
Received April 9, 2021, accepted May 4, 2021, date of publication May 18, 2021, date of current version May 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081587

Security Verification for Cyber-Physical
Systems Using Model Checking
CHING-CHIEH CHAN 1,2, CHENG-ZEN YANG 1, (Member, IEEE), AND CHIN-FENG FAN 1
1Department of Computer Science and Engineering, Yuan-Ze University, Taoyuan 320315, Taiwan
2Telecommunication Laboratories Chunghwa Telecom Company Ltd., Taoyuan 326402, Taiwan

Corresponding author: Ching-Chieh Chan (ccchan.francis@gmail.com)

ABSTRACT Amalicious attackmay endanger human life or pollute environment on a cyber-physical system
(CPS). However, successfully attacking a CPS needs not only the knowledge of information technology (IT)
but also the domain knowledge of the system’s operation technology (OT). Therefore, it is critical to identify
the vulnerabilities of a CPS. This paper proposes a systematic method for the security verification of a CPS,
focusing on OT by using model checking with UPPAAL, so as to enhance cyber security. In our security
analysis, we considered unsafe situations to be the result of a potentially effective security attack. Thus,
we suggested a systematic method to generate security constraints based on the safety constraints (or safety
checks) of the CPS and then enhance these security constraints by security verification using model checking
with UPPAAL. UPPAAL’s simulation tool can perform a detailed search for each state in various possible
model combinations and can explore human-computer interactions more deeply. The contributions of our
method are as follows: First, a systematic method is proposed to generate security constraints based on the
overall safety requirements at the OT level. Second, the security constraints thus generated can be used
for run-time monitoring to identify the possible security attacks when they are violated. Third, this paper
proposes to augment normal system modeling with a suggested Attack Module to simulate the potential
OT attacks. Finally, the verification results may be used in the following twofold directions: to identify the
vulnerabilities for possible design improvements and to suggest the further additions of security constraints.

INDEX TERMS Cyber-physical systems, model checking, operation technology, security constraint,
security verification, UPPAAL.

I. INTRODUCTION
A cyber-physical system (CPS) is a system designed and
constructed based on integrated computing and physical
components [1]. CPS has been widely used in aviation,
construction, agriculture, energy, environment, manufactur-
ing, and transportation, including industrial control systems
(ICS), the Internet of things (IoT), and critical information
infrastructures. Most CPSs are safety-critical, and thus, mali-
cious attacks on CPSs may have destructive consequences.
In recent years, there have been several incidents on criti-
cal infrastructures through coordinated cyber and physical
attacks (CCPA) [2], [3], threatening national security. For
example, Stuxnet infected and destroyed the nuclear facili-
ties in Natanz, Iran [4], and Ukraine’s power network was

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

attacked [5], leading to blackouts for hundreds of thousands
of households in the Ivano-Frankivsk region.

Malicious attacks against, particularly, ICSmay cause dev-
astating losses, such as in the medical, financial, and trans-
portation fields. The security threats of CPS systems come
from a variety of possible sources [6], [7], such as malicious
intruders, natural disasters, human errors or accidents, and
equipment failure. The first security requirement of a CPS is
to avoid attacks [8]. Therefore, the analysis of the weakness
of CPSs in the operation technology (OT) phase is a critical
issue. We believe that the integration of safety and security
will help the CPS avoid major hazards, particularly in OT
integration [9].

In our security analysis, we treated unsafe situations as the
results of potentially effective security attacks. Thus, we sug-
gest a systematic method to generate security constraints
based on the safety constraints (or safety checks) of the
CPS and then enhance these security constraints by security

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 75169

https://orcid.org/0000-0001-9927-106X
https://orcid.org/0000-0003-0046-9645
https://orcid.org/0000-0002-0023-6932
https://orcid.org/0000-0002-7952-0038

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

verification using model checking with UPPAAL. UPPAAL’s
simulation tool can perform a detailed search for each state
in various possible model combinations and can explore
human-computer interactions more deeply. Simulation using
the UPPAAL model checker was used in our security
verification. For the simulation, we augmented a normal sys-
tem model with our Attack Module for generating the poten-
tial OT attacks. The CPS model includes software, hardware,
and the operator subsystems. To sabotage a CPS physical
system, not only the knowledge of information technology
but also the domain knowledge of the system’s operation
technology is needed. However, current research rarely dis-
cusses the systematic generation of security constraints and
seldom focuses on OT-level attacks on CPSs. Unlike such
research, this study systematically generated a set of OT-level
security constraints and utilized the formal verification of
these constraints using model checking. The contributions of
this method are as follows:

1) A systematic method is proposed to generate security
constraints at the OT level.

2) The security constraints thus generated can be used for
run-time monitoring to identify the possible security
attacks when they are violated.

3) This paper proposes to augment a normal systemmodel
with a proposed Attack Module in order to simulate the
potential OT attacks.

4) The verification results may be used in the following
twofold directions:

a) to identify vulnerabilities for possible design
improvements, and

b) to suggest the further additions of security
constraints.

The rest of this paper is organized as follows: Section 2 intro-
duces the background and related research, and Section 3
introduces our approach. In Section 4, two case studies
are described, each including the generation of the safety
restraint system, model construction, safety verification,
and possible improvements. Finally, Section 5 presents the
conclusions.

II. BACKGROUND AND RELATED WORK
A. CPS SECURITY
According to a survey by Positive Technologies in 2019 [10],
most of the vulnerabilities in a CPS were in the
human-machine interface (HMI)/supervisor control and data
acquisition (SCADA) components in 2017, but in 2018,
the CPS system focused on ICSs, and the vulnerabilities
in HMI/SCADA were found. From the perspective of the
CPS security incidents in the recent years, both within-
the-network and dedicated facilities are likely to be attacked,
and a variety of attack methods and technologies are used.
Another report released by TechRepublic in 2020 pointed
out that three-quarters of the 365 vulnerabilities in ICS
systems discovered by operational technology (OT) security
companies can be classified as high risk or serious risks [11].

Therefore, CPS security protection has become increasingly
important.

There are many tools for model verification [12]. For
example, from the perspective of modeling formalism,
SpaceEx provides a network of hybrid automata, UPPAAL
provides a network of time automata, andKeYmaera provides
a hybrid program, but we are particularly concerned about the
verification of the correlation between the possible running
paths of the system and the state changes. Therefore, a subset
of timed computation tree logic provided by UPPAAL was
used for the verification.

B. UPPAAL MODEL CHECKING
We wanted to explore the various possible interactive oper-
ating conditions of the system state as much as possible;
therefore, we adopted UPAAL, as UPPAAL’s simulation tool
can perform a detailed search for each state in various possi-
ble model combinations. By exploring the various possible
combination states between the system models, we could
explore the interaction between humans and machine states
in more depth. UPPAAL can also support exhaustive
state exploration/examination to deal with complex CPS
applications.

UPPAAL is a formal model checking integration tool envi-
ronment [13], which can be used for the development and
verification of software and hardware systems, and has also
been used for security reasoning [14], [15]. UPPAAL was
developed by the Department of Information Technology of
the University of Uppsala, Sweden, and the Department of
Computer Science of the University of Aalborg, Denmark;
it can be used for the modeling and verification of real-
time systems. UPPAAL’s model checker is based on the
timing automata theory. Its modeling language includes the
related functions such as bounded integer variables and pro-
vides a query language for system verification. Basically,
a model must be provided when using a model checking tool.
When used, the model can be designed to include the secu-
rity requirements and design of the system. Then, the user
adds the required specifications of the system, and finally,
the model checker checks through the model to determine
whether it can meet the given specifications. If not, the model
checking tool can provide counter-examples.

The UPPAAL integration tool mainly provides three major
functions: system editor, simulator, and verifier. The system
editor is used to edit and construct modules. An UPPAAL
module is composed of several components. The contents of
each component have their own operating state and transi-
tions between states. After the model is built, the simulator
can be used to explore the model state space. The simulator
provides a step-by-step tracking or a random execution, and it
can retrospect each execution process. In the verifier, we can
give a query to check the model we built. It may or may
not be possible to hold the query specified conditions. The
query is represented in temporal logic. The query notation is
taken from the temporal logic field. For example, the notation
‘‘A[]’’ at the beginning means ‘‘this is true in all reachable

75170 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

states,’’ and the notation ‘‘E<>’’ at the beginning means ‘‘it
is possible to reach a state.’’ The query ‘‘A[] not deadlock’’
indicates that there is no ‘‘deadlock’’ for the state in all the
reachable states of the system. Here, ‘‘deadlock’’ means that
no outgoing transition is possible.

