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ABSTRACT In this work, a nonlinear integral resonant controller is utilized for the first time to suppress
the principal parametric excitation of a nonlinear dynamical system. The whole system is modeled as a
second-order nonlinear differential equation (i.e., main system) coupled to a nonlinear first-order differential
equation (i.e., controller). The control loop time-delays are included in the studied model. The multiple
scales homotopy approach is employed to obtain an approximate solution for the proposed time-delayed
dynamical system. The nonlinear algebraic equation that governs the steady-state oscillation amplitude has
been extracted. The effects of the time-delays, control gain, and feedback gains on the performance of the
suggested controller have been investigated. The obtained results indicated that the controller performance
depends on the product of the control and feedback signal gains as well as the sum of the time-delays in the
control loop. Accordingly, two simple objective functions have been derived to design the optimum values of
the loop-delays, control gain, and feedback gains in such a way that enhances the efficiency of the proposed
controller. The analytical and numerical simulations illustrated that the proposed controller could eliminate
the system vibrations effectively at specific values of the control and feedback signal gains. In addition, the
selection method of the loop-delays that either enhances the control performance or destabilizes the system
motion has been explained in detail.

INDEX TERMS Nonlinear integral resonant controller, parametric resonance, linear and nonlinear feedback
control, time-delays, objective function, stability chart.

LIST OF SYMBOLS
q1, q̇1, q̈1 Displacement, velocity, and acceleration

of the parametrically excited system.
q2, q̇2 Displacement and velocity of the nonlinear

resonant controller.
µ Linear damping coefficients of the

parametrically excited system
ω Linear natural frequency of the

parametrically excited system
α, β Cubic nonlinearity coefficients of the

parametrically excited system.
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ηf Excitation force amplitude of the
parametrically excited system.

� Excitation frequency of the parametrically
excited system.

γ The control signal gains.
δ1, δ2 The linear and nonlinear feedback signal gains.
λ Feedback gain of the nonlinear resonant

controller.
τ1, τ2 Time-delays of the closed loop.

I. INTRODUCTION
Excitation of nonlinear dynamical systems is called a para-
metric excitation when the excitation forces appear as coef-
ficients of one or more variables in the governing equations
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of motion. In most engineering applications, the nature of the
excitation forces is periodic or can be considered periodic.
The study of the time-periodic equations has found many
engineering applications such as stability of the structures,
nonlinear vibration control, dynamics of satellites, rotating
machines, biomechanics. . . etc. In many situations, the math-
ematical models that govern the dynamical behaviors of such
engineering systems are nonlinear differential equations with
periodic coefficients. These types of differential equations
are known as the parametrically excited systems. The non-
linear vibrations analysis and control of the parametrically
excited systems were and still are the main subject of many
research works, where Oueini and Nayfeh [1] investigated
the principal parametric excitation control of a nonlinear
cantilever beam system. As the nonlinear vibration ampli-
tude of such systems cannot be fully controlled by the con-
ventional control techniques such as adding linear damping
using the linear-velocity feedback controller or connecting
a conventional vibration absorber, the authors proposed the
cubic-velocity feedback controller. The authors analyzed the
system mathematical model utilizing the multiple time scales
perturbations method. Depending on the obtained bifurca-
tion diagrams and experimental validations, they concluded
that the cubic-velocity feedback controller has higher effi-
ciency than the linear-velocity controller in suppressing the
principal parametric excitations of the considered system.
Yabuno et al. [2] investigated the principal parametric oscil-
lations of a cantilever beam system using a passive vibration
absorber. The proposed absorber is a pendulum connected
to the endpoint of a vertically suspended beam. Based on
the obtained results, the authors concluded that the frictional
force between the connected pendulum and the beam can
mitigate the whole system’s nonlinear vibrations. Chen [3]
investigated the principal parametric vibration control of a
vertically supported beam system. The author proposed three
different versions of the active controllers, namely cubic-
velocity, cubic-position, and linear-velocity controllers. The
obtained analytical and experimental results illustrated that
the cubic-velocity feedback controller is the most efficient
one. Pratiher [4] studied the nonlinear vibration control of a
transversely excited cantilever beam system with a tip mass.
The studied system is modeled as a parametrically excited
nonlinear system. The author introduced the cubic-velocity
controller to eliminate the principal parametric excitations,
where the obtained results confirmed the efficiency of the
suggested control method.

Time-delay is an essential issue in active vibration control
techniques, where the existence of time-delay in the control
loop may be the main reason for the system failure via desta-
bilizing the control loop [5]–[17]. Accordingly, the influ-
ence of the time-delay on the performance of the different
controllers has been discussed, where Macarri [5] explored
the influence of the time-delays on the performance of a
linear position-velocity feedback controller. Alhazza et al. [6]
investigated the effect of the time-delay on the performance of
a linear acceleration feedback controller utilized to mitigate

the multimode oscillation of a cantilever beam system.
Alhazza et al. [7] explored the effects of time-delays on the
performance of the linear position, velocity, and acceleration
controllers utilized to control the primary resonance vibra-
tions of the cantilever beam system. Daqaq [8] discussed the
effect of the time-delays on the performance of the linear
and cubic versions of the position-velocity-acceleration feed-
back controller. Peng et al. [9] investigated the transversal
nonlinear oscillations of a cantilever beam system at pri-
mary resonance utilizing the time-delayed linear position-
velocity-acceleration controller. According to Refs. [6]–[9],
The main conclusion is that the controlled system may lose
its stability at specific values of the loop-delay. However,
the time-delays can improve the controller efficiency in
suppressing the system vibrations at other time-delays val-
ues. Saeed et al. [10]–[12] investigated the nonlinear vibra-
tion control of different dynamical systems applying the
time-delayed linear and nonlinear position-velocity feedback
controller. The authors derived a simple objective function
to improve the performance of the controller at hand via
selecting the optimal time-delays and control gains. Recently,
Saeed et al. [13] have investigated the performance of six
versions of the time-delayed linear and nonlinear position,
velocity, and acceleration feedback controllers. The authors
reported that the time-delayed cubic-acceleration controller is
the most efficient one in both vibration mitigation and bifur-
cation suppression. Sun et al. introduced the time-delayed
vibration isolators with multi-directional quasi-zero-stiffness
[18]–[20]. The authors reported that the time-delayed control
able to tune the isolators damping and stiffness coefficients,
especially for the low-frequency range.

