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ABSTRACT DNA microarray data analysis is infamous due to a massive number of features, imbalanced
class distribution, and limited available samples. In this paper, we focus on high-dimensional multi-class
imbalanced problems. The high dimensional and multi-class imbalanced problem has posed acute challenges
for the conventional classifiers to effectively perform classification tasks on both the minority and majority
classes. Numerous efforts have been devoted to addressing either high dimensionality dataset or class
imbalance problems. Nonetheless, few methods have been proposed to address the intersection of multi-
class imbalanced and high-dimensional problems concurrently due to their intricate interactions. This paper
presents novel hybrid algorithms for feature selection with the high dimensional multi-class imbalanced
problem using multiple filter-based rankers (MFR) and hybrid Grasshopper optimization algorithm (GOA).
The Simulated Annealing (SA) algorithm is incorporated into GOA. SA is used to enhance the best solution
found by the GOA algorithm. The aim of using the SA here is to tackle the slow convergence and improve the
exploitation by searching the high-quality regions found by the GOA. The experimental results confirm the
effectiveness of the proposed methods in improving the classification performance in terms of area under the
curve (AUC) compared to other well-known methods, which guarantees the ability of the proposed methods
in searching the feature space and identifying very robust and discriminative features that best predict the
minority class.

INDEX TERMS Grasshopper optimization algorithm, simulated annealing, tournament selection, mul-
tiple filter-based rankers, feature selection, hybrid filter-wrapper, high-dimensionality, imbalanced class
distribution.

I. INTRODUCTION

Over the last decades, rapid technological developments have
enabled researchers to analyse a massive amount of data
from various application domains such as biomedical, infor-
mation retrieval, and text classification [1]. The character-
istics of these datasets are a massive number of features
with limited available samples and imbalanced class distribu-
tion; these open challenges have degraded the classification
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performance of most learning algorithms [2]. The imbalanced
class distribution has posed acute challenges in numerous
applications, including bioinformatics (i.e., diagnosis of rare
diseases) [3]. The class imbalance occurs when at least one
class is under-represented with a fewer number of sam-
ples (i.e., minority class) while other classes contain the
most significant part of the remaining samples (i.e., major-
ity class) [4]. Most real-world datasets are affected by the
class imbalance problem due to the number of majority class
examples (negative class) outnumbered the number of minor-
ity class examples (positive class). However, conventional
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classifiers are appropriate for the balanced training set. In the
case of a class imbalance situation, they showed erroneous
classification results, i.e., a high recognition for the negative
class samples, while the positive class samples are considered
noise data or ignored [5].

In the past decade, significant research efforts have
been committed to overcoming the imbalanced class prob-
lem [6], [7], include resampling methods [8]-[11], ensem-
ble learning [12]-[15], cost-sensitive learning [16]-[18], one
class learning [19]-[21], and active learning [22]-[24]. How-
ever, most of the existing approaches paid more attention
to the development of class imbalanced techniques without
considering the effect of other data complexity embedded
in the data structure that degenerates the classification per-
formance of the learning algorithm [25]. Recent studies val-
idate this claim that the classification performance of the
existing class imbalance techniques can drastically degrade
if directly applied to a dataset with more than thousands
of features and limited available samples. These findings
demonstrate that high dimensionality interferes with the per-
formance of imbalanced class techniques [26]. The native
feature selection methods have been proposed by implic-
itly or explicitly assumed that the number of class sam-
ples is equally distributed. However, in real-world appli-
cations, most high-dimensional datasets are affected by
skewed classes, i.e., one class is under-represented with much
fewer examples while the other classes contain the most
significant part of the remaining examples [27]. However,
for skewed datasets, the native feature selection technique
inclines to select features representing the negative classes
rather than those features describing the positive class exam-
ple; the reduct features use for the next classification task
will be difficult to achieve optimal solution using biased
selected features [28]. Most previous techniques, such as
cost-sensitive learning and sampling methods, are often insuf-
ficient to improve classifier performance when learning from
high-dimensional multi-class imbalanced datasets [27]. The
main problem is that high dimensionality and class imbalance
learning problem need to be addressed concurrently.

In machine learning, the classification task is broadly clas-
sified into a binary classification and multi-class problem, for
the binary classification where the samples are divided into
the majority and minority class. However, most real-world
applications involved the classification of more than two
classes, where each class contains a small portion of the
samples [29]. The multi-class imbalanced classification is
associated with different classification difficulties because
the interrelation between classes is no longer apparent [30].
A class could be a minority class compare to other classes,
and it could be a majority class compare with other classes or
abalanced class compare with the remaining classes [31]. The
multi-class imbalanced problems are much more challenging
to address than the binary scenario since the decision bound-
ary involves distinguishing between more classes. Unfortu-
nately, directly applying the proposed methods for dealing
with the binary class problem to address the multi-class
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imbalanced problem, the learning models may produce erro-
neous classification results [32], [33].

Lately, applying feature selection approaches to overcome
imbalanced class problems has become a well-known tech-
nique among machine learning researchers [34]-[36]. The
feature selection technique for the class imbalance problem
aims to identify the possible combinations of features that
best predict the minority class [37]. Feature selection tech-
niques can be classified into the filter, wrapper, and embedded
approaches. The filter methods carry out the feature selection
process as a pre-processing step without involving the learn-
ing algorithm. The filter method used general characteristics
of the training sets to assess the significance of each feature
subset (i.e., distances between classes or statistical dependen-
cies) [38], [39]. The wrapper approach generates a subset of
features where the induction algorithm is used as a black box
to evaluate the significance of each feature subset based on
the classification accuracy of the induced classifiers [39]. The
embedded feature selection method differs from other feature
selection approaches, and the embedded feature selection
includes interaction with the classifiers [40]. In the embedded
method, searching for the best feature subsets is constructed
into the classifier construction. This approach carries out fea-
ture selection as part of the classifier construction process that
saves the time required for two induction processes as in the
wrapper method [41]. Examples of embedded feature selec-
tion methods include CART, C4.5, and random forest. Some
embedded techniques perform feature ranking according to
the significance of each feature using Logistic Regression
t predict the probabilities of the classes based on the input
features [42].

Numerous studies have used sequential search methods
for feature selection problems. However, sequential search-
ing for all possible combinations of features will guarantee
optimal subsets to be selected at the cost of high compu-
tational expensive or even computationally impractical for
high dimensional datasets [43].In contrast to the sequential
search techniques, meta-heuristics are suitable approaches
for solving complex optimization problems. Metaheuristic
methods can search for the best (near-optimal) solutions
without increasing the computational complexity [44]. The
metaheuristics are appropriate methods to generate a fea-
ture subset for the high-dimensional multi-class imbalanced
dataset. The metaheuristic is a higher-level heuristic algo-
rithm designed to search and generate a heuristic that can
provide better solutions to the optimization process [45].
Metaheuristics have been used to tackle the feature selection
problems, and the obtained result is shown to be better than
other methods [46], [47]. Numerous metaheuristics based
optimization techniques have been proposed, such as Sim-
ulated Annealing (SA), Iterated Local Search (ILS) [48],
the particle swarm optimization (PSO) [49], the genetic
algorithm (GA) [50], Harmony search (HS), Grasshopper
optimization algorithm (GOA) [51], Slime Mould Algo-
rithm (SMA) [52], Heap-based optimizer (HBO) [53],
Harris hawks optimization algorithm (HHO) [54], Marine
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Predators Algorithm (MPA) [55], Equilibrium Optimizer
(EO) [56], Manta-Ray Foraging Optimization (MRFO) [57]
and Archimedes optimization algorithm (AOA) [58] have
been used in the literature to search feature subset space for
selecting (sub)optimal feature set.