C. ACCIDENTS INVOLVING HUMAN-MACHINE
INTERACTIONS
It can be found that some of the accidents were caused by
human-machine interface errors by observing several disaster
events in the past. The causes of these accidents revealed that
the problem may be due to operation errors, false instruc-
tions and the confusion of the system mode. For example:
the Northeast blackout of 2003 [16] occurred because the
administrator did not know that the power plant was faulty,
which caused the voltage to become very low and some cir-
cuits became overloaded and tripped; thus, proper scheduling
was not possible. In New York City alone, the estimated
cost of power outages is more than $500 million [17], and
the cause of the power outage was incorrect instructions.
In another example, the 2015 crash of TransAsia Airways
Flight 235, the flight safety investigation committee’s inves-
tigation report pointed out that the crew members did not
follow the standard procedures in the implementation manual
to identify the fault and did not follow the correct procedures
to make corrections, which eventually caused the plane to
crash [18]. Therefore, the crash could be attributed to opera-
tion error. In the case of the crash of China Airlines Flight
676 in 1998, the investigation report showed that the pilot
accidentally detached from the autopilot of the aircraft but
did not realize it. The pilot performed a go-around but did not
know that the autopilot was disengaged. Therefore, he did not
take control of the aircraft because he thought the autopilot
would start the maneuver. This resulted in the aircraft being
unmanned for up to 11 s [19]. This is a case of the confusion
of the system mode. From the above examples, we can infer
that there are some potential problemswith the system and the
human-machine interface. If these problems can be detected
or prevented in advance, major hazards can be avoided or
reduced.

D. RELATED WORK
The CPS becomes increasingly important in various critical
information infrastructures such as energy, transportation,
military, healthcare, and manufacturing. At present, the CPS
has been applied to many key infrastructures, such as smart
grids, industrial control systems, wearable or implanted med-
ical devices, or small control system networks embedded in
modern cars, and human interaction with the CPS is getting
higher and higher and more frequent. Although there is no
consistent definition of CPS that can be widely recognized,
CPS is used in the physical world of supervisors and con-
trol [7]. From the abstract CPS architecture, we can classify
CPS into three main components, namely communication,
computing and control, and monitoring and manipulation.
The communication may be wireless or wired to provide

the connection between the various components of the CPS,
the computing and control part can receive the sent control
commands and receive the results detected by the physical
world, and monitoring and manipulation can maintain and
control the physical world through a variety of sensor equip-
ment. However, the interaction between the various com-
ponents of the CPS may cause different security concerns.
For example, the communication and computing functions of
the CPS components may be exploited to cause unexpected
attacks. Similarly, the physical world may cause non-physical
attacks in addition to CPS control and monitoring, such as
sending misleading information to the CPS. Regarding the
security verification of CPSs, many scholars have conducted
research related to information security. The part of security
verification can be divided into the security of the physi-
cal system, the cyber system, and the cyber-physical sys-
tem interaction. However, most of the verification methods
focus on IT-related technologies, and only a few, such as
Akella’s work [20], focus on both cyber and physical sys-
tems. We made relevant comparisons between our method
and Akella’s [20]. Both provide modeling methods and adopt
formal verification for the security of CPS. The results are
shown in Table 1. In [20], the authors took the information
flow as the basic concept of CPS security, provided a formal
modeling technology for the information flow, transformed
it using mathematical models, and automatically analyzed it
through process algebra specifications.

TABLE 1. Relevant comparisons between two approaches.

In addition, there has been related research on CPS intru-
sion detection. The detection methods include host-based
intrusion detection, which mainly monitors parts or
activities of the host, network-based intrusion detection,
vulnerability assessment-based intrusion detection includ-
ing abuse/signature intrusion detection and anomaly-based
intrusion detection, status protocol analysis, and process fail-
ure variables [21]–[23]. Most of the detection technologies
analyze the network traffic from different perspectives to
detect intrusions. Anomaly detection has been applied to the
various layers of the system, such as physical, MAC, routing,
and application. For the application of the physical layer,
most of the current research uses the received signal strength
indicator (RSSI) as a distance-based indicator, the power
perceived by a given node on the network, and tries various

VOLUME 9, 2021 75171

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

solutions in an attempt to mitigate the physical layer attacks
in the wireless network based on the power perceived by
a given node [24]. There are many studies on cyberattacks
by using mathematics to model CPSs as linear systems to
address various cyberattack issues [25], mainly from control
engineering viewpoints. Yet, most of them are at a quite
abstract level. They can be used to guide further development
of pragmatic cybersecurity techniques. The idea of our study
is the establishment of different perception points in the
infrastructure to improve the run-time attack monitoring. The
process invariants approach by Adepu and Mathur [23] is a
method that converts the system security requirements into
invariants and uses them to detect intrusions. At present,
many scholars have proposed the use of invariants to conduct
intrusions. Research on intrusion detection has been proven to
be effective in detecting attacks [23], [26]–[28]. An invariant
is an expression [29] in which the value of a program in a
certain state does not change during the execution [22]. The
design of process invariant detection does not consider attack
methods. Therefore, it is not related to attack methods [23].
However, these invariants check mainly for informational
technology attacks, not operational technology attacks.

In recent years, a few scholars have used invariants on
distributed anomaly detectors as the detection of deviations
from the expected behavior of the system, such as Sugumar’s
work [30]. Sugumar’s work is mainly focused on testing
the anomaly detectors deployed in the critical infrastruc-
ture, using timed automaton for the infrastructure under
consideration, and simulating and modeling on UPPAAL
for distributed anomaly detectors and possible mutations.
The model integrates the tested anomaly detector with the
normal model to simulate and establish a set of reference
attacks. Then according to the state and command muta-
tion operators for each reference attack, additional attacks
are generated by changing the reference attack model. Each
additional attack will be executed during simulated attacks.
The detection results of the tested anomaly detectors will be
evaluated and checked for deficiencies, and repeated tests
and modifications will be made. However, we believe that
attacks of the OT level may be complicated. Attack scenarios
may also include a combination of various events involving
information and physical attacks, and will not be limited
to–state and command mutations. Moreover, understanding
the safety of the physical system of CPSs is the first step to
conduct cybersecurity analysis and verification. Therefore,
based on our previous research [31], we generate security
constraints based on system safety, and provide run-time
monitoring to identify attacks. Our attack scenario generation
uses an attack-tree based approach as follows: we design an
attack tree template for possible OT-level attacks of CPS,
and produce various possible attack scenarios by using–our
general template of the attack tree. Compared to Sugumar’s
mutation-based approach, our attack-tree-based approach can
generate more complicated attack scenarios.

Current research rarely pays attention to OT malicious
attacks [23], [32]. This study, in contrast, focused mainly on

the OT attacks on CPSs, because OT attacks usually target
physical systems and may cause further severe consequences.
If the system executes against CPS safety constraints, it may
be a physical attack. In other words, the violation of safety
constraints can be a result of malicious attacks. Therefore,
we can generate the possible security attack scenarios from a
sequence of unsafe events. This study systematically gener-
ated the system’s security constraints based on the safety con-
straints and assertions and used these security constraints to
detect the possible attack scenarios. Further, consider that OT
attacks may cause different levels of disasters because of the
different system states on the CPS. To provide the possibility
of thoroughly exploring the state space and to find the poten-
tial problems that may not be discovered by the simulation
itself, a combination of possible attacks and HMI was used
in the model checking to explore the human-machine inter-
actions more deeply. The study was based on our previous
classification of safety assertions [31], [33] and systemati-
cally generated a set of security constraints for run-time mon-
itoring, followed by the related security verification using
model checking, assuming that the violation of these safety
constraints was caused by malicious attacks. In summary,
the contribution of this work is to develop a constraint-based
model checking approach to CPS security design, verifi-
cation, and run-time monitoring. The distinctive feature of
our model checking is its focus on OT attacks, and thus,
our approach can effectively enhance system security as
compared to most CPS security designs and verification
methods [34], [35].

III. OUR APPROACH
The framework of the proposed security verification
approach has two main parts, namely the systematic security
constraint generation based on a safety analysis and the
security constraint verification. The main concept is to use
the results of the systematic security constraint generation to
perform a security analysis and then use model checking for
the security verification. This study mainly focuses on the
modeling method and verification framework of the security
constraints. The framework of the security verification
approach is shown in Fig. 1.

FIGURE 1. Framework of the security verification approach.