Linear and nonlinear forms of the Integral Resonant Con-
troller (IRC) have been extensively introduced to suppress
the nonlinear vibration of different nonlinear dynamical sys-
tems [21]–[26], where Diaz et al. [21] applied the IRC
to control the nonlinear vibrations of the light-weight civil
engineering structures. Al-Mamun et al. [22] utilized the
nonlinear integral resonant controller to control the nonlin-
ear oscillations of piezoelectric micro-actuator. Omidi and
Mahmoodi [23], [24] introduced the nonlinear integral res-
onant controller in parallel to the positive position feedback
controller. The authors reported that the IRC can enhance the
positive position feedback controller efficiency via minimiz-
ing the resonant peaks. Omidi and Mahmoodi [25] proposed
a modified version of the linear integral resonant controller
known as the nonlinear integral resonant controller to con-
trol nonlinear smart structure oscillations. The authors con-
cluded that the applied controller could suppress the system
nonlinear vibration effectively. MacLean and Sumeet [26]
applied the linear integral resonant control to the bifurcation
behaviors of micro-cantilever beam structures. The authors
concluded that the proposed control method can eliminate
jump-phenomenon and hysteresis of the considered system
via increasing the system linear damping coefficient.

Depending on the literature reviews, limited types of con-
trollers have been succeeded in mitigating or eliminating
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FIGURE 1. (a) Cantilever beam system under longitudinal excitation, and (b) The controlled system block diagram.

the nonlinear oscillations of the parametrically excited sys-
tems, effectively. These types are the cubic-velocity and
cubic-acceleration feedback controllers [1], [3], [13]. In addi-
tion, the Nonlinear Integral Resonant Controller (NIRC)
never applied before to control the nonlinear oscillations of
the parametrically excited systems. Accordingly, the NIRC
is utilized within this work as a new control strategy to sup-
press the nonlinear oscillations of parametrically excitation
cantilever beam system for the first time. The time delays
in the control loop are included in the studied model. The
slow flow modulating equations that govern the controlled
system vibration amplitude are derived using the multiple
scales homotopy approach. The obtained analytical results
illustrated that the linear integral resonant controller could
add linear damping to the controlled system that depends on
the sum of the loop-delays and the product of the control gain
and linear feedback gain. In addition, the nonlinear integral
resonant controller adds nonlinear damping to the controlled
system that depends on the sum of the loop-delays and the
product of the control gain and nonlinear feedback gain.
Accordingly, the obtained analytical results are validated
numerically via plotting different response curves for the
controlled system. The effects of the control gain, feedback
gains, and loop delays on the system vibration amplitude
are explored. The analytical and numerical simulations con-
firmed that the proposed control technique (i.e., NIRC) can
suppress the vibration amplitude of the considered system to
zero.

In comparing the current work with the previously pub-
lished articles, it is the first time to apply a linear and nonlin-
ear combination of the integral resonant controller to mitigate
the nonlinear oscillation of a parametrically excited system.
In addition, the effect of loop-delays has not been discussed

before regarding the integral resonant controller [21]–[26].
Finally, the main contribution of this article is introducing
the NIRC as a new and effective control strategy in suppress-
ing the nonlinear oscillations of the parametrically excited
systems besides the cubic-velocity and cubic-acceleration
feedback controllers.

II. MATHEMATICAL MODEL AND SLOW FLOW
MODULATING EQUATIONS
The nonlinear differential equation that governs the first-
mode temporal oscillation of a parametrically excited can-
tilever beam system shown in Fig. 1a is given as follows
(Ref. [27]):

q̈1 + 2µωq̇1 + ω2q1 + αq31 + β(q1q̇
2
1 + q̈1q

2
1)

= ηq1f�2 cos(�t)+ FC (1)

where Fc is the proposed control force. The Time-Delayed
Nonlinear Integral Resonant Controller (TDNIRC) is intro-
ducedwithin this work to control the nonlinear oscillation of a
parametrically excited system for the first time. Accordingly,
the whole system mathematical model can be expressed as
follows [25], [26]:

q̈1 + 2µωq̇1 + ω2q1 + αq31 + β(q1q̇
2
1 + q̈1q

2
1)

= ηq1f�2 cos(�t)+ γ q2(t − τ1), (2.1)

q̇2 + λq2 = δ1q1(t − τ2)+ δ2q31(t − τ2). (2.2)

where γ is the linear control gain, δ1 is the linear feedback
gain, δ2 is the nonlinear feedback gain, and τ1, τ2 are the
time-delays in the control loop as shown in Fig. 1b.

A. PRINCIPAL PARAMETRIC EXCITATIONS (� = 2ω + σ )
When the excitation frequency of a parametrically excited
system is closed to twice its natural frequency (i.e.,� = 2ω),
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the excited system responds with high oscillation amplitude
as a result of the principal parametric resonance occurrence.
Within this work, the efficiency of the proposed controller
(TDNIRC) in suppressing the principal parametric reso-
nance of the considered system is investigated. Accordingly,
the multiple scales homotopy technique is utilized to derive
the slow flow modulating equations of the time-delayed
nonlinear dynamical system given by Eqs. (2). Accord-
ingly, the homotopy equation can be formulated as fol-
lows [28], [29]:

H (q1, q2, ρ) = L(q1, q2)+ ρN (q1, q2), ρ ∈ [0, 1] (3)

where L(q1, q2) is the linear term of the given dynamical
systems, N (q1, q2) represents the nonlinear terms, and ρ is
defined as the homotopy parameter. According to Eqs. (2)
and (3), we can write the homotopy problem as follows:

H1(q1, q2, ρ)

= q̈1 + ω2q1 + ρ
(
2µωq̇1 + αq31

+β(q1q̇21 + q̈1q
2
1) −ηq1f�

2 cos(�t)− γ q2(t − τ1)
)

(4.1)

H2(q1, q2, ρ)

= q̇2 + λq2 − δ1q1(t − τ2)− δ2q31(t − τ2) (4.2)

Using the multiple time scales perturbations method [30],
a two-time scale may be considered as follows:

q1(t, ρ) = q10(T0,T1)+ρq11(T0,T1)+ O(ρ2), (5.1)

q2(t, ρ) = q20(T0,T1)+ρq21(T0,T1)+ O(ρ2). (5.1)

q1(t − τ2, ρ) = q10(T0−τ2,T1−ρτ2)

+ ρq11(T0 − τ2,T1 − ρτ2)+ O(ρ2),

(5.3)

q2(t − τ1, ρ) = q20(T0 − τ1,T1 − ρτ1)

+ ρq21(T0 − τ1,T1 − ρτ1)+ O(ρ2).