The metaheuristics are broadly divided into two cate-
gories; trajectory-based (e.g., local search) methods that
are exploitation-oriented techniques, and population-based
methods (e.g., evolutionary and swarm intelligence tech-
niques) that are exploration-oriented techniques. A global
exploration of the feature search space and local exploita-
tion, searching for a specific region that has been previously
explored. Exploration and exploitation are two conflicting
criteria to be considered when developing or employing meta-
heuristics optimization. A proper balance between exploita-
tion and exploration will improve the performance of the
metaheuristic optimization process. It has been proven that
using a hybrid approach that combined the advantages of
multiple methods can significantly improve the performance
of the learning model, and in most cases, hybrid algorithms
significantly outperformed the performance of an individual
algorithm. This paper uses the GOA algorithm with SA to
formulate a novel hybrid model to enhance the classification
performance for high-dimensional multi-class imbalanced
problems [59].

SA [60] is a single solution-based metaheuristic algorithm
proposed by Kirkpatrick et al. [60] and can be regarded as
a hill-climbing-based technique that is iteratively attempting
to enhance a candidate solution in terms of the objective
criterion of the problem at hand. The solution is accepted
if the chosen move enhances the solution. In other words,
the worse move is accepted with a specific probability to help
the SA to avoid being stuck in local optima. The Boltzmann
probability is used to find the possibility of accepting a worse
solution, and the P =e — 6/T where 0 is the difference of
evaluation of the objective criterion between the trail solution
Soliqr) (and the best solution (Solp.s ). The T is the current
temperature that occasionally approaches zero during the
search process according to a particular cooling schedule.

GOA [51]@comm proposed by Mirjalili et al., is a
recent optimization algorithm that mimics grasshoppers’
behaviour. The GOA is a population-based method that can
successfully explore vast search spaces to locate the best
(near-optimal) solutions. The GOA has fewer adjustable
parameters to be set and has a fast convergence speed.
Therefore, GOA has been successfully adapted for numerous
optimization problems, include cloud logistics [61], cluster-
ing [62], image processing [63], global optimization prob-
lems [64], and classification tasks [65]. Due to the efficacy
of GOA in various applications, that motivates numerous
researchers towards enhancing the optimization ability of
the basic GOA by hybridizing it with other meta-heuristic
algorithms or local search algorithms [63], [66], [67] and
modification of some components of GOA [66], [68], [69],
have been proposed to address different complex optimiza-
tion problems. However, the hybrid of GOA with the SA
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algorithm is not yet proposed and GOA-SA is not yet investi-
gated for high-dimensional multi-class imbalanced problems.
The robustness of GOA and SA algorithms could be inte-
grated to yield a hybrid method that takes advantage of both
approaches to achieve outstanding results better than using
individual algorithm independently. This hybridization is to
improve the exploitation ability of the GOA. The tournament
selection (TS) mechanism is used rather than a random selec-
tion (RS) to maintain the population diversity and to improve
the exploration ability of the proposed method.

Tharwat et al. [70] developed a modified multi-objective
GOA (MOGOA) with an external archive for con-
strained and unconstrained problems. Mirjalili et al. [71]
developed the multi-objective GOA and revealed that the
proposed algorithm could tackle several benchmark prob-
lems effectively and with better performance in terms of
accuracy of Pareto optimal solutions and the related dis-
tribution. Luo et al. [65] incorporated three strategies to
balance exploitation and exploration of GOA. (i) The Gaus-
sian mutation is used to boost the population diversity,
(ii) Levy-flight is adopted to boost the randomness of the
search agent movement, (iii) opposition-based learning is
applied to enhance the search agent in the solution space of
the GOA algorithm. Ewees et al. [72] improve the exploration
ability of GOA using opposition-based learning (OBL).
The proposed method has been evaluated on twenty-three
benchmark functions. Liang et al. [66] GOA is modified for
multilevel Tsallis cross-entropy. The levy flight is utilized to
improve the GOA to achieve a proper balance between explo-
ration and exploitation. Jia et al. [63] proposed a hybrid algo-
rithm of GOA and Differential Evolution (DE) to mitigate
the slow convergence speed and balance between exploration
and exploitation of the GOA. Amaireh et al. [73] proposed a
hybrid algorithm of GOA and Antlion Optimization (ALO).
ALO has strong exploitation capability, and GOA has good
exploration capability. The proposed algorithm aims to cope
with the drawbacks of both algorithms.

This paper proposes a hybrid filter-wrapper algorithm for
feature selection with high dimensional multi-class imbal-
anced datasets. This paper comprises two phases filter-based
and wrapper-based approaches. In the filter-based approach,
where the top-ranked features from each filter method were
selected to form a new feature list, the feature occurrence
threshold value computed from the top-ranking features,
the features those satisfied the threshold value are selected
and used as input to the wrapper method. While in the wrap-
per approach, a hybrid approach of the global search algo-
rithm (GOA) with local search algorithm (SA) is proposed.

The main contributions of this paper focus on proposing
a hybrid filter-wrapper method to improve predictive perfor-
mance for the classification of high-dimensional multi-class
imbalanced datasets and improve the exploitation capabil-
ity of the GOA algorithm. To enhance the exploitation,
the SA is employed in a pipeline mode after the GOA ter-
minates to tackle the slow convergence and improve the
exploitation after the GOA algorithm finds the best solution.
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FIGURE 1. (a) Real grasshopper (b) Life cycle of grasshopper.

To preserve the diversity of the algorithm, tournament selec-
tion is employed to select search agents from the population
to give a chance to all individuals to be selected. The proposed
hybrid method, namely a high-level transmit hybrid (HTH).
The proposed approaches are evaluated on nine benchmark
datasets with varying high dimensionality, imbalance ratio,
and number samples. Experimental results show that the
proposed methods can achieve better results than CBR-
PSO, SMOTE-BOOST, RUS-BOOST, GOA, PSO, GWO,
and GA on most datasets. In literature, numerous metaheuris-
tic hybridizations have been proposed, but this is the first time
a hybrid method of SA and GOA algorithm is used for feature
selection with the high-dimensional multi-class imbalanced
problems.

The rest of this paper is structured as follows:
Section 2 provides the related works. The concepts of GOA
and SA algorithms are provided in Section 3. Section 4 rep-
resents results, discussion, and analysis. In section 5, conclu-
sions and future work are given.

Il. RELATED WORKS

Considering the specific focus of this paper, we shall cover
only relevant articles that use feature selection approaches
to tackle high-dimensional multi-class imbalanced datasets.
Lately, feature reduction techniques such as feature selection
have been applied to tackle the imbalanced class problem at
the feature level [6] because most of the high dimensional
data sets have imbalanced class problems [6], [74], such as
bioinformatics [75], text categorization [76], microarray data
set [77].