The process of the security verification approach is shown
in Fig. 2. First, the security constraint generation step consid-
ers both safety and security. The relevant generation method

75172 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 2. Process of the security verification approach.

will be in accordance with the safety constraint generation
criteria that we previously proposed [31], [33]. According to
the guidelines, the safety requirements of the CPS system
will be used as the basis to initially generate the security
constraints that are consistent with the safety requirements.
Second, a behavioral model of the CPS can be established.
Then, model checking is used to simulate the system and pos-
sible attacks so as to improve the system design or enhance
our security constraints, and it can provide the possibility
of thoroughly exploring the state space and exploring the
human-machine interactions more deeply. Model checking
further uses the above security constraints for security verifi-
cation andmodeling. It provides the possibility of discovering
the potential problems not covered by the simulation. This
can enhance the verification and simulation of security con-
straints. The method also adds the ability to generate various
simulated scenarios that may be attacked in the modeling.
This ability allows the model to be used to generate various
simulated scenarios that may be attacked based on the CPS
attack tree, and at the same time, can be used to simulate the
security constraints of the system verification. If any problem
is found, this method can be used to make improvements
based on the problem and to verify compliance with the
security constraints.

A. SYSTEMATIC SECURITY CONSTRAINT GENERATION
In this study, we assumed that the violation of CPS safety
constraints was caused by the possible OT attacks. Thus, our
safety constraints [31], [33] could easily be treated as the
security constraints. They could be applied to the first step
of the proposed method. These constraints could be used for
run-time security monitoring, and their violation indicated
possible security attacks.

Step 1: Systematic security constraint generation
The proposed safety/security constraints were as follows:

1) Value and range constraints: They check whether the
values of the device states and the process variables
(such as water level and pressure) in the software
control are legal or within the legal ranges.

2) Dependency between device states and process
variables: This refers to the temporal dependency,

shown in the software control, between a device status
and its affected process variables. For example, if the
pump is turned on, the water level will increase.

3) Cyber and physical consistency constraints: They
check whether the software variable in the software
control or its displayed value is consistent with its
represented physical entity. On-site human checking is
needed for such constraints. For example, the software
or the displayedwater level value is equal to its physical
reality.

4) Global invariants: They check the invariance relation-
ship, for example, energy and mass conservation laws,
physical restrictions, and material restrictions. They
check whether such system invariants as energy con-
servation and mass conservation laws still hold in the
control software. For example, the current amount of
water is the initial amount minus the leaked amount.
Energy conservation rules should be followed and
quality conservation should be maintained in various
controls.

Regarding the generation of security constraints, we pro-
pose that they be produced during the system design phase
by using the following procedure:

1) When the cyber model design is completed:
a) Consider adding constraints on the value and

the range of the logical variables representing
the physical sensors, actuators, equipment, and
processes.

b) Consider adding a dependency relationship
between the values of the logical variables repre-
senting the device states and the process variables.

c) Consider adding logical variables that represent
the software control or a displayed value, which
corresponds to the consistency constraint between
the HMI display and the physical model.

2) When the physical model design is completed:
a) Consider adding a dependency relationship

between the value of the logical variable rep-
resenting the physical sensor or device and the
cyber model.

b) Consider adding logical variables that represent
the physical model, which corresponds to the
consistency constraint on the cyber model.

3) When the HMI design is completed: Consider
adding the software display and physical counterpart
consistency constraints.

4) Considering the global variables of the system: Check
the invariance relationship of the cyber, physical, and
HMI, respectively.

B. MODELING PROCESS
In Steps 2–4 of the proposed approach, model checking
is mainly used for the CPS security constraint verification.
We assumed that the violation of security constraints was
triggered by OT attacks. In the model checking step, normal

VOLUME 9, 2021 75173

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

model templates and various possible attack model templates
using UPPAAL are proposed. We used various combinations
of the proposed model templates in the simulation, and the
results of our model checking were used to improve the ade-
quacy of the security constraint set. The advantage of using
UPPAAL’s simulation tools was that an exhaustive search
could be achieved for each state in various possible model
combinations and the human-machine interactions could be
explored more deeply. If problems were found, the exem-
plified information provided by UPPAAL could be used to
improve the security constraints. Steps 2–4 of the proposed
approach are as follows:

Step 2: Establish the security verification model
Model the normal operation of the system and provide the

required information for the abovementioned security con-
straints. Moreover, this method augments the system model
by the HMI, the proposed Attack Module, and the suggested
Simulation Module. The Attack Module provides the desired
modification of the normal system model by changing the
input or output information of each module, assuming mali-
cious attacks on hardware devices, software control, or com-
munication causing the false information. It also supports
the Normal Module in making internal adjustments, includ-
ing replacing the software control modules and simulating
the implanting of malware, on the basis of a preselected
attack scenario. The Simulation Module is mainly a selection
module for controlling the simulation sequence of the model
module or the simulation case. The details will be described
in Sec. 3.3.2

Step 3: Perform model checking along with the simulation
based on the generated security constraints

The generated security constraints are assumed to be used
for the run-time monitoring to detect the potential security
attacks. Therefore, the security verification is performed by
using the abovementioned security constraints as a query and
by running model checking. This step is further divided into
the following sub-steps:

1) Generate security verification queries based on
the abovementioned security constraints for model
checking.

2) Run the model checker for a certain attack scenario,
which is simulated by modifying the normal system
behavior using the Attack Module and Simulation
Module. For the design of the attack scenario, this study
used the fault tree analysis template mentioned in [33],
involving a combination and classification of cyber,
physical, and human attacks.

Step 4: Identify vulnerabilities and constraint inadequacy
for the improvements

Themodel checking result can be used in the following two
directions:

1) To identify vulnerabilities for further design
improvement.

2) To identify constraint inadequacy and suggest fur-
ther constraint improvement. Design improvement can

be such measures such as adding sensors and using
hardware interlocks.

Whether the proposed constraint set is complete is a dif-
ficult issue. However, the improvement of the proposed con-
straint set is feasible. If an attack scenario cannot be detected
by the current constraints in the simulation, additional con-
straints may be generated to expand the constraint set.

1) UPPAAL MODELING
A CPS can be modeled by the cyber subsystem, the physical
subsystem, and the human-machine interface, as shown
in Fig. 3.

FIGURE 3. CPS system overview.

To model and simulate various attack scenarios, we pro-
pose adding two more modules to the Normal model, namely
the Attack Module and the Simulation Module. Thus, a CPS
is modelled in three modules in UPPAAL: The Attack
Module, the Normal Module, and the Simulation Module.
The NormalModule models the normal operation of the CPS,
including the HMI, cyber, and physical parts. The Attack
Module is used for simulating communication, software, and
hardware sabotages in a selected attack scenario, such as logic
errors, value errors, data transmission errors (input, output,
or displayed data errors), device failures, and electromag-
netic disturbance interference. The Simulation Module can
be optional and be used to specify the process priority and
select a simulation case, when the demand progress is set
at the beginning or when there is a demand-specific execu-
tion order. The relationship among the UPPAAL modules is
shown in Fig. 4.

FIGURE 4. Proposed UPPAAL model.

75174 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 5. CPS attack tree templates.

2) ATTACK MODULE
The Attack Module can change the input and the output in
the Normal Module, assuming malicious attacks on hard-
ware devices, software control, or communication causing
the false information, on the basis of the attack scenario
under examination. In this work, the possible attack scenarios
were first generated systematically according to the proposed
template shown in Fig. 5. To begin with, an unsafe operational
technology state, involving a risky combination of device
and process states, was identified. For example, an OT state
might include a faulty sensor along with a hacked display.
As another example, an OT state involved a sabotaged con-
trol. Then, the lower parts of the attack tree template could
be used to generate the possible causes and the orders of
these faults. We categorized the possible attack causes into
three categories: insider attack, software control attack, and
hardware attack, as shown in Fig. 5. The possible attack
events could be classified as follows [33]:

1) Insider attack event: The operator or insider attack
may be brute force physical destruction or the use of
malicious commands.

2) Software control attack events: Software control
attacks can be further divided into inputs that are
changed by malware, outputs that are changed by
malware, and software logic solutions that have been
tampered with by viruses.

3) Hardware attack event: A hardware attack may be an
unsafe measure taken by a damaged physical device.

