ2(vj))

= ξ (dG2 (vj)λ1(ui)+ tdG̃1
(ui))+ (1− ξ )(dG1 (ui)λ2(vj)

+ tdG̃2
(vj)).

�
Definition 6: An FGS G̃ = (V ,Ei, λ, µi), 1 ≤ i ≤ n,

is said to be regular fuzzy graph structure (RFGS), if each
vertex of G̃ carries same degree, and is mµk -regular if all
vertices of G̃ have same degrees m ∈ ]0, 1] under membership
function µk , k ∈ {1, 2, . . . , n}.
Remark 2: The weighted mean product of two RFGSs

could be an irregular FGS.
Example 7: Let G̃1 = (V1,E1i, λ1, µ1i), i = 1, 2, and

G̃2 = (V2,E2j, λ2, µ2j), j = 1, 2, be two FGSs given
in Figure (11).

FIGURE 11. µ11-regular and µ21-regular FGSs.

After observing Figure (11), one can easily conclude that
G̃1 and G̃2 are 0.3µ11-regular and 0.3µ21-regular FGSs,
respectively. But, the Figure (12) shows that each vertex in
WMFGS of G̃1 and G̃2 carries different number of edges with
regard to membership value. Therefore, G̃1 ∗ G̃2 is not an
RFGS. Hence, it is concluded under this example that the
WMFGS of two RFGS is not an RFGS.
Theorem 9: if G̃1 = (V1,E1i, λ1, µ1i) is mµ1k -regular

FGS and G̃2 = (V2,E2j, λ2, µ2j) is FGS such that µ2j ≥ λ1,
1 ≤ i ≤ n, 1 ≤ i ≤ n, k ∈ {1, 2, . . . , n}, with a constant

FIGURE 12. The WMFGS of two FGS G̃1 and G̃.

mapping λ2, say γ , then WMFGS of G̃ = G̃1 ∗ G̃2 is regular
iff G̃2 is regular.

Proof: Let G̃1 = (V1,E1i, λ1, µ1i) be mµ1k -regular
FGS with r1-regular core GS G1 and G̃2 = (V2,E2j, λ2, µ2j)
be an FGS such that µ2j ≥ λ1, 1 ≤ i ≤ n, 1 ≤ i ≤ n,
k ∈ {1, 2, . . . , n}, with a constant mapping λ2, say γ . Now
suppose that G̃2 = (V2,E2j, λ2, µ2j) is an α RFGS with r2-
regular core GS G2, then we have

dG̃(ui, vj) = ξ (dG1 (ui)λ2(vj)+ dG̃2
(vj))+ (1− ξ )(dG2

× (vj)λ1(ui)+ dG̃1
(ui))

= ξ (α + r1γ )+ (1− ξ )(m+ r2λ1(ui)).

This is valid for all vertices of G̃, and is an RFGS. In con-
verse, suppose that G̃ is regular, then for any vertices (u1, v1)
and (u2, v2) of G̃ we have

dG̃(u1, v1)

= dG̃(u2, v2)

H⇒ ξ (dG1 (u1)λ2(v1)+ dG̃2
(v1))+ (1− ξ )(dG2 (v1)λ1(u1)

+ dG̃1
(u1)) = ξ (dG1 (u2)λ2(v2)+ dG̃2

(v2))

+ (1− ξ )(dG2 (v2)λ1(u2)+ dG̃1
(u2)),

H⇒ ξ (dG̃2
(v1)+ r1γ )+ (1− ξ )(m+ dG2 (v1)λ1(u1))

= ξ (dG̃2
(v2)+ r1γ )+ (1− ξ )(m+ dG2 (v2)λ1(u2)),

H⇒ ξ (dG̃2
(v1))+ (1− ξ )(dG2 (v1)λ1(u1)) = ξ (dG̃2

(v2))

+ (1− ξ )(dG2 (v2)λ1(u2)).

It validates for all vertices of G̃2, and hence, G̃2 is anRFGS.
�

Theorem 10: if G̃2 = (V2,E2j, λ2, µ2j) is mµ2k -regular
FGS and G̃1 = (V1,E1i, λ1, µ1i) is FGS such that µ1i ≥ λ2,
1 ≤ i ≤ n, 1 ≤ i ≤ n, k ∈ {1, 2, . . . , n}, with a constant
mapping λ1, say β, then WMFGS of G̃ = G̃1 ∗ G̃2 is regular
iff G̃1 is regular.
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TABLE 1. Development levels of five cities.