In practice, many real-world datasets comprise more than
two class labels with skewed class distributions, such as
biomedical datasets [78]-[80]. Various binary classifica-
tion methods have been proposed, but few methods have
been extended to cope with the high-dimensional multi-class
imbalanced problem. Classification for high-dimensional
multi-class imbalanced datasets has drawn considerable
attention from many researchers. Numerous studies pre-
sented many decomposition approaches to cope with the
multi-class imbalanced problem, including the one ver-
sus all (OVA) method [81], [82], one versus one (OVO)
technique [83], [84], error-correcting output codes [85], and
decision directed acyclic graph (DDAG) [86]. These decom-
position approaches have been used to cope with the classifi-
cation of imbalanced datasets. Statnikov et al. [87] investigate
OVA and OVO decomposing approaches on imbalanced data
after conducting extensive experiments using these strate-
gies. The authors reported that OVA achieved better results
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compared with other decomposition approaches. Several
studies investigated feature selection for high-dimensional
multi-class imbalanced datasets. The experimental results
demonstrated that dealing with multi-class is more demand-
ing than binary class imbalanced data. Garcia et al. [33]
suggested that the learning algorithm performance drastically
deteriorates when the number of classes increase; this demon-
strates that performing classification task on multi-class
imbalanced dataset degenerate the classification performance
of the most classifiers. Yang et al. [88] proposed an itera-
tive ensemble feature selection (IEFS) on microarray data.
The filter-based techniques coupled with sampling meth-
ods are iteratively used to improve the binary classification
using the One-Versus-All (OVA) approach. The obtained
results demonstrate that IEFS achieves better results than
other methods in terms of classification accuracy and AUC.
Du et al. [89] employed a genetic algorithm for multi-class
imbalanced class distribution. A fitness function was formu-
lated using the G-mean metric instead of classification accu-
racy to discriminate features proportion of both classes. The
obtained results demonstrate that the proposed method has
achieved promising results than other conventional feature
selection techniques.

Yu et al. [90] proposed an ensemble approach to handle
multi-class imbalanced datasets using a one versus all (VOA)
approach to adapt multi-class into many binary classes
combined for feature subspace that create multiple different
training features subsets. Firstly, two methods have been
proposed: decision threshold adjustment and random under-
sampling into each training set to handle the imbalanced
class problem using the SVM classifier as a base classifier.
The proposed method has been assessed on eight benchmark
datasets. The obtained results demonstrate the effectiveness
of the proposed approach to handle high-dimensional imbal-
anced datasets than other techniques.

Arias-Michel et al. [91] proposed dynamic selection tech-
niques to handle multi-class imbalanced problems. Five
pre-processing techniques and fourteen dynamic selection
strategies were employed. The effectiveness of the proposed
method was evaluated on twenty-six multi-class imbalanced
data sets. The obtained results indicate that the dynamic
ensemble had achieved comparable results based on AUC and
G-mean performance metrics similar to the static ensemble
technique. Hosseini and Moattar [92] proposed an evolu-
tionary feature subset selection algorithm using three-phase
approaches. At the first stage, a features weighted approach
was applied to identify high-ranking features. In the sec-
ond stage, the feature subsets were formulated and assessed
using a multivariate interaction information method. Finally,
the optimal feature subsets were identified and extracted
using a dominant/dominated relationship.

Sun et al. [93] introduced an ensemble method that
hybridized the multi-objective Ant colony optimization algo-
rithm to under-sample the majority class samples and feature
selection method to select the best features. The bootstrap
approach is used in the original feature set to create various
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sample subsets. The V-statistic is used to assess the dataset
distribution and a fitness criterion of GA to under-sampling
the majority class. Two fitness functions were formulated
using G-mean and F1 measures. The obtained results show
that the proposed method outperforms many approaches in
terms of G-mean and F1 metrics. Aydogan et al. [94] pre-
sented a hybrid approach using PSO and rough set theory
(CBR-PSO) for feature selection. The CBR-PSO is used to
identify the relevant features, and the obtained reduct features
can improve the classification performance of the model. The
CBR-PSO handles the multi-class problem using the OVO
strategy to decompose the multi-class datasets into a binary
classification problem. The obtained results reveal that the
proposed method has achieved promising results than other
approaches for high-dimensional problems. Notwithstand-
ing, the algorithms mentioned above have achieved promis-
ing results. Still, there is no consistent winning approach
for all datasets. The performance of most class imbalanced
techniques is affected by the high-dimensionality problem.

Metaheuristics have been used for feature selection with
high-dimensional multi-class imbalanced datasets, but the
current methods showed some shortcomings. The high-
dimensional multi-class imbalanced datasets have a large
search space. Most bio-inspired optimization techniques
did not achieve optimal performance in large-scale appli-
cations such as high dimensional multi-class imbalanced
datasets to the premature convergence and stagnation prob-
lem [6], [95]. Improving meta-heuristic optimization via
hybridization can improve the classification performance for
the high-dimensional multi-class imbalanced datasets. There-
fore, there is room for further improvement of the existing
approaches for the high-dimensional multi-class imbalanced
problem. That motivated this research to proposed hybrid
multiple filter-based rankers and memetic algorithms for
high-dimensional multi-class imbalanced datasets in the sub-
sequent section.

Ill. MATERIALS AND METHOD

A. GRASSHOPPER OPTIMIZATION ALGORITHM

GOA is a recent bioinspired optimization technique [51]
proposed by S Mirjalili et al. it imitates grasshoppers swarm-
ing behaviour. The GOA algorithm is broadly classified
into two types of behaviours, exploration and exploitation.
During the exploration, the search agents tend to move
swiftly to explore the whole feature space, while during the
exploitation, the search agents tend to move sluggishly to
exploit around a neighbourhood of the current solution in the
search space. These two attributes enable the GOA to handle
complex optimization problems and outperform numerous
well-regarded techniques on various complex optimization
problems [71].

1) SOLUTION CONSTRUCTION PHASE

The GOA algorithm mathematically is represented to mimic
the swarming behaviour of the grasshoppers. The location of
ith grasshopper towards the target solution is expressed as X;
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as shown in Eq. (1).
Xi=Si+ Gi+Ai (1)

where S;S; is the social interaction, G; is the gravity force
on ith grasshopper, and A; denotes the wind advection. Th S;
works as the significant component during the grasshopper
movement towards the target, and it can be computed as
shown in Eq. (2)

A

s (dy)d; @

W
M=

- —

where dj; is the Euclidian distance between the ith and the
Jjth grasshopper, the distance between grasshoppers can be
7 Xj—Xi . .
computed as dj; = |xj — x,~| and d;j = g sa unit vector
from the ith grasshopper to jth grasshopper.
The s function, which represents the strength of the social

force, and can be computed as shown in Eq. (3)

s(ry=fel —e 3)

where f defines the attraction power, and [/ is the attractive
length scale. The gravity force G can be calculated, as shown
in Eq. (4)

G = _gég 4)

where ¢ represents the gravitational constant and é,, repre-
sents the unity vector towards the centre of the earth.
The wind advection A; can be computed, as shown in

Eq. (5

A; = ué, )
where u indicates a constant drift and the ¢,, is a unit vector
in the direction of the wind.

GOA mathematical model, shown in Eq. (1), can be for-
mulated, as shown in Eq. (6).