Among them, the software controller attack was our focus.
Attacks on the software control could be further divided into
input changed by malware, output changed by malware, and
software logic scheme (logic solution) tampered with by the
virus, that is, replaced by the implanted malware, as shown
in the starred box in Fig. 5. The CPS attack tree templates
of various types are shown in Fig. 5; they were used as a
basis to generate various attack scenarios as the inputs to
execute the model checker UPPAAL in this study. If software
control sabotage due to implemented malware (the starred
box in Fig. 5) was desired, we augmented the original normal
model with an alternative malware Attack Model simulating
the malware behavior (logic) in UPPAAL. If the input/output
transmission attack (the double starred box in Fig. 5) was

desired, the Attack Module was set to change any input or
output among the components of the normal system model.
All the attacks could be designed in advance, and the method
of increasing attacks could be added to UPPAAL through the
attack model. Moreover, system operations could be added
when the attack had to be evaluated and simulated.

3) GENERATE OT-LEVEL ATTACK SCENARIOS BASED
ON THE ABOVE ATTACK-TREE TEMPLATE
Considering the systematic generation of the potential attack
scenarios at the OT level, we propose the following procedure
at the stage of constructing the verification model:

1) Determine the OT attack goal and the associated final
states: Situations causing serious consequences, and
their associated physical and/or logical final states are
first identified. For example, the OT attack goal is to
sabotage the heat controller to cause serious physical
damage such as explosion or fire, and the associated
final state is the erroneous controller and misleading
display.

2) Explore the feasible causal scenarios leading to the
abovementioned final state by a systematic application
of the attack tree template (Fig. 5) by the analyst.
For example, in the above example, the attack tree
template guides the analyst through the possible attack
paths, namely input attacks, output attacks, and logical
attacks, to form the various possible scenarios. For
instance, an attack scenario can consist of an input
data attack changing the heating behavior and an output
attack of the display to mislead the operator; another
attack scenario may involve a sabotaged logic solution
so that both the heat behavior and the display output
are wrong; the third attack scenario may be formed by
a logic attack to change the heating behavior along with
a hardware attack on the display to deceive the operator;
and so on.

3) Set the attack scenario by first constructing a normal
operation model and then creating the required attack
modules on the basis of the selected scenario, and
combine them into an attack scenario. The principles
of creating Attack modules are as follows:

a) A unique identifier is set for each attack in each
case, and the identifier is used in the model to
control whether to activate the attack.

b) If the Normal Model needs to be modified (for
example, to simulate a logic attack). The Attack
Module must be integrated into the design in the
normal template.

c) Consider the template designed for each attack,
and limit it to only being enabled when the attack
is launched.

d) Set all the attack activation settings in the Simu-
lation Module.

We will show detailed implementation examples
in Sec. 3.3.2.

VOLUME 9, 2021 75175

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

C. SECURITY VERIFICATION APPROACH
WITH AN EXAMPLE
To better explain our approach, the following simple example
is used. Take a simple automatic injection system as an exam-
ple. The system includes a water level sensor, an automatic
controller, and a water level display. Its behavior is described
as follows:

1) The level of the water tank must be less than or equal
to 34 units.

2) The level of the water tank will automatically lose
1 unit of water each time.

3) The automatic controller will automatically start the
injection when the level of the water tank is less than
34 units and inject 1 unit of water each time.

4) The system provides a level indicator to display the
current level of the water tank.

1) SYSTEMATIC SECURITY CONSTRAINT GENERATION
The first step is to systematically generate the security
constraints for this example on the basis of the proposed
categories:

4) Value and range constraints: They check the working
range in which the processing program variables and
process variables are valid, such as the normal working
ranges. In this example, the level of the water tank must
be less than or equal to 34 units.

5) Dependency between device states and process vari-
ables: In this example, the automatic controller will
automatically start the water injection when the level
of the water tank is less than 34 units and inject 1 unit
of water each time.

6) Cyber and physical consistency: In this case, the actual
water level in the physical system is equal to the value
of the water level variable in the automatic controller
and equal to the value indicated by the water level sen-
sor. The automatic controller should also be consistent
with the value displayed on the HMI.

7) Global invariants: In this case, the constant energy
conservation is the relationship between the water level
rise and the automatic controller.

2) ESTABLISH THE SECURITY VERIFICATION MODEL
First, construct a normal model, including an HMI in the
UPPAAL model. For example, as shown in Fig. 6, the
physical model, the cyber model, and the HMI model are
displayed in sequence. Use the channels in UPPAAL to com-
municate between the UPAAL models and use variables for
the data exchange. For example, the cyber model and the
physical model in Fig. 6 will be synchronously triggered
through the channel pumpon, and the variable Tklevel is
used for the water level data exchange. Channel disp will
synchronously trigger the transfer of the water level data from
the cyber model to the HMI module. Channel tanklevel will
synchronously trigger the transfer of the water level data from
the physical model to the cyber module.

FIGURE 6. Communication and data exchange between UPAAL models.

FIGURE 7. The normal module in UPPAAL.

The automatic control representing the cyber module is
named SoftController, as shown in Fig. 7(a). Its main function
is to receive the information sent by the water level sensor
and control the automatic water injection when the level of
the water tank is lower than 34 units; the injection will stop
when the water level is higher than or equal to 34 units.
At the same time, it notifies the HMI module to display the
current water level. The temperature sensor used to represent
the physical module is named Tsensor, as shown in Fig. 7(b).
Its main function is to sense the degree of the physical water
level, transmit the current water level to the automatic control,
and sense the water level loss. Furthermore, the HMI module
used to display the current water level obtained through the
automatic control is named Udisplay, as shown in Fig. 7(c).

Attack scenarios are then generated on the basis of the
abovementioned CPS attack tree templates (Fig. 5). The
hypothetical simple attack belongs to the input/output trans-
mission attack, and the target is to make the water level of
the water tank exceed 34 units. To achieve this goal, we will
reduce the actual value sent by the water level sensor to the
software controller by 1 unit, which will cause the actual level
of the water tank to exceed 34 units. To reduce the input water
level of 1 unit to SoftController, first, add a malicious attack
module named SoftCtrlAtkIn. SoftCtrlAtkIn will be added
between SoftController and Tsensor to affect the input of
SoftController, as shown in Fig. 8. Then, the communication
channel (tanklevel) of SoftController is changed to receive
the communication channel (tanklevelAtk) of SoftCtrlAtkIn,
and the updated SoftController is named SoftControllerAtk,
as shown in Fig. 9. Finally, use the Simulation Module to
control two attack scenarios as shown in Fig. 10. The Normal

75176 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 8. Malware input module.

FIGURE 9. Updated SoftController.

FIGURE 10. The Simulation Module.

model, Attack Module and Simulation Module are estab-
lished in UPPAAL, as shown in Fig. 11.

Next, we will continue the above example to demonstrate
how to build a model with dynamically generated attacks.
First of all, we will apply the first item of the previously men-
tioned design principle, which is to set a unique identification
value for each single attack. According to the above example,
we will set a unique identification name for this input attack
as CIn[0] and preset the value of the variable CIn[0] to
false. Secondly, we will apply the second item of the design
principle to integrate the modified change with the origi-
nal software control design in the same template, as shown
in Fig. 12. In Fig. 12, we combine the normal template
from Fig. 7 and Fig. 9, which is the modified software con-
trol, into a UPPAAL template and set it to execute differ-
ent programs according to the different execution function
requirements. Applying the third item of the design principle,

FIGURE 11. Security verification model in UPPAAL.

FIGURE 12. Integrating the modified change with the original software
control design.

wemodify the previous example of themalware input module
(Fig. 8) to restrict the attack to be activated only when the
attack is launched, as shown in Fig. 13.

FIGURE 13. Restricting the attack to be activated in the malware input
module.

We will add another input attack to the display part, which
will increase the input attack template between the software
controller and the HMI, and directly apply the abovemen-
tioned three principles. We set a unique identification name
for this input attack as CIn[1] and preset the value of CIn[1]
to false. The result of integrating the display part of the
normal template in the same UPPAAL template is shown
in Fig. 14. Restricting the input attack template will only
be activated when the display attack is enabled, as shown
in Fig. 15. Combine the abovementioned two attacks and
apply the fourth item of the design principle to set all the
attack activation settings in the Simulation Module, as shown

VOLUME 9, 2021 75177

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 14. Integrating the display part of the normal template.

FIGURE 15. Restricting the input attack template will only be activated
when the display attack is enabled.

FIGURE 16. All the attack activation settings in the Simulation Module.

in Fig. 16. After completion, we can directly set which attacks
will be combined to enable operation in the Simulation
Module.

3) MODEL CHECKING ALONG WITH SIMULATION BASED
ON THE GENERATED SECURITY CONSTRAINTS
This step is conducted to perform model checking based on
the above-proposed security constraints. The security con-
straints for this case are given below:

1) Value and range constraints: For example, the level of
the water tank must be less than or equal to 34 units.
(A[] (Tsensor.level <= 34)).