Proof: Let G̃2 = (V2,E2j, λ2, µ2j) is mµ2k -regular
FGS with r2-regular core GS G2 and G̃1 = (V1,E1i, λ1, µ1i)
is FGS such that µ1i ≥ λ2, 1 ≤ i ≤ n, 1 ≤ i ≤ n,
k ∈ {1, 2, . . . , n}, with a constant mapping λ1, say β. Now
suppose that G̃1 = (V1,E1i, λ1, µ1i) is an α RFGS with r1-
regular core GS G1, then we have

dG̃(ui, vj) = ξ (dG̃1
(ui)+ dG2 (vj)λ1(ui))+ (1− ξ )(dG̃2

× (vj)+ dG1 (ui)λ2(vj))

= ξ (α + r2β)+ (1− ξ )(m+ r1λ2(vj)).

This is valid for all vertices of G̃, and is an RFGS. In con-
verse, suppose that G̃ is regular, then for any vertices (u1, v1)
and (u2, v2) of G̃ we have

dG̃(u1, v1)

= dG̃(u2, v2)

H⇒ ξ (dG̃1
(u1)+ dG2 (v1)λ1(u1))+ (1− ξ )(dG̃2

(v1)

+ dG1 (u1)λ2(v1)) = ξ (dG̃1
(u2)+ dG2 (v2)λ1(u2))

+ (1− ξ )(dG̃2
(v2)+ dG1 (u2)λ2(v2)),

H⇒ ξ (dG̃1
(u1)+ r2β)+ (1− ξ )(m+ dG1 (u1)λ2(v1))

= ξ (dG̃1
(u2)+ r2β)+ (1− ξ )(m+ dG1 (u2)λ2(v2)),

H⇒ ξ (dG̃1
(u1))+ (1− ξ )(dG1 (u1)λ2(v1))

= ξ (dG̃1
(u2))+ (1− ξ )(dG1 (u2)λ2(v2)).

It validates for all vertices of G̃1, and hence, G̃1 is anRFGS.
�

Theorem 11: if G̃1 = (V1,E1i, λ1, µ1i) and G̃2 =

(V2,E2j, λ2, µ2j) are m1µ1k -regular and m2µ2l-regular
FGSs, respectively, such that µ2j ≤ λ1, µ1i ≤ λ2, 1 ≤ i ≤ n,
1 ≤ i ≤ n, k, l ∈ {1, 2, . . . , n}, with a constant mapping
λ2, say γ , then WMFGS of G̃ = G̃1 ∗ G̃2 is regular iff λ1 is
constant function.

Proof: Let G̃1 = (V1,E1i, λ1, µ1i) and G̃2 =

(V2,E2j, λ2, µ2j) be m1µ1k -regular and m2µ2l-regular FGSs,
respectively, such that µ2j ≤ λ1, µ1i ≤ λ2, 1 ≤ i ≤ n,
1 ≤ i ≤ n, k, l ∈ {1, 2, . . . , n}, with a constant map-
ping λ2, say γ . Also, let G1 and G2 be the two core graph
structures being r1-regular and r2-regular, respectively. Now
suppose that λ1 is a constant mapping of value, say β, then
we have

dG̃(ui, vj) = ξ (dG1 (ui)λ2(vj)+ dG2 (vj)λ1(ui))+ (1− ξ )

× (dG̃1
(ui)+ dG̃2

(vj))

= ξ (r1γ + r2β)+ (1− ξ )(k + l).

his is valid for all vertices of G̃, and is an RFGS. In converse,
suppose that G̃ is regular, then for any vertices (u1, v1) and
(u2, v2) of G̃ we have

dG̃(u1, v1)

= dG̃(u2, v2)

H⇒ ξ (dG1 (u1)λ2(v1)+dG2 (v1)λ1(u1))+(1− ξ )(dG̃1
(u1)

+ dG̃2
(v1)) = ξ (dG1 (u2)λ2(v2)+ dG2 (v2)λ1(u2))

+ (1− ξ )(dG̃1
(u2)+ dG̃2

(v2)),

H⇒ ξ (r1γ + r2λ1(u1))+ (1− ξ )(k + l)

= ξ (r1γ + r2λ1(u2))+ (1− ξ )(k + l)),

H⇒ λ1(u1) = λ1(u2).

It validates for all vertices of G̃1, and hence, λ1 is a constant
mapping. �

III. APPLICATION
Recognition of the Pakistan’s most evolved and modern city.
If we compare different cities of a country, they definitely

TABLE 2. Comparison of Islamabad with other cities.

TABLE 3. Comparison of Karachi with other cities.
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TABLE 4. Comparison of lahore with other cities.

TABLE 5. Comparison of faisalabad with other cities.