N ubg — lby
d — d d
X' =c E c—2 s(‘Xj - X;

) . d..Xl +7a
j=! Y
J#
(6)
where uby and lbg indicate the upper bound and the lower
bound in the Dth dimension, 7d shows the Dth dimension
value in the target grasshopper. The parameter c is a decreas-
ing coefficient that is used to decrease the comfort, attraction,
and the gravity strength is considered to be zero, assuming
that the wind is moving towards a target Tq in Eq. (6). The
parameter c is applied two times in Eq. (6) to control the
convergence rate of grasshoppers and balance the exploration
and exploitation. The exterior ¢ controls the movements of
grasshoppers in the direction of the target. The interior ¢
shrinks the impact of the comfort, attraction, and repulsion
strength between grasshoppers per the number of iterations
to reduce the comfort, attraction, and repulsion regions.
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Algorithm 1 The Main Steps of the GOA Algorithm
Initialize a set of random solutions xi(i=1,2,3,...,n) as
an initial population
Initialize the GOA parameters cMax, cMin, and Max number
of iterations
Evaluate the fitness of all individuals
T = the best solution
while (k < maximum number of iterations) do
Update c using equation (7)
for each solution in the population, do
Standardize the distance between grasshopper into
(1, 4]
Update the position vectors using equation (8)
Update the step vectors according to equation (10)
end for
there is a better solution, update
k=k+
end while
Output the T

2) COEFFICIENT PARAMETE
Parameter c decreases the comfort zone proportional to the
number of iterations.

cMax — cMin
c=cmax — | ——— @)
L
cMax denotes the ¢ maximum, and cMin denotes the ¢ min-
imum value, 1 represents the current iteration, and L is the
maximum bound of iterations.

3) TERMINATION PHAS

The overall operations are repeated until the cessation criteria
are reached. The stopping criteria are a computational time
constraint, the maximum number of iterations(i.e., MaxIter)
is met, the number of halted generations, or the best fitness
value is obtained.

Algorithm 1 presents the pseudo-code of the conventional
GOA algorithm. It can be observed that the GOA algorithm
randomly generates its initial population and assesses each
search agent using an objective criterion upon the optimiza-
tion process begin. After obtaining the best target solution,
the GOA randomly performs the following steps until the
cessation condition is met. Firstly, ¢ minimum (cMin) and ¢
maximum (cMax) coefficient parameter values are updated.
Secondly, a random value is generated, according to the gen-
erated random value, the GOA algorithm updates the position
of the search agents, according to Eq. (8). Thirdly, the current
search agents are stopped from going outside the boundaries.
Finally, the algorithm outputs the best target solution found
so far.

The GOA is a bioinspired optimization method, as stated
earlier. What guarantees the GOA algorithm convergence is
the use of the best target solution achieved so far to update
the position of the rest solutions. Nevertheless, this approach
might cause search agents to be stuck in local optima.
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A random variable is used to switch between the two equa-
tions to update the position of search agents. The param-
eter ¢ is used to balance the between exploration and
exploitation. This parameter seamlessly decreases the mag-
nitude of changes in the solutions and facilitates the conver-
gence/exploitation corresponding to the number of iterations.

4) BINARY GOA ALGORITHM
Selecting the best feature subset has been reported as an NP-
hard problem [96]. Identifying the best possible combination
of features is a complex optimization problem, especially in
high-dimensional feature search space. Therefore, according
to the feature selection problem NP-hard nature, the search
space can be applied by binary values. Consequently, some
of the GOA algorithm equations need to be adjusted. GOA
algorithm, each solution updates its position according to its
current position, the position of the best grasshopper found so
far (target), and all other grasshoppers’ position, according to
Eq. (8). The best technique to adapt the optimization method
from Eq. (8) in the continuous form to the binary version
without adjusting its components is by utilizing transfer func-
tions [97].

The transfer function is applied to Eq. (8) and re-defined
A in Eq. (9) as the probability of changing the position of

grasshoppers.
N bg—1b Xi —Xj
AX = ¢ ijl 2PdT0d (‘X?—X? ) e (®)
s 2 di
A sigmoidal function is a popular transfer function pro-
posed in [98], as shown in Eq. (9).
1
M e ©
The position of the current grasshopper is updated, as rep-

resented in Eq. (10), via the probability value T(AXy)
obtained from Eq. (9).

1 if rand < (AXi41)

xk . t+1)=
D=1, if rand > (AX,4+1)

(10)

The sigmoidal function enables grasshoppers to move in
line with a binary search space, as shown in Fig. 2.

B. SIMULATED ANNEALING
Simulated annealing (SA) [60] proposed by Kirkpatrick et al.
SA is a single-solution metaheuristic algorithm based on the
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hill-climbing method that emulates the annealing process to
solve a combinatorial optimization problem. SA algorithm
inspired by the process of solid-state annealing, in which
a solid is melted and then cooled down gradually in order
to gain ideal crystal structures that can-shaped as a state
of minimum energy. The cooling process is required to be
done slowly [99]. The idea of underlying SA is to resolve
the combinatorial optimization problem analogous to the sta-
ble annealing process. The candidate solution of the given
problem is analogous to the physical system states, and the
global optimum solutions are analogous to the meta-stable
states of the physical system [99]. SA typically begins by
indiscriminately generate a random solution and initializes
the temperature T. Then, at each iteration, a solution s’ is
indiscriminately selected in the neighbourhood N (s) of the
current solution s. The solution s is accepted as a new current
solution depending on the value of T and the values of the
objective function of s’ and s,s, denoted by f(s') and f(s),
respectively. If f (s’ ) > f (s), then, the solution s’ is accepted
and replaces by solution s. On the other hand, if f (s/ ) <
f(s), then, a solution s will be accepted, with a Boltzmann
probability.

1, iff(s) <f ).

P= exp(JM), () =16

(11)

where the f (s/ ) — f (s) represents the difference between
the best fitness solution and the generated neighbour solu-
tion. Additionally, the temperature 7, which occasionally
decreases during the search process based on the cooling plan.
In this research, the initial temperature is selected to be 2 x|N
|, where |N| represents the number of features for each data
set, and the cooling scheduled is preferred y = 0.93

Timy=yx*T; (12)
wherei=0,1,...N[100].

C. TOURNAMENT SELECTIO

The tournament selection (TS) is a simple and easy to imple-
ment selection mechanism applied to select the finest individ-
ual from the populations in evolutionary algorithms. It was
introduced by [101] Grefenstette et al. TS selection is the
most widely used selection mechanism in evolutionary algo-
rithms [102]. InTS, n individual solutions are chosen indis-
criminately from the population P(n; these obtained solutions
are determined by comparing against other solutions, and
a tournament t is held to decide a victor. The tournament
requires to generate a random number in the interval of [0 1],
it compared with a selection probability that used to adapt the
selection pressure parameter (often set to 0.5) if the generated
number is higher, it indicates that the individual with the
most robust fitness value will be selected or else the low
candidate solution is selected. The TS mechanism allows
the most robust individual to be favoured. The selection
pressure parameter determines the rate of convergence of
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Algorithm 2 Pseudo-Code of the SA Algorithm

To = 2* |N| is the number of attributes for each data set
BestSol < S;’
8 (BestSol) «— § (Si)// 6 demonstrates the quality of the
solution
While T > T;
Generate at random a new solution in the neighbour of S;’
Calculate § (TrialSol)
If § (TrialSol) > § (BestSol)
S; < TrialSol; BestSol < TrialSol;
8 (Si’) < 8 (TrialSol); § (BestSol)<« §
(TrialSol)
else if (§ (BestSol) = § (TrialSol))
calculate |TrialSol| < |BestSol|
S;/ < TrialSol; BestSol < TrialSol
8 (Si’) < 8 (TrialSol); § (BestSol)<«— § (TrialSol)
end if
else // accepting the worse solution
Calculate 0 = § (BestSol) - § (TrialSol)
Generate % random number, P = |0, 1|;
if (P <e™T)
Si’ <« TrialSol; § (Si’) <« & (TrialSol);
end if
end if
T = 0.93 % T; // update temperature
end while
QOutput BestSol

the evolutionary algorithms [102]. Evolutionary algorithms
can identify the best or (near-optimal) solutions over various
selection pressures.