2) Dependency between device states and process
variables: When the level of the water tank is
lower than 34 units, the controller will automati-
cally start filling water. (((Tsensor.level < 34) &&
(Tsensor.level > 0) && (SoftController.idle)) - ->
(SoftController.Ispumpon == true)).

3) Cyber and physical consistency: For example, the level
of the water detection sensor and the display must
be consistent with the controller water level. (A[]
(SoftController.level == Tsensor.level) imply true),
(A[] (SoftController.level == Udisplay.level) imply
true).

4) Global invariants: When water injection is turned
on, the degree received by the system from the
water level sensor must be less than 34 units.

(((SoftController.Ispumpon == true) && (Tsensor.
level< 34)) - -> true), (((SoftController.Ispumpon==
true) && (Tsensor.level > 34)) - -> false).

The results of executing these security constraint queries
using UPPAAL are shown in Fig. 17. This figure shows that
the system will not violate any security constraints when
operating in the normal mode.

FIGURE 17. UPPAAL system security constraint verification query in the
normal mode.

Enable the Attack Module and use the same security con-
straints to perform model checks in the UPPAAL model. The
result is as shown in Fig. 18. Through inspection, it can be
found that only when the system violates the value and the
range and/or the invariant constraints will the system abnor-
malities be discovered. Such results are often not expected
in system security, if we hope that this type of attack can
be detected or warned about early. Thus, a further revision
of the security constraints or the system design should be
performed.

FIGURE 18. UPPAAL system security constraint verification query under
the attack module enabled.

4) IDENTIFY VULNERABILITIES AND CONSTRAINT
INADEQUACY FOR IMPROVEMENTS
The fourth step is to identify the vulnerabilities and the
constraint inadequacy for making improvements, such as
the situation in the above case. In this case, the consistency
between the physical and the cyber values can be added; that
is, the following checks are added: (SoftController.level ==
Tsensor.level) - -> (SoftController.level == Udisplay.level)
and (SoftController.level == Udisplay.level) - ->
(SoftController.level == Tsensor.level), which turns out to
be effective in detecting security problems, as shown in
Fig. 19. Repeat the above steps in the same way until an
acceptable set of security constraints is obtained.

FIGURE 19. UPPAAL system security constraint verification query.

75178 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

IV. CASE STUDY
To demonstrate the effectiveness of the proposed method,
the method was applied to a heating control system.

A. CASE 1: HEATING CONTROL SYSTEM
We took a heating control system as a case study, whose
behavior can be described as follows:

1) The operator uses a heating switch to control the heater,
and the display will show the current heating tempera-
ture.

2) When the heating switch is turned off, the system starts
to cool down, and when the heating switch is turned on,
the system starts to warm up.

3) When the heating switch is turned on, the heating
process starts from any temperature lower than 150◦C
to 200◦C.

In this case, on the basis of the possible attacks of the CPS
attack tree, we will show the verification results of the sys-
tem simulation of the possible attack combinations, such as
multiple attacks and single attacks.

1) SYSTEMATIC SECURITY CONSTRAINT GENERATION
First, we systematically generate the security constraints for
this case on the basis of the above-proposed categories:

1) Value and range constraints: They check the working
range such as the normal working range. In this case,
the legal temperature range is from 150◦C to 200◦C
when the switch is on.

2) Dependency between device states and process vari-
ables: In this case, the system is in a cooling state after
the system heating switch is turned off, and in a heating
state after the switch is turned on.

3) Cyber and physical consistency: In this case, the actual
temperature in the physical system is equal to the value
of the temperature variable in the control software and
to the value indicated by the temperature sensor.

4) Global invariants: In this case, the pragmatic invariant
is that the highest temperature legally allowed is 200◦C;
the energy conservation invariant is that there exists a
relationship between the temperature increase and the
generated heat.

2) ESTABLISH THE SECURITY VERIFICATION MODEL
The normal system model including an HMI is first con-
structed in UPPAAL. The Normal Module includes a user
switch control module on the HMI module, which pro-
vides a simulation of the user pressing the switch, as shown
in Fig. 20(a). We will use capital U to represent user-related
events or variables. The temperature display module is shown
in Fig. 20(b), where the variable TInHMI represents the
currently displayed temperature. A cyber module represent-
ing the heating control is shown in Fig. 21(a). The heat-
ing control is mainly used to control the heating process.
Variables with the capital T refer to the current tempera-
ture and those with the capital H refer to the heater. The

FIGURE 20. Human-machine interface modules.

FIGURE 21. Cyber module and physical module.

physical module represents the temperature sensor, as shown
in Fig. 21(b).

Attack scenarios are then generated on the basis of the
above CPS attack tree templates (Fig. 5).We demonstrate two
cases of attacks on software controllers, which may possibly
make the OT state unsafe, namely CaseL and CaseT. Some
implementable malware models will be added to CaseL; a
successful attackmaymislead the operator and cause disaster.
Here, we show a hypothetical attack in which the heater stops
heating after reaching a temperature of 150◦C. However,
the display constantly shows that the temperature is increas-
ing, thereby misleading the operator. To model CaseL, we
first add a malware input module before the heating control.
The module is named InAtkCaseL and controls and changes
the heating control behavior. The malware input module
that maliciously controls the input temperature is shown
in in Fig. 22. Use the variable CIn[0] to control whether
InAtkCtrlCaseL will be enabled. In addition, it is necessary
to change the receiving and heating control behavior of the
heating controller and to inject malicious attacks into the
heating controller. The inject malicious module part is named
MwAtkCtrlCaseL. The variable CM[0] is used to indicate

FIGURE 22. Malware input module in CaseL.

VOLUME 9, 2021 75179

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 23. Malware heater module in CaseL.

whether to enable the injection attack, as shown in Figure 23.
When the heater is not heated, the display can continue to
display temperature changes, so add a malware input module
to control the temperature display between the heater and the
display, as shown in Fig. 24. The module is named InAtkDis-
pCaseL. The variable CIn[1] is used to indicate whether to
enable this input attack.

FIGURE 24. Malware input module in CaseL.

We will integrate Case T and Case L in a UPPAAL model.
CaseT demonstrated that the malware simply modified the
input value returned by the temperature sensor and received
by the heating controller. Hypothetically, the attack shown
here is to decrease the sensor reading by 10◦C. A successful
attack may result in an excessive error between the tempera-
ture of the heating controller and the actual temperature. This
may result in asset loss. Other possible output attacks can
be modelled similarly. Therefore, the change of the output
from the sensor to the heating controller is shown in Fig. 25.
The output attack module is named OutAtkSnsrCaseT. The
heating controller will be modified to receive the message of
the malicious output attacking module, as shown in Fig. 26.
The variable COt[0] is used to indicate whether to enable

FIGURE 25. Malware output module in CaseT.

FIGURE 26. Malware heating controller include CaseT.

FIGURE 27. The Simulation Module for CaseT and CaseL.

OutAtkSnsrCaseT. Finally, we use the Simulation Module to
control two attack scenarios, as shown in Fig. 27. The plot
of Case T can be simulated by activating OutAtkSnsrCase.
Similarly, the scenario of Case L can be simulated by simul-
taneously activating InAtkCtrlCaseL, MwAtkCtrlCaseL, and
InAtkDispCaseL.

3) AUTHOR PHOTO MODEL CHECKING ALONG WITH
SIMULATION BASED ON THE GENERATED
SECURITY CONSTRAINTS
The next step is to perform a model check based on the
security constraints suggested in the first step. For this set
of security constraints, the model will be used to predict
whether OT-level system damages will occur when various
possible attacks are encountered and verify whether the set
of security constraints is sufficient and can be used to detect
any of the possible security issues currently known. At the
same time, we can also check whether it is possible to detect
these possible attacks. The security constraints in this case are
given below:

1) Value and range constraints: For example, when the
temperature is less than or equal to 150◦C, heatingmust
be started (ProcHeater. T <= 150 -> HOn == true),
and the temperature must be stopped when it reaches
200◦C. (ProcHeater.T > 200 -> HOn == false).

2) Dependency between device states and process vari-
ables: If the system heating switch is turned off, the sys-
tem is in a cooling state. (ProcUser.USwitchOn ==
true -> ProcHeater.heating || ProcHeater.idle). More-
over, the system is in a heating state after being
turned on. (ProcUser.USwitchOn == false ->
ProcHeater.off).

75180 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

3) Cyber and physical consistency: For example,
the temperature of the temperature detection sensor
must be consistent with the controller temperature.
(A[] (ProcTprSensor.T == ProcHeater.T) imply true).