(5.4)

where T0 = t , and T1 = ρt . Accordingly, the time derivatives
d
dt and

d2

dt2
can be expressed in terms of T0 and T1 as follows:

d
dt
= D0 + ρD1,

d2

dt2
= D2

0 + 2ρD0D1,

Dj =
∂

∂Tj
, j = 0, 1 (6)

Substituting Eqs. (5) and (6) into Eqs. (4) with equating
the coefficients of like power of the homotopy parameter ρ,

we have:

ρ0 :
(
D2
0 + ω

2
)
q10 = 0, (7.1)

(D0 + λ) q20 = δ1q10(T0 − τ2,T1 − τ2)

+ δ2q310(T0 − τ2,T1 − τ2). (7.2)

ρ1 :
(
D2
0 + ω

2
)
q11 = −2D0D1q10 − 2µωD0q10 − αq310

− βq10(D0q10)2 − βq210D
2
0q10

+ ηq10�2f cos(�T0)

+ γ q20(T0 − τ1,T1 − τ1) (8.1)

(D0 + λ) q21 = −D1q20 + δ1q11(T0 − τ2,T1 − τ2)

+ 3δ2q210(T0 − τ2,T1 − τ2)

× q11(T0 − τ2,T1 − τ2) (8.2)

The solution of Eqs. (7) can be expressed as follows:

q10(T0,T1) = A(T1)eiωT0 + cc (9.1)

q20(T0,T1) =
δ2(λ− 3iω)
(λ2 + 9ω2)

A3e3iω(T0−τ2)

+
(λ− iω)
(λ2 + ω2)

(Aδ1 + 3A2Āδ2)eiω(T0−τ2)

+C(T1)e−λT0 + cc (9.2)

where cc denotes the complex conjugate terms. According
to Eqs. (9.2), the time-delayed solution can be expressed as
follows:

q20(T0−τ1,T1)=
δ2(λ− 3iω)
(λ2 + 9ω2)

A3e3iω(T0−τ1−τ2)

+
(λ− iω)
(λ2+ω2)

(Aδ1+3A2Āδ2)eiω(T0−τ1−τ2)

+C(T1)e−λ(T0−τ1) + cc (10)

Substituting Eqs. (9) and (10) into Eq. (8.1), we have(
D2
0 + ω

2
)
q11 = eiωT0

(
−2 iωD1A+ A (−2 iµω2

+
γ δ1(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+A2Ā
(
−3 α + 2βω2

+
3γ δ2(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+
ηf
2
(2ω + σ )2Ā eiσT1

)
+ (A3(−α + 2ω2β

+
γ δ2(λ− 3iω)
(λ2 + 9ω2)

e−3iω(τ1+τ2))

+
ηf
2
(2ω + σ )2AeiσT1 )e3iωT0

+ γC(T1)e−λ(T0−τ1) + cc (11)
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After forcing the secular term in Eq. (11) to be zero, the
equation solution can be expressed as follows:

q11(T0,T1) = −
1

8ω2 (A
3(−α + 2ω2β

+
γ δ2(λ− 3iω)
(λ2 + 9ω2)

e−3i(ωτ1+τ2))

+
ηf
2
(2ω + σ )2AeiσT1 )e3iωT0

+
γ

(ω2 + λ2)
C(T1)e−λ(T0−τ1) + cc (12)

According to Eq. (12), the time-delayed solution can be
expressed as follows:

q11(T0 − τ2,T1)=−
1

8ω2 (A
3(−α + 2ω2β

+
γ δ2(λ− 3iω)
(λ2 + 9ω2)

e−3i(ωτ1+τ2))

+
ηf
2
(2ω + σ )2AeiσT1 )e3iω(T0−τ2)

+
γ

(ω2 + λ2)
C(T1)e−λ(T0−τ1−τ2) + cc

(13)

Based on Eqs. (9) and (12), one can find the solvability
condition of Eq. (8.2) as follows:

(D1 +M)C(T1) = 0 (14)

According to Eq. (14), we have

C(T1) = ψe−
∫
MdT1 , ψ = constant,

M = −(δ1 + 6δ2AĀ)
γ eλ(τ1+τ2)

(ω2 + λ2)
(15)

Accordingly, the solvability condition of Eq. (11) can be
given as:

−2iωD1A+ A
(
−2 iµω2

+
γ δ1(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+A2Ā
(
−3 α + 2βω2

+
3γ δ2(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+
ηf
2
(2ω + σ )2ĀeiσT1 = 0 (16)

Multiplying Eq. (16) by ρ with making ρ tends to unity
and by using Eq. (6), we have

−2iω
dA
dt
+ A

(
−2 iµω2

+
γ δ1(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+A2Ā
(
−3 α + 2βω2

+
3γ δ2(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+
ηf
2
(2ω + σ )2Āeiσ t = 0 (17)

Equation (17) is a first-order nonlinear differential equa-
tion with complex coefficients. Following Nayfeh and
Mook [30], the functionA(t) may be expressed in a polar form
as:

A(t) =
1
2
a(t)eiθ(t) (18)

where a(t) is the instantaneous oscillation amplitude of the
periodically excited system given by Eqs. (2), and θ(t) is the
corresponding phase-angle. Inserting Eq. (18) into Eq. (17)

−iω(ȧ+iθ̇a)eiθ+
1
2
a
(
−2 iµω2

+
γ δ1(λ− iω)
(λ2+ω2)

× e−iω(τ1+τ2)
)
eiθ +

1
8
a3
(
−3 α + 2βω2

+
3γ δ2(λ− iω)
(λ2 + ω2)

× e−iω(τ1+τ2)
)
eiθ +

ηf
4
a(2ω + σ )2ei(σ t−θ) = 0 (19)

Dividing Eq. (19) by eiθ , and let φ = σ t − 2θ , yields:

−iω(ȧ+ iθ̇a)+
1
2
a
(
−2 iµω2

+
γ δ1(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)

+
1
8
a3
(
−3 α + 2βω2

+
3γ δ2(λ− iω)
(λ2 + ω2)

e−iω(τ1+τ2)
)
eiθ

+
ηf
4
a(2ω + σ )2eiϕ = 0 (20)

Expanding Eq. (20) to separate the real and imaginary
part [31], we have:

−φ̇ +

(
σ −

γ δ1

(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
λγ δ1

ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
+

a2

4ω
(−3 α

+ 2ω2β −
3ωγ δ2

(ω2 + λ2)
sin(ωτ1 + ωτ2)+

3λγ δ2
(ω2 + λ2)

× cos(ωτ1 + ωτ2))+
ηf
2ω

(2ω + σ )2 cos(φ)

+ i
(
−ȧ− ωa

(
µ+

λγ δ1

2ω2(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
γ δ1

2ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
− ω3a3

×

(
3λγ δ2

8ω4(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
3γ δ2

8ω3(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
+
ηfa
4ω

(2ω + σ )2 sin(φ)
)
= 0 (21)

Separating the real and imaginary part of Eq. (21), we get:

ȧ = −ωa
(
µ+

λγ δ1

2ω2(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
γ δ1

2ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
−ω3a3

(
3λγ δ2

8ω4(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
3γ δ2

8ω3(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
+
ηfa
4ω

(2ω + σ )2 sin(φ), (22.1)

φ̇ =

(
σ −

γ δ1

(ω2 + λ2)
sin(ωτ1 + ωτ2)
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+
λγ δ1

ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
+
a2

4ω
(−3 α + 2ω2β −

3ωγ δ2
(ω2 + λ2)

sin(ωτ1 + ωτ2)

+
3λγ δ2

(ω2 + λ2)
cos(ωτ1 + ωτ2))

+
ηf
2ω

(2ω + σ )2 cos(φ). (22.2)

Eqs. (22) are the slow flow modulating equations that
govern the evaluations of both the oscillation amplitude and
the phase angle of the periodically excited system given by
Eqs. (2). At steady-state oscillations, the rate of change of the
oscillation amplitude and phase angle is zero, which means
that ȧ = φ̇ = 0.0. Substituting ȧ = φ̇ = 0.0 into Eqs. (22),
we have
ηfa
4ω

(2ω + σ )2 sin(φ)

= ωa
(
µ+

λγ δ1

2ω2(ω2 + λ2)

× sin(ωτ1 + ωτ2)+
γ δ1

2ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
+ω3a3

(
3λγ δ2

8ω4(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
3γ δ2

8ω3(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
, (23.1)

−
ηf
2ω

(2ω + σ )2 cos(φ)

=

(
σ −

γ δ1

(ω2 + λ2)

× sin(ωτ1 + ωτ2)+
λγ δ1

ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
+
a2

4ω

(
−3α + 2ω2β −

3ωγ δ2
(ω2 + λ2)

sin(ωτ1 + ωτ2)

+
3λγ δ2

(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
. (23.2)

By squaring and adding Eqs. (23), we can obtain the fol-
lowing nonlinear algebraic equation:

η2f 2

4ω2 (2ω + σ )
4

=

[
−2ω

(
µ+

λγ δ1

2ω2(ω2 + λ2)

× sin(ωτ1 + ωτ2)+
γ δ1

2ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
−

3a2

4

(
λγ δ2

ω(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
γ δ2

(ω2 + λ2)
cos(ωτ1 + ωτ2)

)]2
+

[(
σ −

γ δ1

(ω2 + λ2)
sinω(τ1 + τ2)+

+
λγ δ1

ω(ω2 + λ2)
cosω(τ1 + τ2)

)
+

a2

4ω
(−3 α

+ 2ω2β −
3ωγ δ2

(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
3λγ δ2

(ω2 + λ2)
cos(ωτ1 + ωτ2))

]2
(24)

Equation (24) is known as the frequency response
equation that governs the steady-state oscillation ampli-
tude of Eq. (2) as a function of the different system
parameters (i.e., µ, α, β, η, f ) and control parameters (i.e.,
γ, δ1, δ2, λ, τ1, τ2). Accordingly, the influence of the dif-
ferent control parameters (i.e., γ, δ1, δ2, τ1, τ2) on the main
system oscillation amplitude (i.e., a) can be explored via
solving Eq. (24) as illustrated in the next section. Moreover,
to investigate the solution stability of Eq. (24), the Lyapunov
direct method can be applied via examining the eigenvalues
of the Jacobian matrix of the dynamical system given by
Eqs. (22). Let a10 and φ10 is the solution of Eqs. (24), and a11
and φ11 are a small perturbation about this solution, we can
assume

a=a10 + a11, φ=φ10+φ11 ⇒ ȧ= ȧ11, φ̇= φ̇11. (25)

By substituting Eq. (25) into Eqs. (22), and expanding the
resulting equations for the small perturbation, and keeping
only the linear terms, one can obtain the following linear
dynamical system:(

ȧ11
φ̇11

)
=

(
J11 J12
J21 J22

) (
a11
φ11

)
(26)

The above square matrix is the Jacobian matrix of the
nonlinear system given by Eq. (22), where

J11 = −ω
(
µ+

λγ δ1

2ω2(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
γ δ1

2ω(ω2 + λ2)
cos(ωτ1 + ωτ2)

)
−

9a2

8

(
λγ δ2

ω(ω2 + λ2)
sin(ωτ1+ωτ2)

+
γ δ2

(ω2+λ2)
cos(ωτ1+ωτ2)

)
+
ηf
4ω

(2ω+σ )2 sin(φ),

J12 =
ηfa
4ω

(2ω + σ )2 cos(φ),

J21 =
a
2ω

(−3 α + 2ω2β −
3ωγ δ2

(ω2 + λ2)
sin(ωτ1 + ωτ2)

+
3λγ δ2

(ω2 + λ2)
cos(ωτ1 + ωτ2)) ,

J22 = −
ηf
2ω

(2ω + σ )2 sin(φ).

According to the above Jacobin matrix, the characteristic
polynomial of the linear system given by Eq. (26) is:

12
− (J11 + J22)1+ (J11J22 − J12J21) = 0 (27)

where the necessary and sufficient conditions for the stability
of Eq. (24) may be expressed as follows depending on the
Routh-Hurwitz criterion:

J11 + J22 < 0 and J11J22 − J12J21 > 0 (28)
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Accordingly, the efficiency of the applied controller (i.e.,
TDNIRC) in suppressing the nonlinear vibration of the con-
sidered system (i.e., cantilever beam system) can be explored
via plotting the system vibration oscillation amplitude (a)
against the detuning parameter (σ ) at the different val-
ues of the controller parameters (i.e., γ, δ1, δ2, τ1, τ2) using
Eq. (24). In addition, the stability behaviors can be investi-
gated by applying the conditions given by Eq. (28).

III. RESPONSE CURVES AND TEMPORAL OSCILLATIONS
The efficiency of the proposed controller (TDNIRC) in elim-
inating the nonlinear principal parametric oscillations of the
cantilever beam system is investigated within this section.
The system vibration amplitude (a) is plotted versus the
detuning parameter (σ ) for the different values of the control
parameters (γ, δ1, δ2, τ1, τ2) via solving Eq. (24). In addi-
tion, the stability of the obtained solution has been checked
according to the Routh-Hurwitz criterion using Eq. (28). The
stable solutions are plotted as a solid line while the unstable
solutions are plotted as dashed ones. Moreover, the controlled
system temporal equations (i.e., Eqs. (2)) have been solved
numerically using MATLAB algorithmsODE45 (when τ1 =
τ2 = 0.0) and DDE23 (when τ1 6= 0.0, τ2 6= 0.0) to
confirm the obtained analytical results. The analytical and
numerical simulations are performed utilizing the following
values of the system parameters [27]: f = 0.1, η = 1.5, µ =
0.05, ω = 3.06, α = 14.4, β = 3.27, � = 2ω + σ, λ =
1.0, γ = 1.0, δ1 = 1.0, δ2 = 1.0, and τ1 = τ2 = 0.0, unless
otherwise mentioned.