D. THE PROPOSED FEATURE SELECTION APPROACH FOR
HIGH DIMENSIONAL MULTI-CLASS IMBALANCED
DATASETS

In this paper, the proposed algorithm for high dimensional
multi-class imbalanced datasets consists of two stages, a
filter-based approach and the wrapper-based approach. The
filter-based and wrapper-based methods are comprehensively
discussed in the subsequent subsections. The filter-based
approach is multiple filter-based rankers (MFR), and the
wrapper approach is the proposed hybrid GOA with the SA
algorithm.

1) FILTER-BASED APPROACH: MULTIPLE FILTER-BASED
RANKERS (MFR)

Filter-based methods are computationally efficient com-
pared to wrapper methods;nevertheless, filter-based methods
suffer severely from the feature interaction problem. The
filter-based method can achieve the best result on a spe-
cific data set while its performance drastically deteriorates
on another data set. Therefore, selecting an optimal filter
method for a particular data set will be a demanding task
due to the inadequate a priori knowledge of the dataset [103].
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FIGURE 3. Flowchart of the proposed multiple filter-based rankers (MFR)
approach.

Therefore, using a single filter-based method for fea-
ture selection requires conducting extensive trial and error
tests to select the best filter-based method for a specific
dataset. This problem leads to high computational complexity
because a feature selection problem is considered a compu-
tationally expensive problem. The limitations above moti-
vated many researchers to combine the outputs of multiple
filter-based methods to mitigate inconsistency and the local
optima problem induced by a single-based filter method and
enhance filter-based technique robustness and stability. Fig. 3
demonstrates the schematic illustration of multiple filter-
based rankers for high-dimensional multi-class imbalanced
datasets. It can be observed in Fig. 3, six most commonly
used filters were used to generate feature ranking, and the
top N ranking features from each filter-based were selected
and then aggregated to formulate a new ranking features
list. A feature occurrence threshold value T is computed to
determine the number of feature occurrences among the six
filter-based rankers and set to 3 (T = 3). The features that
satisfied the threshold criteria are identified and selected as
the final feature ranked list.

In this paper, we utilized six filter-based methods, include
ReliefF, Symmetric uncertainty (SU), Max-Relevance
Min-Redundancy (MRMR), Fisher Score, Chi-square,
and Correlation-based feature selection (CFS). These six
filter-based rankers were employed to identify and select
relevant and non-redundant features that best predict minority
class.

2) THE PROPOSED WRAPPER APPROACH
The problem of feature selection with the high-dimensional
multi-class imbalanced problem is expressed as a multi-
objective optimization problem to select the best features
that predict the minority class. Mathematically, the whole
training set of matrix S can be expressed as S € RY*Z
with their class label C, where Y indicates the number of
samples, andZ indicates the number of attributes. In general,
the attribute vector a; = {ay, ap, as, ...,az} represents the
corresponding Z attributes an S;; d means jth sample and
ith attribute, as demonstrated in Eq. (13). For example, the
attribute vector of the first sample is represented as s; 1 =
{50,182, 83, -« -Siz} -

The problem of feature selection is considered a difficult
combinatorial optimization problem. The whole feature set
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(i.e., candidate solution s) is represented using a binary string
of length S, si1 = {si1,si2, 53, ...8i:}. Our goal is to
identify and extract discriminative features of dimension z,
where z C Z such that a candidate subset is set to 1 if a feature
is selected or 0 if a feature is excluded. Fig. 4 shows the
representation of grasshopper i with dimension Z, where Z
represents the number of features.

S1.18512 813 -+ 812
§$2,1 §2,2 823 ... 827

Sij = S3,1 832 833 ... 83 (13)

Sy1 Sy2 Sy3 ... Syz

The wrapper-based method is proposed with Z attributes.
Our goal is to identify z attributes with the highest predictive
accuracy in class imbalanced settings and identify the best
features from both minority and majority classes. Because of
that, the fitness criterion needs to be formulated to realize
these objectives [104]. Each solution is assessed based on
the fitness function formulated using the kNN classifier to
achieve the highest AUC and identify the reduct features from
both the minority and majority classes that best predict the
minority class.

The fitness function is an essential part of the feature
selection process. Most conventional feature selection meth-
ods have been proposed without considering the effects of
imbalanced class distribution [28]. The fitness function of the
conventional feature selection techniques is formulated using
a combination of classification error rate or overall accuracy
and length of features, as shown inEq. (14).

IN-R]
AUCg = ayR(D). + B - <_|N| ) (14)

where y R(D) presents the overall classification accuracy rate
obtained using kNN classifier, |R| denotes the number of
features selected and |N| represents the entire feature set, o
and B are two parameters corresponding to the importance of
classification quality and length of the features, «e |0, 1| and
B = (1 — ) adopted from [105]. The overall accuracy metric
is broadly used as an evaluation metric for classification
tasks [106]. Nonetheless, for imbalanced datasets, overall
accuracy rate and classification error rate metrics are not
appropriate evaluation measures. The classification results
obtained using overall accuracy or error rate are biased toward
the majority class and ignore the minority class. In a highly
imbalanced data set, where the negative samples outnum-
bered the positive samples, the classifier can achieve the high-
est accuracy rate of up to 99Still, the positive class recognition
rate is insignificant or ignored, as shown in Fig. 5. Therefore,
the overall accuracy metric is not suitable for imbalanced
datasets.

The AUC is an evaluation metric that measures the balance
between predictive accuracy on both positive and negative
classes. [107]. AUC measures the whole two-dimensional
regions beneath the ROC curve. AUC measure of performance
of the entire classification thresholds [35], [108], [109]. The
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FIGURE 4. (a) Chromosome coding of the attribute vector of grasshopper
i (b) the binary representation of the feature vector of grasshopper.
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FIGURE 5. Schematic illustration of class imbalance problems.
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best way to understands the AUC is via a probability measure
that ranks a random minority sample significantly higher
than a random majority sample, the model that achieves
the highest AUC shows good recognition of the minority
class sample. The AUC assesses the predictive algorithm
discriminating capability between the true positive rate TPR
and false positive rates FPR (without considering the model
misclassification costs).

According to the confusion matrix, the AUC measure can
be defined as follows:

14+7P —FP
AUC = — (15)

The fitness function formulated for a binary classification
problem using the AUC metric can be formulated, as shown
in Eq. (16).

IN-R|
AUCyp =a -AUC + B - W (16)
The binary classification problem can be extended to deal
with multi-class imbalance problems. MAUC is defined for
the multi-class problem as shown in Eq. (17),

2 iz AUG;
M

where i represents the index of the class under consideration,
the fitness function for the multi-class classification problem
is formulated, as shown in Eq. (18).

MAUC = (17)

IN-R|
MAUCy = a - MAUC + 8 - W (18)

3) HYBRID GOA-SA APPROACHES

The GOA is a population-based that are exploration-
oriented approach, i.e., exploring the whole unexplored
search space regions. In contrast, the local search techniques
are exploitation-oriented approaches, i.e., intensify search-
ing for specific regions that have been explored [110]. The
native GOA has achieved promising results on complex
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TABLE 1. Confusion matrix.