4) Global invariants: When the heating switch is turned
off, the system starts to cool down and the maxi-
mum temperature cannot be higher than 200◦C. A[]
((HOn== false)&& (ProcHeater.T> 200) imply true)

5) The system starts to heat up, and the maximum tem-
perature cannot be higher than 200◦C. A[] ((HOn ==
true) && (ProcHeater.T > 200) imply false).

The results of executing these security constraint queries
using UPPAAL are shown in Fig. 28. This figure shows that
the system will not violate any security constraints when
operating in the normal mode.

FIGURE 28. System security constraint verification with UPPAAL in the
normal mode.

The abovementioned security constraints are used to per-
form model checks on the CaseL and CaseT models. The
verified results were the same, as shown in Fig. 29. This
implied that the implanted malware could effectively circum-
vent all of the abovementioned security constraints. Thus,
the considered set of security constraints is not adequate.
Thus, a further revision of the security constraints or system
design should be performed.

FIGURE 29. Results of security constraint detection.

4) IDENTIFY VULNERABILITIES AND CONSTRAINT
INADEQUACY FOR IMPROVEMENTS
The fourth step is to identify vulnerabilities and constraint
inadequacy for improvements, such as the situation in the
above CaseL. In CaseL, the consistency between the physical
and the cyber values can be added; that is, the following check
can be added: A[] (ProcHeater.T == ProcHMI.TInHMI)
imply (ProcTprSensor.T == ProcHeater.T), which turns
out to be effective in detecting security problems, as shown
in Fig. 30. This improvement has the same effect on CaseT.
However, note that the check for the consistency between
the physical entities and their cyber counterparts may need
onsite human checking, which may not always be convenient
or feasible.

FIGURE 30. System security constraint verification with UPPAAL.

B. CASE 2: SAFETY INJECTION SYSTEM
For the safety injection system, if the operator receives incor-
rect systemmessages and cannot detect them in time, themost
serious hazard may be the water tank dry-out, such as the
Three Mile Island accident [36]. Therefore, the proposed
approach will be used in this case to explore the possible
various states of the system and the HMI interaction simula-
tion, verify the security constraints, and predict the possible
hazards. This result can be used to improve the design or
improve the security constraints to avoid accidents.

1) SECURITY CONSTRAINTS AND MODELING PROCESS
A safety injection system is used as our case study. The
system consists of Tank0, Tank1, and Tank2. Tank0 generates
steam, cools it, and circulates the condensed water back to
Tank0 through Tank1. If water leaks from Tank0, the leaked
water will be collected in Tank2, as shown in Fig. 31. The
normalwater level of Tank0 ranks fromL1 to L8.5; otherwise,
the alarm will be on. When a leak occurs and the water level
of Tank0 drops to L1.5, the software controller starts to inject
the feed-water from Tank1 to Tank0 by opening the pump
and the valve between them; however, if Tank1’s water is
below the threshold, the feed-water injection will come from
Tank2 to Tank0 till Tank0’s water level reaches L8. Note that
in order to use the integer-based simulation tools provided
by UPPAAL, we expand all the water levels by 10 times; for
example, water level L8.5 will be represented as 85 units.

FIGURE 31. Overview of the safety injection system.

The most devastating OT attack is that which causes the
dry-out of Tank0. In order to accomplish this goal, the
attacker should stop any water injection when Tank0 is low in

VOLUME 9, 2021 75181

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

water, and at the same time, the operator should not be alerted
by the display or the alarm. Thus, multiple and coordinated
attacks, consisting of a sabotage on the control logic, on the
display, and on the alarm, can be achieved by the malware.
Therefore, ourmodelledmalware will not perform feed-water
injection and deliberately indicate that Tank0 gradually
rises to 82 units, and turn off the alarm, which eventually
causes a dry-out disaster. We then design all the needed
UPPAAL system components, namely a Normal Model,
an HMI model, an Attack Module, and a Simulation Module.
We also model the software controller being implanted with
malware.

The software controller will switch between three states
when it is executing. The first state is the normal operation
of Tank0, as shown in Fig. 32; the second is the state of
supplying water by Tank1, as shown in Fig. 33(a); and the
last is the state of supplying water by Tank2, as shown
in Fig. 33(b). The first state is named idle, the second state
is named supply1, and the third state is named supply2. The
display system and the operator manual mode are constructed
in the HMI model, as shown in Fig. 34, wherein the left half
of the module is used as the display mode and the right half is
used as themanual operationmode. If the Tank0 displaywater
level is greater than 80 units and a pump has been turned on,
it will simulate the manual shutdown of the pump. In order to
construct the above attack scenario, we added malware to the

FIGURE 32. Normal operating state of Tank0 in the software controller.

FIGURE 33. State of supplying water by Tank1 and the state of supplying
water by Tank2 in the software controller.

FIGURE 34. Display system and operator manual mode are constructed in
the HMI model.

FIGURE 35. Malware will turn off the alarm in the software controller.

software controller. The malware will provide the function of
turning off the alarm system, as shown in Fig. 35. An error
in the water level display has also been added, which will
provide an erroneous water level to deliberately deceive the
operator, as shown in Fig. 36. The water level of Tank0will be
displayed below 85, the water level of Tank1will be displayed
below 26, and the water level of Tank2 will be displayed
below 5. Each time, the water level changes by two units.

The next step is to design queries for model checking
on the basis of the proposed categories of security constraints.
The security constraints for this case can be described as
follows:

1) Value and range constraints: The normal range of the
Tank0 water level is from Level 1 to Level 8.5, that
is, from 10 units to 85 units. ((SfCntr.IdleOutput &&
AlarmOn== false) || (SfCntr.T1Output &&AlarmOn
== false) || (SfCntr.T2Output && AlarmOn ==
false)) - -> ((SfCntr.T0V >= 10) && (SfCntr.
T0V <= 85))

2) Constraints of dependency between device states
and process variables: If the Tank1 pump and
valve are on, the water volume of Tank1 is being
reduced; if the Tank1 pump and Tank1 valve are off,
the water volume of Tank1 remains unchanged. A[]
(T1.PumpOn== true&&T1.ValveOn== true) imply

75182 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 36. Error water level display to deliberately deceive the operator.

(T1.Volum <= T1.LastVolum) A[] (T1.PumpOn ==
false && T1.ValveOn == false) imply (T1.Volum
>= T1.LastVolum). For Tank2, we have the same
constraints.

3) Cyber and physical consistency constraints: The water
volume of Tank0 must be equal to the value of the vari-
able representing the water volume in the controller.
A[] HMI.Display imply (T0.Volum == SfCntr.T0V)
&& (T0.Volum == HMI.iT0VDisp). The same con-
straints apply to Tank1 and Tank2.

4) Global invariants: The software variables of the three
water tanks should add up to the initial total water
amount of 110 units in our test case. (T0.React
&& T1.React && T2.React) - -> (T0.Volum +
T0.T1FeedV + T0.T2FeedV + T1.Volum +

T1.iSteamV + T2.Volum + T2.LeakV) == 110. The
same constraints apply to the software controller and
HMI display part.

The resulting queries in UPPAAL, based on these security
constraints, are shown in Fig. 37. Because the checks are
performed on the normal system, all the checks pass with
green lights. Next, these queries will be conducted on the
attack model.

2) MODEL CHECKING MALWARE IMPLEMENTED SCENARIO
As mentioned above, the most devastating attack conse-
quence is a dry-out disaster. This attack can be easily accom-
plished by an implanted malware producing multiple and
concurrent attacks on the control logic along with false dis-
play data and a nonfunctional alarm. That is, the malware
control will not inject feed-water when Tank0 has a water
level lower than Level 1.5, while it displays a normal or high

FIGURE 37. Model checking security constraints.

FIGURE 38. Verification results of system security constraints in the
attack scenario.

water level and disables the alarm. Thus, the operator may
be misled and does not react or perform erroneous actions.
The following scenario is modeled in our attack module. The
malware sets Tank0’s display at a high-water level when the
water level is low. In our test run, Tank0’s water level is set
to 15 units (equivalent to Level 1.5) and the display starts to
be attacked. During the attack, Tank1’s water level display
will gradually approach to 26 units and Tank0’s water level
display will gradually increase from the current water level
to a maximum of 82 units. Tank2’s water level display will
be based on the displays of Tank1 and Tank0. The water level
display gradually adjusts. The malicious water level display
controller, which we designed for the first time, is shown
in Fig. 36. Then, UPPAAL is used to perform the model
check on the abovementioned security constraints on the
simulation run of this attack scenario. The results are shown
in Fig. 38. However, we tried to evade the security constraints
and redesigned the Attack Module, as shown in Fig. 39. The
test results are shown in Fig. 40. In the last query of security
constraints, we obtained different detection results.