A. SYSTEM OSCILLATORY BEHAVIOR BEFORE CONTROL
The main system frequency-response and force-response
curves before control are illustrated in Fig. 2, where Fig. 2a
shows the system frequency-response curve when the exci-
tation force f = 0.1, and Fig. 2b illustrates the system
force-response curve for three different values of the detuning
parameter σ . It is clear from Fig. 2a that the parametrically
excited system can exhibit a jump phenomenon either when
increasing or decreasing the excitation frequency (�) about
twice of its natural frequency (2ω). Increasing σ (i.e., increas-
ing � = 2ω + σ ) from the negative to the positive values,
the system vibration amplitude will follow the path AB with
the trivial solution (i.e., a = 0) until σ reaches the point B.
For a very slight increase of σ beyond the point B, an abrupt
increase of the oscillation amplitude will occur (jump from
B to C) where the system oscillation amplitude will follow
the path CDE . On the other hand, decreasing σ from the
positive to the negative values, the system vibration amplitude
will follow the path EDC until it reaches the point F . For
a very slight decrease of σ beyond this value, an abrupt
decrease of the oscillation amplitude will occur where the
system amplitude will jump down from the point F to A.
By examining Fig. 2a, we can confirm that the parametrically
excited system may respond with a single nontrivial stable
solution when σ lies between the points A and B, while if σ
lies on the right hand of the point B, the system will exhibit

a trivial oscillation amplitude. Besides, if σ lies between the
points A and B, the system will perform one of two stable
solutions depending on the initial conditions, where one of
them is the trivial solution. Moreover, Fig. 2b shows that the
vibration amplitude (a) is a monotonic increasing function
of the excitation force regardless of the detuning parameters.
The main objective of the current study is to control these
dynamical behaviors and to eliminate the nonlinear oscilla-
tions of such systems. Accordingly, a novel control method
(i.e., TDNIRC) is introduced within this work for the first
time to investigate its efficiency in controlling dynamical
behaviors of the parametrically excited nonlinear systems as
explained in sections III.B and III.C.

B. THE NONLINEAR INTEGRAL RESONANT CONTROLLER
WHEN τ1 = τ2 = 0.0
The performance of the Nonlinear Integral Resonant Con-
troller (NIRC) in eliminating the nonlinear vibration of the
system principal parametric excitations (when the time delay
is zero) is explored within this subsection. The dynamical
behaviors of the applied controller can be explained simply
depending on the obtained slow flow modulating equations
(i.e., Eqs. (22)) when τ1 = τ2 = 0.0. It is clear from Eq. 22a
that the applied controller has modified the system linear
damping coefficient (µL) and nonlinear damping coefficient
(µN ) to become:

µL(γ, δ1) = µ+
γ δ1

2ω(ω2 + λ2)
,

µN (γ, δ2) =
3γ δ2

8ω3(ω2 + λ2)

 (29)

It is clear from Eq. (25) that the linear damping coefficient
(µL) depends on the product of both the control signal gain
(γ ) and the linear feedback signal gain (δ1), while the nonlin-
ear damping coefficient (µN ) depends on the product of both
the control signal gain (γ ) and the nonlinear feedback signal
gain (δ2). Accordingly, µLµN are plotted as two-variable
functions as shown in Fig. 3.

In the light of the above explanations, the controlled system
frequency-response curve is plotted via solving Eq. (24) for
the different values of both the control and feedback signal
gains as illustrated in Figs. 4 to 8. The efficiency of the Lin-
ear Integral Resonant Controller (LIRC) is explored through
Figs. 4 and 5, where Fig.4a illustrates the system frequency-
response curve for four different values of the control signal
gain (γ = 1, 2, 4, 6) when δ1 = 1.0 and δ2 = 0.0, while
Fig. 4b shows the system frequency-response curve for four
different values of the linear feedback signal gain (i.e. δ1 =
1, 2, 4, 6) when γ = 1.0 and δ2 = 0.0. In general, Fig. 4 con-
firms that the effect of increasing either γ or δ1 on the sys-
tem oscillation amplitude is the same because the equivalent
linear damping coefficient (µL) depends on the product of
γ and δ1 as in Eq. (29). In addition, the figure illustrates that
the increasing of γ or δ1, decreases the system oscillations
amplitudes due to increasing the system equivalent linear
damping coefficient (µL).
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FIGURE 2. The system response curves before control: (a) frequency-response curve when f = 0.1, and (b) force-response curves when
σ = −0.5,0.0, and 0.5.

FIGURE 3. The controlled system equivalent damping coefficients µL and µN as a function of the control gain γ and feedback gains δ1 and δ2:
(a) the equivalent linear damping coefficient µL as a function of the control gain γ and feedback gain δ1, and (b) the equivalent nonlinear
damping coefficient µN as a function of the control gain γ and feedback gain δ2.

It is well known that Figs. 3 and 4 are obtained based
on Eq. (24) that represents the approximate solution of the
original dynamical system given by Eqs. (2). Accordingly,
to confirm the accuracy of the obtained frequency-response
curves given in Fig. 4, Eqs. (2) have been solved numeri-
cally using the MATLAB ODE45 algorithm, where the sys-
tem temporal oscillation is simulated as shown in Fig. 5.
Fig. 5a illustrates the controlled system temporal oscillation
according to Fig. 4a when f = 0.1, σ = 0.0, δ1 = 1.0,
δ2 = 0.0 for three different values of the control signal gain

(i.e. γ = 2, 4, 6), while Fig. 5b shows the controlled system
temporal oscillation according to Fig. 4b when f = 0.1, σ =
0.0, γ = 1.0, δ2 = 0.0 for three different values of the linear
feedback signal gain (i.e. δ1 = 2, 4, 6). By examining Fig. 5,
we can deduce that the considered system vibration amplitude
is a monotonic decreasing function of both the control signal
gain (γ ) and the linear feedback signal gain (δ1). More-
over, Fig. 5 confirms the excellent agreement of the numer-
ical simulations with the analytical results that are given
by Fig. 4.
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FIGURE 4. The controlled system frequency-response curves at different values of both the linear control and feedback gains when δ2 = 0.0: (a) the
system frequency-response curve at four different values of the control signal gain γ when δ1 = 1.0, and (b) the system frequency-response curve at
four different values of the linear feedback signal gain δ1 when γ = 1.0.

FIGURE 5. The time-history of the controlled system at σ = 0 according to Fig. 4: (a) the system time history when sweeping the control gain (γ ) from 2 to
4, then to 6, and (b) the system time history when sweeping the linear feedback gain (δ1) from 2 to 4, then to 6.