Predicted positive Predictive negative

class 1 class 2
Actual positive class TP (True Positive) FN (False Negative)
Actual negative class ~ FP (False Positive) TN (True Negative)

optimization problems than other well-known optimization
algorithms. However, the original GOA uses a blind oper-
ator to perform local exploitation irrespective of the cur-
rent solution fitness value and explored solutions. The GOA
exploitation (as in Eq. 8) relies on computing the distance
between the search agent and the best-explored solution so
far. The hybridization of population-based with local-based
search techniques to explore the neighbourhood around the
best-explored solution might enhance the classification per-
formance of the classifier [48]. Because of this reason,
the GOA algorithm is integrated with the local search method
SA algorithm to produce a hybrid GOA-SA model. The GOA
exploration (as in Eq. 8) relies on switching each solution
position based on a randomly selected solution. It has been
proven that applying another selection mechanism, such as
the TS mechanism, might enhance the exploration capability
of the feature search space because the TS mechanism allows
the worst individuals to be randomly repositioned around the
best solution found so far, which could enhance the GOA
population diversity [100].

The GOA is a global search technique, and the SA is a
local search technique. Hybridization of two algorithms is
proposed, namely, the High-Level Transmit Hybrid (HTH).
In the HTH, the SA uses after the GOA algorithm obtained
the best solution. After that, the solution serves as the initial
input to the SA algorithm to improve the GOA final solutions.
The best solutions obtained by the GOA algorithm are then
passed to the SA to accelerate the search, tackle the slow
convergence, and improve the exploitation capability of the
current best solution until a local optimum is reached. The
GOASA employs the RS mechanism to explore the feature
space. Therefore, the TS mechanism is used to enhance the
proposed approaches exploration capability and supplement
the SA local search algorithm to strike a proper balance
between exploitation and exploration of the search space. The
proposed algorithm is called GOASAT, and the flowchart of
the proposed MFR-GOASAT algorithm is illustrated in Fig 6.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section experimentally investigates the efficacy of pro-
posed MFR-GOA, MFR-GOASA, and MFR-GOASAT algo-
rithms for high dimensional multi-class imbalanced data
sets. Table 2 shows the characteristics of nine datasets used
to assess the effectiveness of the proposed methods. The
proposed algorithms are used to search for the best fea-
ture subsets with the highest MAUC using a kNN classifier
(K = 5) [111]. The kNN was selected because of its sim-
plicity and broadly employed in similar existing researches.
Since most of the benchmark datasets have a limited
sample size and a thousand features; therefore, each dataset is
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FIGURE 6. Schematic illustration of the proposed hybrid MFR-GOASAT approach.

divided into five cross-validations to prevent feature selection
bias [65], [66]. The experiments of the proposed methods
were performed on MATLAB 2020a software. The experi-
ments were carried out on an Intel Core i5-4300U CPU @
1.90GHz CPU and 8 GB RAM in Microsoft Windows 10 Pro
platform. The maximum number of iterations (L) is set to 100,
and the population size (N) is set to 50. The « and g values
in Eq. (15) are set to 0.9 and 0.1.
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A. DATASET

In order to assess the effectiveness of the proposed approach,
we conducted numerous experiments on nine benchmark
datasets that were downloaded from the machine learning
repository [70], [71], [85]. Table 2 presents the general char-
acteristic of datasets in terms of the number of features,
the number of samples, the number of classes, and the imbal-
ance ratio (IR) in each dataset.
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TABLE 2. Data sets characteristics.

Data sets #Features  #Samples #Classes IR

CLL-SUB-111 11,340 111 3 4.63
Brain_Tumorl 5920 90 5 15.00
TOX-171 5748 171 4 1.15
GLIOMA 4433 50 4 2.29
11_Tumour 12,533 174 11 4.5

Lung cancer 12600 203 5 23.16
SRBCT 2308 83 4 2.63
9 Tumour 5726 60 9 4.5

Brain_ Tumor2 10367 50 4 2.14

B. RESULTS AND DISCUSSION

This section reports the results obtained from the pro-
posed methods. All experiments were performed using fit-
ness criterion MAUC formulated using AUC in terms of
multi-class imbalanced settings to show the efficacy of the
proposed methods of handling the classification task for
high dimensional multi-class imbalanced datasets. Compar-
ing the proposed MFR-GOA, MFR-GOASA, GOASAT, and
MFR-GOASAT algorithms, experiments are performed to
assess the effectiveness of hybridization of SA with conven-
tional GOA and the use of the TS mechanism rather than the
RS mechanism. In order to determine the best method among
the proposed methods, the performance of all four methods is
evaluated in one table. The best approach among the proposed
methods is also compared against other well-known state-of-

the-art methods:
« MAUC accuracy rate using selected features proportion

of both minority and majority class.

o To compare the proposed method best, mean, and worst
fitness values against other well-known states of the art
methods.

« Statistically compared the Wilcoxon signed-rank test of
MFR-GOASAT against other approaches.

1) COMPARISON BETWEEN MFR-GOA, MFR-GOASA,
MFR-GOASAT AND GOASAT

The effectiveness of MFR-GOA, GOASA, and MFR-
GOASAT and GOASAT are evaluated based on MAUC pre-
dictive accuracy and computational time, as stated in this
section. It can be recalled that in GOASA, SA is used after
the MFR-GOA found the optimal solutions, then the SA
utilizes the best solutions locates by MFR-GOA to improve
the exploitation capability until local optima are reached.
Table 3 shows that the hybrid models outperform the con-
ventional ones for the MAUC accuracy rate. The tradi-
tional hybrid MFR-GOA algorithm does not outperform the
MFR-GOASA on nine datasets regarding the MAUC accu-
racy rate. The MFR-GOASA outperforms MFR-GOA on
nine datasets, and the MAUC accuracy rate between the two
models varies from 2% to 6%. It can be observed on the Brain-
Tumor2 dataset, and the MFR-GOASA method achieves the
MAUC accuracy rate of 97.3% while the MFR-GOA achieves
the MAUC accuracy rate of 87.5% result. The obtained
results from Table 3 show that the MFR-GOASA method
outperforms MFR-GOA on most datasets. When comparing
the MFR-GOASA and MFR-GOASAT, it can be observed
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that the MFR-GOASAT outperforms the MFR-GOASA
on most datasets. The GOASA achieves the best MAUC
predictive accuracy on two datasets (i.e., 9_Tumor and
11_Tumor), while the MFR-GOASAT achieves the best pre-
dictive accuracy on four datasets (CLL-SUB_111, Glioma,
Brain_Tumorl, and Brain_Tumor2) while MFR-GOASA and
MFR-GOASAT tie to achieve the best results on two datasets
(SRBCT and TOX-171). To evaluate the effect of using the
MFR method, the MFR-GOASAT was compared with the
GOASA-T algorithm. It can be observed that MFR-GOASAT
achieves the best MAUC predictive accuracy on eight out
of nine datasets (9_Tumor and 11_Tumor, CLL-SUB_111,
Glioma, Brain_Tumorl, Brain_Tumor2, SRBCT, and TOX-
171). The obtained results show that the filter approach (i.e.,
MFR) finds the discriminative features that use the as strong
initial stage to wrapper method to find a most informative
subset of features. The obtained results have shown that the
hybridization with the filtering-based method (i.e., MFR) has
improved classification performance and reduce the compu-
tational complexity of the wrapper method.

The experiments were conducted among proposed meth-
ods to evaluate the effect of improving conflicting optimiza-
tion criteria of exploitation, exploration. It can be observed
that employing the TS mechanism performs a supplementary
task in improving exploration in the MFR-GOA algorithm
along with SA, which improves exploitation capability. The
performance of the proposed methods is improved inprogres-
sive order: MFR-GOA < MFR-GOASA < MFR-GOASAT.
It can be seen that MFR-GOASAT is a robust algorithm that
achieves the proper balance between exploitation and explo-
ration when searching for the global optimum. SA improved
the exploitation, and the TS mechanism improved the popula-
tion diversity in MFR-GOAS AT, which supplemented the SA
role. It can be seen that MFR-GOASAT achieves outstanding
results on five datasets in terms of MAUC accuracy rate. The
obtained results showed that MFR-GOASAT had achieved a
proper balance between exploration and exploitation because
of the used SA algorithm and TS mechanism.