TABLE 6. Comparison of multan with other cities.

have different characteristics and recognition level. Some
cities are known for their constructed highways, while others
have a variety of universities. For example, Islamabad and
Multan are two significant and famous cities in Pakistan.
Islamabad is the Pakistan’s most advanced and modern
city, but Multan appears to be underdeveloped. Everything
that Multan would have in future, Islamabad already has.
There are some characteristics that every city is famous for.
For example, Faisalabad is famous for the Textile industry,
Lahore is famous for its grand hospitals and Educational insti-
tutes, Karachi is the premier industrial and financial center of
Pakistan.

We can use a fuzzy-graphic framework to show the most
advanced and evolved city after comparing any two in a given
time frame. We can also say the degree of the slow and
under-developed phase at that time, with the assistance of
the membership function. The fuzzy-graphic structure of the
most developed and evolving cities can be very useful for a
country to be concentrated on.

Let us have a set C of five cities of Pakistan: C = {Islam-
abad, Karachi, Lahore, Faisalabad, Multan}.

Let λ be a fuzzy mapping on C i.e., λ : C ←→ [0, 1] that
evaluates the level of a developed city in Pakistan under four
considered parameters, as shown in Table 1.

Tables 2–6 represent the development levels for each
pair of cities using the law µ (v1v2) = σ (v1) ∧ σ (v2),
∀ v1, v2 ∈ C .

Now against set C , we can define several labeling func-
tions, for instance, let us have as: f1 = Hospitals, f2 = Edu-
cational Facilities, f3 = Industry development, f4 = Roads’
network, so that G = (C,E1,E2,E3,E4) is a graph struc-
ture, where E1, E2, E3 and E4 are disjoint subsets of edges

FIGURE 13. An FGS representing the parameter that needs improvement
for each pair of cities.

regarding pairs of cities. Let us consider

E1= {(Islamabad,Karachi) , (Islamabad,Multan) , (Karachi,

× Faisalabad), (Lahore,Islamabad) },

E2= {(Faisalabad,Islamabad) , (Lahore,Multan)},

E3= {(Karachi,Lahore) , (Faisalabad,Multan)},

E4= {(Multan,Lahore) , (Lahore,Islamabad)},
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FIGURE 14. Flowchart of the procedure to determine the criteria which
require enhancement.

and the corresponding fuzzy sets under membership func-
tions µ1, µ2, µ3 and µ4, respectively, are:

µ1 = {((Islamabad,Karachi) , 0.8) ,

× ((Islamabad,Multan) , 0.6) ,

× ((Karachi,Faisalabad) , 0.7) ,

× ((Lahore,Islamabad) , 0.8)},

µ2 = {((Faisalabad,Islamabad) , 0.7) ,

× ((Lahore,Multan) , 0.5)},

µ3 = {((Karachi,Lahore) , 0.8) ,

× ((Faisalabad,Multan) , 0.6)},

µ4 = {((Multan,Lahore) , 0.5) ,

× ((Lahore,Faisalabad) , 0.7)}.

It is clear that G̃ = (V ,Ei, λ, µi) , 1 ≤ i ≤ 4, is an FGS
as shown in Figure (13).

In Figure (13), each edge of FGS is used to represent the
parameter that needs to be improved in corresponding city.
For instance, according to this FGS, Faisalabad and Multan
have to improve their educational institutions as compare
to Islamabad and Lahore, respectively. In the same way,

Faisalabad needs to enhance hospitals in comparison with
Karachi, while Karachi has to improve hospitals as compare
to Lahore. An FGS of all cities can be very helpful for a
country to maintain the assets in order to facilitate the people.
It would highlight those cities which need some enhance-
ment. The basic idea used in this application is illustrated by
a flowchart on Figure (14).

IV. CONCLUSION
The graph theory has numerous implementations to address
diverse problems in different fields, such as networking, con-
nectivity, data analysis, cluster analysis, signal processing,
image optimization, scheduling and planning. In order to deal
with the uncertainty and vagueness of the graphical system,
the use of fuzzy-graphical methods is very natural. Fuzzy
Graph Theory has a wide range of uses in the simulation
of various real-time processes. The level of work contained
in the structure differs with divergent degrees of accuracy.
In this paper, we presented a number of various concepts
relating to fuzzy-graphic structures, such as the weighted
mean product of two fuzzy-graphic structures and regu-
lar fuzzy-graphic structures, and examined several related
attributes. The degree and total degree of a vertex in the
weighted mean product of fuzzy-graphic structures were also
describedwith the help of examples. In addition, we have sug-
gested the execution of fuzzy-graphic frameworks to compare
five major cities of Pakistan based on four criteria, such as
Hospitals, Education, Industry and Roads. The procedure fol-
lowed was visualized with the help of a flowchart presented
in Figure (14). In the future, we aim to extend our work to (1)
soft fuzzy-graph structures, (2) rough fuzzy graph structures
and (3) rough fuzzy soft graph structures.
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