According to Eq. (29), the nonlinear damping coefficient
(µN ) is proportional to the product of both the control sig-
nal gain (γ ) and the nonlinear feedback signal gain (δ2).
Accordingly, the controlled system frequency-response curve
when δ1 = 0.0 is illustrated in Fig. 6. Fig. 6a shows the
system frequency-response curve of the considered system
when γ = 1.0, δ1 = 0.0 for four different values of the
nonlinear feedback signal gain (i.e., δ2 = 1, 2, 4, 6), while
Fig. 6b illustrates the controlled system frequency-response
curve at δ1 = 0.0 for four different values of the linear control
gain and nonlinear feedback gain (i.e, γ = δ2 = 1, 2, 4, 6).
Comparing Figs. 6a and 6.b, we can deduce that the system

vibration amplitude is a monotonic decreasing function of
the product of the linear control gain (γ ) and the nonlinear
feedback gain (δ2).
The efficiency of both the LIRC andNIRC are compared as

shown in Fig. 7, where Fig. 7a shows the considered system
frequency-response curve when δ2 = 0.0 for three different
values of γ = δ1 = 1, 2, 3 and Fig. 7b illustrates the
same frequency-response curve for three different values of
γ = δ1 = δ2 = 1, 2, 3. Comparing Fig. 7a and 7b, we can
deduce that two controllers have eliminated the system vibra-
tion at γ = δ1 = δ2 = 3. However, the NIRC has the
highest efficiency in mitigating the system vibrations when
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FIGURE 6. The controlled system frequency-response curves at different values of both the linear control gain and nonlinear feedback gain when
δ1 = 0.0: (a) the system frequency-response curve at four different values of the nonlinear feedback gain δ2 when γ = 1.0, and (b) the system
frequency-response curve at four different values of both the control signal gain and nonlinear feedback gain.

FIGURE 7. The controlled system frequency-response curves: (a) at three different values of both the control gain and linear feedback gain, and (b) at
three different values of both the control gain, linear feedback gain, and nonlinear feedback gain.

the control and feedback gains are lower than three. (i.e.,
γ = δ1 = δ2 < 3).

Numerical simulations for the oscillatory behaviors of
the considered system are illustrated in Fig. 8 according to
Fig. 7 at σ = 0.0. Fig. 8a shows the system temporal

oscillations according to Fig. 7awhen σ = δ2 = 0.0 for
three different values of the linear control and feedback gains
(i.e. γ = δ1 = 1, 2, 3), while Fig. 8b illustrates the system
temporal oscillations according to Fig. 7b when σ = 0.0
for three different values of the control and feedback gains
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FIGURE 8. The time-history of the controlled system according to Fig. 7 when σ = 0: (a) the system time history according to Fig. 7a when sweeping the
control gain (γ ) and linear feedback gain (δ1) from 1 to 2, then to 3 at δ2 = 0.0, and (b) the system time history according to Fig. 7b when sweeping the
control gain (γ ), linear feedback gain (δ1), and nonlinear feedback gain (δ2) from 1 to 2, then to 3.

FIGURE 9. The controlled system equivalent damping coefficients µDL and µDN as a function of the time-delay (τ = τ1 + τ2), the control gain γ and
feedback gains δ1 and δ2: (a) the equivalent linear damping coefficient µDL as a function of the time-delay (τ ) and the product of the linear control
and feedback gains (γ δ1), and (b) the equivalent nonlinear damping coefficient µDN as a function of the time-delay (τ ) and the product of the linear
control gain and nonlinear feedback gain (γ δ2).

(i.e. γ = δ1 = δ2 = 1, 2, 3). It is clear from Fig. 8 that
both the LIRC and the NIRC have suppressed the system
oscillation amplitude to zero when γ = δ1 = δ2 = 3.
However, the vibrations suppression efficiency of NIRC is
higher than that of LIRC when γ = δ1 = δ2 < 3.

C. NONLINEAR INTEGRAL RESONANT CONTROLLER WITH
TIME-DELAYS (τ = τ1 + τ2 6= 0.0)
The effect of the time-delays on the vibration mitigation
performance of the introduced controller is discussed within
this subsection depending on the obtained amplitude-phase
modulating equations (i.e., Eqs. (22)). Referring to Eq. (22a),

we can deduce that the linear and nonlinear damping coeffi-
cients of the time-delayed dynamical system given by Eqs. (2)
can be expressed as follows:

µDL(τ, γ δ1) = µ+
λγ δ1

2ω2(ω2 + λ2)
sin(ωτ )

+
γ δ1

2ω(ω2 + λ2)
cos(ωτ ) (30.1)

µDN (τ, γ δ2) =
3λγ δ2

8ω4(ω2 + λ2)
sin(ωτ )

+
3γ δ2

8ω3(ω2 + λ2)
cos(ωτ ) (30.2)
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FIGURE 10. The controlled system stability charts in γ − τ plane at different values of the linear and nonlinear feedback signal gains when f = σ = 0.0:
(a) the controlled system stability chart when δ1 = 1.0 and δ2 = 0.0, (b) the controlled system stability chart when δ1 = 0.0 and δ2 = 1.0, and (c) the
controlled system stability chart when δ1 = δ2 = 1.0.

FIGURE 11. The controlled time-history according to Fig. 10: (a) the system time history according to the marked point P1 on Fig. 10a (i.e.,
f = 0.1, σ = 0, δ1 = 1.0, δ2 = 0.0, γ = 2, τ1 + τ2 = 1), (b) the system time history according to the marked point P2 on Fig. 10b (i.e.
f = 0.1, σ = 0, δ1 = 0.0, δ2 = 1.0, γ = 2, τ1 + τ2 = 1), and (c) the system time history according to the marked point P3 on Fig. 10c (i.e.
f = 0.1, σ = 0, δ1 = δ2 = 1.0, γ = 2, τ1 + τ2 = 1).

where µDL , µDN are the linear and nonlinear damping coef-
ficients of the time-delayed dynamical system, respectively,
and τ = τ1+τ2. Referring to Eqs. (30), we can deduce that the
linear damping coefficient (µDL) depends on the product of

γ and δ1 and on the sum of the loop delays (i.e. τ = τ1+ τ2),
while the nonlinear damping coefficient (µDN ) depends on
the product of γ and δ2 and on the sum of the loop delays (i.e.
τ = τ1 + τ2). Accordingly, the two functions µDL(τ, γ δ1)
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FIGURE 12. (a) the equivalent linear damping coefficient of the controlled system (µDL) versus the loop-delays (τ = τ1 + τ2) when γ δ1 = 4.0,
and (b) the controlled system frequency response-curve according to Fig. 12a at three different values of the loop-delay (τ1 + τ2).