Table 4 reports the average execution time (in seconds)
needed for the convergence of each algorithm. All meth-
ods were formulated using the same parameter settings and
evaluated on the same benchmark datasets. Table 4 reports
that the MFR-GOA has the best total execution time than
other method; the MFR-GOA has a better full execu-
tion time on nine datasets. When comparing the full exe-
cution time of MFR-GOASA and MFR-GOASAT, note
that MFR-GOASAT uses the TS mechanism while the
MFR-GOASA uses the RS mechanism. The MFR-GOASAT
has a better execution time on seven out of nine datasets.
On the other hand, the MFR-GOASA has a better total
execution time on two out of nine datasets. This findin-
gelucidated that the TS mechanism requires less compu-
tational time to convergence the proposed algorithm than
the RS mechanism. When comparing the full execution
time of MFR-GOASAT and GOASAT, the experimental
results show that MFR-GOASAT has a better execution time.
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TABLE 3. Experimental results of MFR-GOA, MFR-GOASA, MFR-GOASAT, and GOASAT in terms of MAUC accuracy rate.

Dataset Method

MFR-GOA MFR-GOASA MFR-GOASA-T  GOASA-T
CLL-SUB-111 93.6+19.52  95.549.45 95.6+9.77 94.9+8.23
TOX-171 91.84+5.04  96.8+12.26 96.8+11.20 92.54+13.53
GLIOMA 92.6+16.35  96.5+9.54 97.3+£6.60 93.1+1.34
9_Tumour 87.44+1.32 97.9+3.33 96.8+8.75 95.2+6.67
11_Tumour 93.1+11.28  98.7+6.94 98.5+12.42 97.3£8.01
SRBCT 98.3+8.29 100 100 98.1+£18.14
Lung cancer 95.443.91 97.34£8.21 98.2+5.43 99.3+7.42
Brain_Tumorl 88.7148.78 93.5+£5.37 96.4+7.37 89.8+16.71
Brain_Tumor2 87.548.21 95.3+14.45 97.3+£5.32 92.3+14.34

TABLE 4. Average convergence time (in seconds) for proposed methods
in terms of MAUC accuracy rate.

Dataset Method
MFR-GOA MFR- MFR- GOASA-T
GOASA GOASA-T
CLL-SUB-111  139.57+0.12 783.75+1.52 689.12+10.87  1131.1240.83
TOX-171 131.23£1.11 693.84+2.79  676.65£15.18 983.5840.68
GLIOMA 82.60+0.83 428.344+3.12  412.34425.21 872.34+1.02
9_Tumour 217.12+1.27 834.2942.48 793.09£31.60  1156.10£6.36
11_Tumour 144.46+1.11 788.3543.32  772.63+17.32  1098.23+7.95
SRBCT 91.3840.82 3448242121  341.56126.52  683.57+£12.22
Lung cancer 125.84+1.26 633.26+2.51 590.81+1.27 824.91+10.50
Brain_Tumorl  78.724+2.71 413.91+24.15  401.16%1.08 901.48+18.90
Brain_Tumor2  85.51+12.42 516.4240.35 452.5340.85 889.62+12.89

This demonstrates the importance of using the filtering-based
approach to finds discriminative features that use a strong
initial stage to wrapper method to find a most informative
subset of features.

2) COMPARISON OF THE MFR-GOASAT APPROACH WITH
OTHER EXISTING METHODS

The experimental results showed that the MFR-GOASAT
method outperforms other methods to achieve promis-
ing results on most datasets. Therefore, in this subsec-
tion, the best-proposed approach is compared with other
well-known state-of-the-art methods for high dimensional
multi-class imbalanced datasets regarding the MAUC accu-
racy rate. Table 5 shows the experimental results of
MFR-GOASAT, ECOC-MDC, CBR-PSO, SMOTEBOOST,
RUSBOOST, PSO, GA, GOA, and GWO. In order to demon-
strate the significance of applying data pre-processing (i.e.,
feature selection and class imbalanced techniques) in the
classification of high dimensional multi-class imbalanced
datasets, the MAUC predictive accuracy using the full fea-
tures is reported. From the experimental results obtained,
the MAUC predictive accuracy using the full features shows
poor performance on all datasets compared to the proposed
high-dimensional multi-class imbalanced methods. Further-
more, MFR-GOASAT achieves the best MAUC accuracy
rate on six out of nine datasets (i.e., Brain-Tumourl, Brain-
Tumour2, Glioma, SRBCT, 9_Tumour, and CLL-SUB-111),
which were significantly better than the MAUC accuracy
achieved by other approaches. Furthermore, the CBR-PSO
achieves the best MAUC accuracy rate on two out of
nine datasets (i.e., Lung cancer and TOX-171), which were
significantly better than the MAUC accuracy rate achieved
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by other approaches. Finally, the ECOC-MDC outperforms
other methods to achieve the best MAUC accuracy rate on
one out of nine datasets (i.e., 11_Tumour), which was sig-
nificantly higher than the MAUC accuracy rate achieved by
other approaches. Therefore, from the experimental results,
it can be observed that the MFR-GOASAT algorithm that
was proposed in this paper could identify and select the
best feature subset proportion of both minority and majority
class along with enhancing the MAUC accuracy rate for high
dimensional multi-class imbalanced datasets.

3) STATISTICAL ANALYSIS

The Wilcoxon signed-rank test is used to determine sig-
nificant differences between the proposed MFR-GOASAT
method against other methods in the literature. The statis-
tical analysis aims to evaluate if the results from the two
approaches are statistically independent. The null hypoth-
esis indicates the significant difference between the pro-
posed MFR-GOASAT method and each other method.
If the p-values exceed 5%, the null hypothesis is retained,
which implies no significant improvement of using the
MFR-GOASAT metho; otherwise is rejected at a significance
level below 5%.

As shown in Table 6, the Wilcoxon signed-rank test
was calculated using pairwise comparisons for the MAUC
accuracy rate. The resulting test of p-values is below the
significance level of 5% for the seven approaches. There-
fore, there are statistically significant differences between
the MFR-GOASAT and other methods (i.e., ECOC-MDC,
SMOTEB, RUSB, PSO, GA, GWO, and Full). However,
the Wilcoxon signed-rank test result for the one approach
(i.e., CBR-PSO) is above the significance level of 5%.
Statistically, there is no significant difference between the
MFR-GOASAT and that of (i.e., the CBR-PSO) method.

Table 7 reports the comparative assessment of the proposed
MFR-GOASAT method against state-of-the-art methods for
high dimensional imbalanced datasets (i.e., PSO, GA, and
GWO). The best-obtained result on each dataset is marked
in boldface. The comparison of the proposed approaches
is performed in terms of fitness criteria. The fitness value
is one of the standard performance evaluation measures for
the feature selection techniques for the high dimensional
imbalanced approach [100]. It can be seen from Table 5 the
MFR-GOASAT proposed in this paper outperforms PSO,
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TABLE 5. Experimental results of MFR-GOASAT in comparison with other approaches in terms of the MAUC metric.