However, such a malware attack producing a false indica-
tion may probably cause operator mode confusion, leading
to more complex consequences. We may further analyze the
results through the UPPAAL simulation tool and track the
execution steps to find the counterexample. In our test run,
the actual water levels of Tank0, Tank1, and Tank2 in the
UPPAAL modules are 0, 26, and 84 units, but the display
levels of Tank0, Tank1, and Tank2 show 82, 25, and 3 units,
as shown in Fig. 41. The possible consequences may be that
the operator is misled and manually turns off the pump of
Tank1 and then the pump of Tank2, which may eventually
result in a dry-out disaster. After analysis, we identify that the

VOLUME 9, 2021 75183

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

FIGURE 39. Redesign of the attack module.

FIGURE 40. Verification results in the redesigned attack module.

set of constraints generated in our first try is not adequate.
The global invariants are effective in many cases; however,
for a carefully designed attack, the invariants may also fail to
detect attacks. The remaining powerful security constraints
are used to compare the consistency of the cyber images, such
as software variables and display values, with their physical
counterparts. However, note that these consistency checks of
the cyber and physical counterparts may need human onsite
checks, whichmay not be always convenient or even possible.
In addition, system vulnerabilities can be identified by the
above model checking. For example, the vulnerabilities of
the above case consist of the HMI and network. Then, system
redesign such as the addition of multiple sensors, multiple
alarms, or hardware interlocks, along with a possible recom-
mendation of periodic onsite human checking, may also be
carried out to improve system security.

In summary, we successfully applied the proposed method
to this case study. The proposed model checking step may
reveal the inadequacy of the original constraint set, which
can be further augmented, such as a lack of comparison
of the consistency of the software variables and the dis-
play values with their physical counterparts. The enhanced
security constraint set can be used for run-time monitoring
in order to detect security attacks when the system is in
actual operation.Moreover, the proposedmodel checking can

FIGURE 41. Results obtained using UPPAAL simulation tools.

identify the vulnerabilities of the system under analysis, such
as the inability of the invariant to detect an attack in the case
of a well-designed attack. Thus, design improvement may be
required to alleviate these vulnerabilities.

V. SUMMARY AND CONCLUSION
Cyber security is critical for a CPS. We may ensure a CPS’s
security by preventing attacks at the design stage and detect-
ing attacks at run time by constraint monitoring. To achieve
these goals, we proposed a systematic approach for the secu-
rity verification of a CPS design by using UPPAAL model
checking.We found that an exhaustive search can be achieved
for each state in various possible model combinations and the
human-machine interaction could be explored more deeply.
Different from most of the current research that focuses on
IT attacks to control the CPS, without addressing the OT
damage, our work particularly focused on the OT attacks.
The categories of OT-level security constraints were first
proposed. These constraints could be generated on the basis
of safety requirements in a systematic manner. Then, they
were represented in the UPPAAL queries for model checking.
Both a normal model and an attack model were developed in
UPPAAL. The attack model mainly represented an implanted
malware for a selected attack scenario based on our attack
tree template. Model checking using the generated security
constraints was then performed on both the normal and the
attack models to explore the potential OT attacks. The results
of this method support the following two-fold functions:

75184 VOLUME 9, 2021

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

1) Augmenting the set of security constraints. If the model
checking shows that the original set of constraints is
not effective in detecting malicious attacks, a more
adequate set of security constraints can be developed
to serve as run-time monitoring in the future when the
system is in operation.

2) Redesigning the system. The model checking results
can be further analyzed to identify vulnerabilities for
a possible redesign and improvement of the system to
enhance its cyber security.

According to our experiments, the global invariant is in
general effective. However, for carefully designed attacks,
the global invariant may fail to detect any anomaly. Then,
the only useful constraints will be the consistency checking
between the cyber and the physical counterparts, that is,
onsite human checking, which may not always be conve-
nient or feasible. Thus, when it is difficult to prevent or
detect malicious attacks, the most rigorous recommendation
is that the critical components of a CPS should be changed
back to the analog design in order to reduce the attack sur-
face [37]. In the future, the completeness of the constraint
sets and the process of automatically revising constraints and
proposing new constraint sets will be further investigated.
Moreover, a hybrid simulation by combining UPPAAL with
Ptolemy [38] will be conducted, as the latter can model the
continuous behavior more accurately.

REFERENCES
[1] L. Monostori, ‘‘Cyber-physical systems,’’ in CIRP Encyclopedia

of Production Engineering, S. Chatti and T. Tolio, Eds. Berlin,
Germany: Springer, 2018, pp. 1–8.

[2] P. B. L. D. Haegley, ‘‘Resilient industrial control systems (ICS) & cyber
physical systems (CPS),’’ J. Cyber Secur. Inf. Syst., vol. 7, no. 2, pp. 5–9,
Sep. 2019.

[3] CyberX. (2019). 2019 Global ICS & IIoT Risk Report.
Accessed: Feb. 2, 2021. [Online]. Available: https://cyberx-labs.com/
resources/risk-report-2019/#donwload-form

[4] A. Nourian and S. Madnick, ‘‘A systems theoretic approach to the secu-
rity threats in cyber physical systems applied to stuxnet,’’ IEEE Trans.
Dependable Secure Comput., vol. 15, no. 1, pp. 2–13, Jan. 2018, doi:
10.1109/TDSC.2015.2509994.

[5] K. Zetter. (2016). Inside the Cunning, Unprecedented Hack of Ukraine’s
Power Grid, Wired. Accessed: Feb. 2, 2021. [Online]. Available:
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-
ukraines-power-grid/

[6] V. Y. P. Keith, A. Stouffer, S. Lightman, M. Abrams, and A. Hahn,
‘‘Guide to industrial control systems (ICS) security,’’ NIST, Gaithersburg,
MD, USA, Tech. Rep. 800-82 Rev 2, 2015. [Online]. Available: https://
www.nist.gov/publications/guide-industrial-control-systems-ics-security

[7] A. Humayed, J. Lin, F. Li, and B. Luo, ‘‘Cyber-physical systems security—
A survey,’’ IEEE Internet Things J., vol. 4, no. 6, pp. 1802–1831,
Dec. 2017, doi: 10.1109/JIOT.2017.2703172.

[8] Waterfall Security. Whitepaper Emerging Consensus for Industrial Con-
trol System (ICS) Security. Accessed: Feb. 2, 2021. [Online]. Avail-
able: https://waterfall-security.com/scada-security/whitepapers/emerging-
consensus-on-ics-cybersecurity/

[9] G. Sabaliauskaite and A. Mathur, ‘‘Aligning cyber-physical system safety
and security,’’ in Proc. CSDM, 2014, pp. 41–53.

[10] Positive Technologies. ICS Vulnerabilities: 2018 in Review.
Accessed: Feb. 2, 2021. [Online]. Available: https://www.ptsecurity.
com/ww-en/analytics/ics-vulnerabilities-2019/

[11] TechRepublic. Industrial Control System Cybersecurity Vulnerabilities
are Rising in 2020. Accessed: Feb. 2, 2021. [Online]. Available:
https://www.ptsecurity.com/ww-en/analytics/ics-vulnerabilities-2019/

[12] Cyber-Physical Systems Virtual Organization. Verification Tools Main
Wiki Page. Accessed: Mar. 21, 2021. [Online]. Available: https://cps-
vo.org/node/32762

[13] G. Behrmann, A. David, and K. Larsen, ‘‘A tutorial on uppaal,’’ in Proc.
Formal Methods Design Real-Time Syst., 2004, pp. 200–236.

[14] Q. Zhongsheng, L. Xin, and W. Xiaojin, ‘‘Modeling distributed real-time
elevator system by threemodel checkers,’’ Int. J. Online Eng., vol. 14, no. 4,
p. 94, Apr. 2018, doi: 10.3991/ijoe.v14i04.8383.

[15] Y. Lu and M. Sun, ‘‘Modeling and verification of IEEE 802.11i secu-
rity protocol in UPPAAL for Internet of Things,’’ Int. J. Softw. Eng.
Knowl. Eng., vol. 28, nos. 11–12, pp. 1619–1636, Nov. 2018, doi:
10.1142/S021819401840020X.