FIGURE 13. The controlled system time-history according to Fig. 12b: (a) the system time-history according to Fig. 12b when τ1 + τ2 = 0.1 and 2.16, (b)
the system time-history according to Fig. 12b when τ1 + τ2 = 0.5, and (c) the system time-history according to Fig. 12b when τ1 + τ2 = 1.13.

and µDN (τ, γ δ2) are plotted as a function of two variables
in Fig. 9. It is clear from the figure that µDL and µDN are
periodic functions of the sum of the loop delays. In addition,

increasing the control gain (γ ) and the feedback gains
(δ1 and δ2) increases the fluctuation of the two functions
making them fluctuate between the positive and negative
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FIGURE 14. (a) The equivalent nonlinear damping coefficient of the controlled system (µDN ) versus the loop-delay (τ = τ1 + τ2) when
γ δ2 = 4.0, δ1 = 0.0, and (b) the controlled system frequency response-curve according to Fig. 14a at three different values of the loop-delay
(τ1 + τ2).

FIGURE 15. The controlled system time-history according to Fig. 14b: (a) the system time-history according to Fig. 14b when τ1 + τ2 = 0.1 and
2.16, (b) the system time-history according to Fig. 14b when τ1 + τ2 = 0.5, and (c) the system time-history according to Fig. 14b when
τ1 + τ2 = 1.13.

values as is clear in Fig. 9. Accordingly, the existence of
the time-delays in the control loop of the proposed controller
(i.e., LIRC or NIRC) may improve the controller efficiency

via selecting the loop-delays (τ ) and the control parameters
(γ, δ1, δ2) in such a way as to maximize µDL(τ, γ δ1) and
µDN (τ, γ δ2). However, the time-delays may be the main
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FIGURE 16. (a) The equivalent linear and nonlinear damping coefficients of the controlled system versus the loop-delay (τ = τ1 + τ2) when
γ δ1 = γ δ2 = 4.0, and (b) the controlled system frequency response-curve according to Fig. 16a at three different values of the loop-delay (τ1 + τ2).

reason for the system instability if the loop-delays and
control parameters are selected in such a way that makes
µDL (τ, γ δ1) < 0 and µDN (τ, γ δ2) < 0.
Accordingly, the stability chart of the considered sys-

tem has been plotted depending on Eqs. (24, 26) as shown
in Fig. 10 for different values of the feedback signal gains (δ1
and δ2). Fig. 10a shows the system stability chart in γ − τ
plane when f = 0.1, σ = 0.0, δ1 = 1.0, δ2 = 0, Fig. 10b
illustrates the system stability chart in γ − τ plane when
f = 0.1, σ = 0.0, δ1 = 0, δ2 = 1.0, and Fig. 10c depicts
the system stability chart in γ − τ plane when f = 0.1,
σ = 0.0, δ1 = δ2 = 1. The unstable solution regions
are illustrated as a yellow area surrounded by a Hopf-curve.
By comparing Fig. 9 and Fig. 10, we can deduce that Fig. 10 is
the projection of Fig. 9 on γ − τ plane, where the unstable
solution regions in Fig.10 are the areas at which µDL < 0
or/and µDN < 0 as shown in Fig. 9. It is worth to mention
that the Hopf-curve is the loci of the solution of Eq. (24)
at which the eigenvalues of Eq. (26) are pure imaginary, (a
detailed analysis for obtaining the Hopf curve can be found
in Refs. [32], [33]).

To validate the accuracy of the obtained stability charts
in Fig. 10, a numerical simulation for the considered system
according to the three marked points P1,P2, and P3 has been
performed via solving the system original equations (i.e.,
Eqs. (2)) utilizing theMATLAB DDE23 algorithm as shown
in Fig. 11, where Figs. 11a and 11b show the system temporal
oscillation according to the points P1 and P2 that are marked
on Figs. 10a and 10b, respectively. In addition, Fig. 11c shows
the system temporal oscillation according to the point P3
that is marked on Fig. 10c. Comparing Fig. 11 with Fig. 10,

we can deduce that the system responds with a bounded oscil-
lation amplitude as in Figs. 11a and 11b because the points
P1 and P2 have been selected within the stable solution
region. On the other hand, the controlled system responds
with an unbounded oscillation amplitude as in Fig. 11c
because the point P3 has been selected within the unstable
solution region.

Depending on the above discussion, the influence of the
loop-delays (τ = τ1 + τ2) as a new controller parameter
on the controlled system frequency-response curve will be
discussed here. The equivalent linear damping coefficient
µDL is plotted as a function of the loop-delays only as
shown in Fig. 12a when γ δ1 = 4.0. It is clear from the
figure that the linear damping coefficient µDL is a periodic
function of loop-delays (τ1 + τ2) that fluctuate between the
negative and positive values. Accordingly, we can deduce
that the optimum loop-delays value that improves the pro-
posed controller efficiency is that which maximizes the linear
damping coefficient µDL (i.e., the optimum loop-delays are
τ = 0.1, 2.16, 4.21, . . . ). On the other hand, the worst
loop-delays value is that which minimizes the linear damp-
ing coefficient µDL(i.e., the worst loop-delays are τ =
1.13, 3.18, . . .). According to Fig. 12a, the controlled system
frequency-response curve is obtained at different values of
the loop-delays when f = 0.1, δ2 = 0.0, γ δ1 = 4.0 as
shown in Fig. 12b. By comparing Figs. 12a and 12b, the
best controller efficiency has occurred at τ1 + τ2 = 0.1 or
2.16, while the worst control performance has happened at
τ1 + τ2 = 1.13.
To confirm the accuracy of the obtained frequency-

response curves given by Fig. 12b, the controlled system
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FIGURE 17. The controlled system time-history according to Fig. 16b: (a) the system time-history according to Fig. 16b when τ1 + τ2 = 0.1 and 2.16, (b)
the system time-history according to Fig. 16b when τ1 + τ2 = 0.5, and (c) the system time-history according to Fig. 16b when τ1 + τ2 = 1.13.

temporal equations (i.e., Eqs. (2)) are numerically simulated
according to Fig. 12b (i.e. when f = 0.1, γ δ1 = 4.0, δ2 =
0.0, σ = 0.0) for the different values of the loop-delays as
shown in Fig. 13, where Fig. 13a illustrates the system time
history according to Fig. 12b when σ = 0.0 at τ1 + τ2 = 0.1
and 2.16. In addition, Figs. 13b and 13c illustrate the system
temporal oscillation according to Fig. 12b at σ = 0.0 when
τ1 + τ2 = 0.5 and 1.13, respectively. According to Fig. 12a,
12b, and 13, we can confirm that the selection of the control
parameters γ, δ1, and τ1 + τ2 in such a way that maximizes
µDL will optimize the control performance of the linear inte-
gral resonant controller.