Datasets MFR- ECOC- CBR- SMOTE RUS PSO GWO GA GOA Full
GOASAT MDC PSO BOOST BOOST
Brain Tumourl  96.4 851 917 504 541 881 876 893 912 815
Brain Tumour2  97.7 850 949 625 646 786 875 919 856 733
Lung Cancer 98.2 912 983  60.1 622 897 921 899 914 88.1
SRBCT 100 91.6 980 565 608 914 983 862 976 92.1
9 Tumours 96.8 295 862 454 799 502 655 681 710 434
11_Tumours 98.5 100 928 513 543 944 996 944 983 887
Glioma 97.3 761 920  60.0 593 933 914 925 908 87.1
TOX-171 96.2 718 974 527 495 573 609 577 615 513
CLL-SUB-11 95.6 864  88.0  49.0 657 716 746 763 747 723

TABLE 6. Wilcoxon tests for the MFR-GOASAT against other methods in terms of MAUC accuracy rate the “Yes” indicates the there is a statistical

difference at p = 0.05 (95% confidence); otherwise, “No".

Evaluation Metric Comparison Hypothesis p-value Significant difference

MAUC MFR-GOASAT vs ECOC-MDC Rejected for MFR-GOASAT at 5% 0.0078 Yes

MFR-GOASAT vs CBR-PSO Not rejected 0.0547 No

MFR-GOASAT vs. SMOTEBOOST Rejected for MFR-GOASAT at 5%  0.0039 Yes

MFR-GOASAT vs. RUSBOOST Rejected for MFR-GOASAT at 5%  0.0052 Yes

MFR-GOASAT vs. -PSO Rejected for MFR-GOASAT at 5%  0.0061 Yes

MFR-GOASAT vs. GA Rejected for MFR-GOASAT at 5%  0.0075 Yes

MFR-GOASAT vs. GWO Rejected for MFR-GOASAT at 5%  0.0059 Yes

MFR-GOASAT vs. GOA Rejected for MFR-GOASAT at 5%  0.0064 Yes

MFR-GOASAT vs. Full Rejected for MFR-GOASAT at 5%  0.0039 Yes

TABLE 7. Comparison of fitness values results obtained between the proposed method in terms of MAUC against other methods.
Dataset Mean Best Worst
MFR- PSO GA GW GOA | MFR- PSO GA GWO GOA | MFR- PSO GA GWO GOA
GOASAT [0) GOASAT GOASAT

Brain_Tumourl 91.23 92.47 91.87 91.07 89.13 95.20 94.01 9331 94.07 92.11 | 82.34 81.01 8197 88.58 86.23
Brain_Tumour2  93.25  90.24 91.43 92.04 9394 | 97.66 9583 9626 96.1 95.83 | 89.92  88.23 89.32 88.19 89.51
Lung Cancer 92.1 93.53 9242 9192 92.10 | 97.81 9693 9424 9597 97.18 | 79.13  83.53 81.03 87.03 84.12
SRBCT 96.23 9234 94.09 9592 91.02 | 99.23 97.51 99.01 9831 9894 | 9434  90.34 87.29 90.07 84.67
9_Tumours 89.03  72.42 88.56 6947 79.10 | 97.78 79.93 9391 70.71 89.53 | 83.15  68.81 86.16 64.16 81.81
11_Tumours 91.18 90.23 89.07 89.23 89.33 9541 949 9321 9428 91.54 | 87.23 88.51 78.12 86.19 81.12
Glioma 91.16 955 91.56 9491 9491 | 99.11 98.01 97.23 100 99.22 | 9245 91.67 8529 93.07 85.29
TOX-171 91.47 88.09 79.22 78.63 78.63 | 98.86 94.09 92.12 8749 9523 | 8534  82.88 74.81 73.08 77.26
CLL-SUB-11 88.34 7891 9151 8423 7423 | 9423 8891 9505 93.15 9226 | 7834 711 7524 64.16 65.19
Average 92.00 88.19 89.97 87.49 86.93 97.25 9335 9493 9223 94.68 | 85.80 82.90 82.14 81.61 81.68

GA, GOA, and GWO in best fitness function values, mean
fitness function values on most datasets, and it is not worse
than any other method on most datasets. The proposed
MFR-GOASAT achieves outstanding results because of the
usage of multiple filter-based rankers approach coupled with
hybrid GOA algorithm with SA local search to improve the
exploitatio capability and TS mechanism to preserve the pop-
ulation diversity of the feature search space.

The MFR-GOASAT proposed in this paper achieves
promising results on most datasets compared to other meth-
ods due to the hybridization of filter-wrapper approaches and
the enhanced conventional GOA algorithm. MFR-GOASAT
achieves a proper balance between exploitation and
exploration in all the performed iterations. The experimental
results show that MFR-GOASAT is an effective method
on large and limited dimensional datasets. Lung cancer
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and 11_Tumour are large datasets, and the fitness value
of the MFR-GOASAT is significantly higher than in com-
parison with other methods. It can be observed that the
MFR-GOASAT performs better than PSO, GA, GOA, and
GWO based on the best and worst obtained fitness function.

V. CONCLUSION

High dimensionality and imbalanced class distribution are
two serious issues that degrade classification performance
most conventional classifiers’ classification performance.
In the literature, numerous methods have been proposed
to deal with either the high dimensionality or imbalanced
class problem separately, but high dimensionality interferes
in the class imbalanced techniques. In this paper, multiple
filter-based rankers coupled with hybrid metaheuristic tech-
niques using the GOA algorithm were proposed (MFR-GOA,
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MFR-GOASA, and MFR-GOASAT). The proposed methods
incorporate SA into the GOA algorithm. SA was utilized
in the proposed methods, a hybrid model called High-Level
Transmit Hybrid (HTH) was proposed.

In the HTH, SA was used to search the neighbourhood
of the best-found solution after each iteration of the GOA
algorith; two models were proposed using these algorithms,
namely MFR-GOASA and MFR-GOASAT. The TS mech-
anism was applied to select the search agents rather than
the RS mechanism (MFR-GOASAT) to provide a chance
for the weak solutions to be selected in the searching pro-
cess, maintain the population diversity and improve the
exploration capabilities of the GOA algorithm. The three
proposed MFR-GOA, MFR-GOASA, and MFR-GOASAT
methods have been evaluated based on MAUC and total
execution time (in seconds). The obtained results demonstrate
that MFR-GOASAT achieves the best performance among
the proposed methods. The experimental results obtained
are inprogressive order: MFR-GOA<MFR-GOASA<MFR-
GOASAT.

Furthermore, The best method among the proposed meth-
ods (i.e., MFR-GOASAT) was compared against state-
of-the-art methods (i.e., include ECOC-MDC, CBR-PSO,
SMOTEBOOST, RUSBOOST, PSO, GA, GOA, GWO, and
Full features) in terms of MAUC predictive accuracy and non-
parametric statistical tests to assess the statistical significance
of the proposed method against other methods. In terms of the
MAUC accuracy rate, the proposed MFR-GOASAT achieves
the best MAUC accuracy rate on six out of nine datasets, and
in terms of the Wilcoxon statistical test, the obtained results
show that the proposed method is statistically significant
against seven other approaches. Therefore, from the exper-
imental results obtained categorically, we can deduce that the
proposed methods achieve the proper balance between the
two conflicting objectives of the metaheuristic (exploration
and exploitation) and improve the classification performance
for high dimensional multi-class imbalanced datasets.

Future works suggest that the fitness function for the
high-dimensional multi-class imbalanced problem will be
modified to reduce the computational complexity of the cur-
rent approaches. It would be suggesting that to hybridize the
GOA algorithm with other global optimization approaches
such as the cuckoo search algorithm.
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