[16] IEEE Spectrum. The Blackout of 2003. Accessed: Feb. 2, 2021. [Online].
Available: https://spectrum.ieee.org/energy/the-smarter-grid/the-blackout-
of-2003

[17] History. Blackout Hits Northeast United States.
Accessed: Feb. 2, 2021. [Online]. Available: https://www.history.com/
this-day-in-history/blackout-hits-northeast-united-states

[18] Taiwan Transportation Safety Board. Releases Final Report on
TransAsia Airways Flight GE 235 Occurrence Investigation.
Accessed: Feb. 2, 2021. [Online]. Available: https://www.ttsb.gov.tw/
english/16051/16113/16114/16531/post

[19] AviationAccidents.China Airlines-Airbus-A310-B4-622R (B-1814) Flight
CI676. Accessed: Jan. 7, 2021. [Online]. Available: https://www.aviation-
accidents.net/china-airlines-airbus-a310-b4-622r-b-1814-flight-ci676/

[20] R. Akella, ‘‘Verification of information flow security in cyber-physical
systems,’’ Ph.D. dissertation, Dept. Comput. Sci., Missouri Univ. Sci.
Technol., Rolla, MO, USA, 2013.

[21] G. Sugumar and A. Mathur, ‘‘Testing the effectiveness of attack detec-
tion mechanisms in industrial control systems,’’ in Proc. IEEE Int. Conf.
Softw. Qual., Rel. Secur. Companion (QRS-C), Jul. 2017, pp. 138–145, doi:
10.1109/QRS-C.2017.29.

[22] S. Han, M. Xie, H.-H. Chen, and Y. Ling, ‘‘Intrusion detection in cyber-
physical systems: Techniques and challenges,’’ IEEE Syst. J., vol. 8, no. 4,
pp. 1049–1059, Dec. 2014, doi: 10.1109/JSYST.2013.2257594.

[23] S. Adepu and A. Mathur, ‘‘Using process invariants to detect cyber
attacks on a water treatment system,’’ in ICT Systems Security and
Privacy Protection, J.-H. Hoepman and S. Katzenbeisser, Eds. Cham,
Switzerland: Springer, 2016, pp. 91–104.

[24] P. Martins, A. B. Reis, P. Salvador, and S. Sargento, ‘‘Physical layer
anomaly detection mechanisms in IoT networks,’’ in Proc. IEEE/IFIP
Netw. Oper. Manage. Symp. (NOMS), Budapest, Hungary, Apr. 2020,
pp. 1–9, doi: 10.1109/NOMS47738.2020.9110323.

[25] D. Ding, Q.-L. Han, X. Ge, and J. Wang, ‘‘Secure state estima-
tion and control of cyber-physical systems: A survey,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021, doi:
10.1109/TSMC.2020.3041121.

[26] S. Kong, Y. Shen, and H. Zhou, ‘‘Using security invariant to verify confi-
dentiality in hardware design,’’ presented at the Great Lakes Symp. VLSI,
Banff, AB, Canada, 2017.

[27] A. Choudhari, H. Ramaprasad, T. Paul, J. W. Kimball, M. Zawodniok,
B. Mcmillin, and S. Chellappan, ‘‘Stability of a cyber-physical smart
grid system using cooperating invariants,’’ in Proc. IEEE 37th Annu.
Comput. Softw. Appl. Conf., Jul. 2013, pp. 760–769, doi: 10.1109/COMP-
SAC.2013.126.

[28] S.-W. Hsiao, Y. S. Sun, M. C. Chen, and H. Zhang, ‘‘Cross-level
behavioral analysis for robust early intrusion detection,’’ in Proc.
IEEE Int. Conf. Intell. Secur. Informat., May 2010, pp. 95–100, doi:
10.1109/ISI.2010.5484768.

[29] Wikipedia. Invariant. Accessed: Feb. 2, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Invariant

[30] G. Sugumar and A. Mathur, ‘‘A method for testing distributed anomaly
detectors,’’ Int. J. Crit. Infrastruct. Protection, vol. 27, Dec. 2019,
Art. no. 100324, doi: 10.1016/j.ijcip.2019.100324.

[31] C.-F. Fan, C.-C. Chan, H.-Y. Yu, and S. Yih, ‘‘A simulation plat-
form for human-machine interaction safety analysis of cyber-physical
systems,’’ Int. J. Ind. Ergonom., vol. 68, pp. 89–100, Nov. 2018, doi:
10.1016/j.ergon.2018.06.008.

[32] T. Wang, Q. Su, and T. Chen, ‘‘Formal analysis of security properties
of cyber-physical system based on timed automata,’’ in Proc. IEEE 2nd
Int. Conf. Data Sci. Cyberspace (DSC), Jun. 2017, pp. 534–540, doi:
10.1109/DSC.2017.44.

VOLUME 9, 2021 75185

http://dx.doi.org/10.1109/TDSC.2015.2509994
http://dx.doi.org/10.1109/JIOT.2017.2703172
http://dx.doi.org/10.3991/ijoe.v14i04.8383
http://dx.doi.org/10.1142/S021819401840020X
http://dx.doi.org/10.1109/QRS-C.2017.29
http://dx.doi.org/10.1109/JSYST.2013.2257594
http://dx.doi.org/10.1109/NOMS47738.2020.9110323
http://dx.doi.org/10.1109/TSMC.2020.3041121
http://dx.doi.org/10.1109/COMPSAC.2013.126
http://dx.doi.org/10.1109/COMPSAC.2013.126
http://dx.doi.org/10.1109/ISI.2010.5484768
http://dx.doi.org/10.1016/j.ijcip.2019.100324
http://dx.doi.org/10.1016/j.ergon.2018.06.008
http://dx.doi.org/10.1109/DSC.2017.44

C.-C. Chan et al.: Security Verification for CPSs Using Model Checking

[33] M.-Z. Hong and C.-F. Fan, ‘‘Vulnerability analysis for cyber physical sys-
tems,’’ presented at the Taiwan Acad. Netw. Conf. (TANET), Kaohsiung,
Taiwan, 2019.

[34] S. Verma, P. Lee, and I. G. Harris, ‘‘Error detection using model checking
vs. simulation,’’ in Proc. IEEE Int. High Level Design Validation Test
Workshop, Nov. 2006, pp. 55–58, doi: 10.1109/HLDVT.2006.319964.

[35] G. E. Gelman, ‘‘Comparison of model checking and simulation to examine
aircraft system behavior,’’ M.S. thesis, Aerosp. Eng., Georgia Inst. Tech-
nol., Atlanta, GA, USA, 2013.

[36] U.S.NRC. Backgrounder on the Three Mile Island Accident.
Accessed: Feb. 2, 2021. [Online]. Available: https://www.nrc.gov/reading-
rm/doc-collections/fact-sheets/3mile-isle.html

[37] S. G. Freeman, C. S. Michel, R. Smith, and M. Assante, ‘‘Consequence-
driven cyber-informed engineering (CCE),’’ Idaho Nat. Lab., Idaho Falls,
ID, USA, Tech. Rep. INL/EXT-16-39212, 2016, doi: 10.2172/1341416.

[38] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen, M. Mikucionis,
T. Strump, and S. Tripakis, ‘‘Co-simulation of hybrid systems
with SpaceEx and Uppaal,’’ in Proc. 11th Int. Modelica Conf.
Versailles, France: Linköping Univ. Electronic Press, pp. 159–169,
doi: 10.3384/ecp15118159.

CHING-CHIEH CHAN was born in Taiwan,
in 1968. He is currently pursuing the Ph.D. degree
with the Computer Science and Engineering
Department, Yuan-Ze University, under the super-
vision of Dr. Cheng-Zen Yang and Dr. Chin-Feng
Fan. He works at Telecommunication Laboratories
Chunghwa Telecom Company Ltd., Taiwan. His
research interests include digital identity, safety
analysis, and cyber security.

CHENG-ZEN YANG (Member, IEEE) received
the B.S. and M.S. degrees from the Department
of Computer Science and Information Engineer-
ing, National Chiao Tung University, Taiwan,
in 1988 and 1990, respectively, and the Ph.D.
degree from the Department of Computer Science
and Information Engineering, National Taiwan
University, in 1996. He is currently an Associate
Professor with Yuan-Ze University. His research
interests include software engineering, machine

learning, text mining, and high-speed networking.

CHIN-FENG FAN received the Ph.D. degree
in computer science from Southern Methodist
University, Dallas, TX, USA. She is a Retired
Professor of Yuan-Ze University, Taiwan. Her
research interests include software engineering,
safety analysis, and cyber security.

75186 VOLUME 9, 2021

http://dx.doi.org/10.1109/HLDVT.2006.319964
http://dx.doi.org/10.2172/1341416
http://dx.doi.org/10.3384/ecp15118159