The equivalent nonlinear damping coefficient µDN is plot-
ted as a function of the loop-delays only as shown in Fig. 14a
when γ δ2 = 4.0. It is clear from the figure that the
nonlinear damping coefficient µDN is a periodic function
of loop-delays (τ1 + τ2) that fluctuate between the nega-
tive and positive values. Accordingly, we can deduce that
the optimum loop-delays value that improves the proposed
controller efficiency is that which maximizes the nonlin-
ear damping coefficient µDN (i.e., the optimum loop-delays

are = 0.1, 2.16, 4.21, . . .). On the other hand, the worst
loop-delays value is that which minimizes the nonlinear
damping coefficient µDN (i.e., the worst loop-delays are
τ = 1.13, 3.18, . . .). According to Fig. 14a, the controlled
system frequency-response curve is obtained at different val-
ues of the loop-delays when f = 0.1, δ1 = 0.0, γ δ2 = 4.0 as
shown in Fig. 14b. By comparing Figs. 14a and 14b, it is clear
that the best controller efficiency has occurred at τ1+τ2 = 0.1
or 2.16, while the worst control performance has happened at
τ1 + τ2 = 1.13.
To confirm the accuracy of the obtained frequency-

response curves given by Fig. 14b, the controlled system
temporal equations (i.e., Eqs. (2)) are numerically simulated
according to Fig. 14b (i.e. when f = 0.1, γ δ2 = 4.0, δ1 =
0.0, and σ = 0.0) for the different values of the loop-delays
as shown in Fig. 15, where Fig. 15a illustrates the system
temporal oscillation according to Fig. 14b when σ = 0.0 at
τ1 + τ2 = 0.1 and 2.16. Also, Figs. 15b and 15c illustrate
the system temporal oscillation according to Fig. 14b when
σ = 0.0 at τ1 + τ2 = 0.5 and 1.13, respectively. According
to Fig. 14a, 14b, and 15, we can confirm that the selection of
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the control parameters γ, δ2, and τ1 + τ2 in such a way that
maximizes µDN will optimize the control performance of the
proposed controller.

The dynamical behaviors of the whole proposed controller
(i.e., γ 6= 0, δ1 6= 0, δ2 6= 0, τ1 + τ2 6= 0) are
investigated as shown in Figs. 16 and 17. The equivalent
linear and nonlinear damping coefficients are plotted as a
function of the loop-delays only as shown in Fig. 16a when
γ δ1 = γ δ2 = 4.0. It is clear from the figure the optimum
loop-delays value that improves the controller efficiency
is that which maximizes the linear and nonlinear damping
coefficients. According to Fig. 16a, the controlled system
frequency-response curve is obtained at different values of
the loop-delays when f = 0.1, γ δ1 = γ δ2 = 4.0 as
shown in Fig. 16b. By comparing Figs. 16a and 16b, it is
clear that the best controller efficiency has occurred at τ1 +
τ2 = 0.1 or 2.16, while the worst control performance has
happened at τ1 + τ2 = 1.13. To confirm the accuracy of
the obtained frequency-response curves given by Fig. 16b,
the controlled system original equations (i.e., Eqs. (2)) are
numerically simulated according to Fig. 16b (i.e. when f =
0.1, γ δ1 = γ δ2 = 4.0, and σ = 0.0) for the differ-
ent values of the loop-delays as shown in Fig. 17, where
Fig. 17a illustrates the system temporal oscillation according
to Fig. 16b when σ = 0.0 at τ1 + τ2 = 0.1 and 2.16.
Also, Figs. 17b and 17c illustrate the system temporal oscil-
lation according to Fig. 16b when σ = 0.0 at τ1 + τ2 =
0.5 and 1.13, respectively. According to Fig. 16, and 17,
we can confirm that the selection of the control parameters
γ, δ1, δ2, and τ1 + τ2 in such a way that maximizes µDL and
µDN will optimize the control performance of the proposed
controller.

IV. CONCLUSION
The time-delayed nonlinear integral resonant controller is
introduced to control the nonlinear oscillation of a parametri-
cally excited system as a new control method. The controlled
system is described by a time-delayed second-order nonlin-
ear differential equation excited parametrically (i.e., beam
system) and coupled to a first-order differential equation
(i.e., controller). The multiple scales homotopy approach is
applied to analyze the mathematical model of the controlled
system. The influences of the different control parameters and
the loop-delays on system steady-state vibration amplitude
are explored via plotting the different bifurcation diagrams.
Stability charts of the loop delays are obtained. The optimum
working conditions for the proposed controller are reported
either when the loop-delays are considered or neglected.
Based on the obtained results, the following points can be
concluded.

A. THE CONTROLLED SYSTEM WITHOUT TIME-DELAYS
1. The nonlinear integral resonant controller has modified

the linear damping coefficient of the considered system
(i.e., µ) to become µL = µ +

γ δ1
2ω(ω2+λ2)

. In addition,

the nonlinear damping coefficient µN =
3γ δ2

8ω3(ω2+λ2)
has

appeared in the amplitude-phase modulating equations.
2. The efficiency of the linear integral resonant controller

(i.e., when δ2 = 0.0) depends on the product of the linear
feedback gain (δ1) and control gain (γ ).

3. The efficiency of the nonlinear integral resonant controller
depends on the product of the linear feedback gain (δ1) and
control gain (γ ) as well as the product of the nonlinear
feedback gain (δ2) and control gain (γ ).

4. The selection of the control and feedback signal gains
in such a way that maximizes (γ × δ1) and (γ×δ2) will
improve the proposed controller efficiency in suppressing
the system parametric vibrations.

B. THE CONTROLLED SYSTEM WITH TIME-DELAYS
5. The time-delayed nonlinear integral resonant con-

troller has modified the linear damping coefficient of
the considered system (i.e. µ) to become µDL =
µ +

λγ δ1
2ω2(ω2+λ2)

sin (ωτ) + γ δ1
2ω(ω2+λ2)

cos (ωτ) and
the nonlinear damping coefficient became µDN =

3λγ δ2
8ω4(ω2+λ2)

sin (ωτ) + 3γ δ2
8ω3(ω2+λ2)

cos (ωτ), where τ

is the sum of the time-delays in the control loop
(i.e. τ = τ1 + τ2).

6. Depending on point (5), the controlled system damping
coefficients (µDL andµDN ) are periodic functions of the
sum of the loop-delays, where µDL and µDN can fluctu-
ate between the positive and negative values depending
on the magnitude of both the control and feedback signal
gains.

7. Selecting the loop-delays in such a way that maxi-
mizes the linear and nonlinear damping coefficients
(µDL and µDN ) will optimize the vibration suppression
efficiency of the proposed controller.

8. Selecting the loop-delays in such a way that mini-
mizes the linear and nonlinear damping coefficients
(µDL and µDN ) will be destabilized the controlled sys-
tem as in Figs. 13c, 15c, and 17c.

9. The nonlinear integral resonant controller is more effi-
cient than the linear integral resonant controller, where
the nonlinear one adds nonlinear damping to the con-
trolled system besides increasing its linear damping
coefficient.

10. Finally, it is recommended to implement the time-
delayed nonlinear integral resonant controller experi-
mentally in the future as an efficient control strategy in
suppressing the parametrically excited oscillations.
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