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ABSTRACT Obtaining accurate vehicle driving state and road adhesion coefficient information is of great
significance to many aspects of the vehicle. This paper takes distributed drive electric vehicles as the research
object and designs a joint estimation method of vehicle driving state and road adhesion coefficient based
on the theory of federated-cubature Kalman filter. The corresponding nonlinear three-degree-of-freedom
vehicle dynamics model is established and the state space equation is obtained. Multi-source fusion of
low-cost sensor signals is carried out by using information fusion technology, and an algorithm estimator is
built by using vehicle dynamics theory. Select typical experimental conditions and apply Simulink to build
an algorithm model and co-simulate with CarSim for verification. The experimental results show that the
proposed estimation method can improve the accuracy and stability of state estimation.

INDEX TERMS Distributed drive electric vehicle, driving state estimation, federal-cubature Kalman filter,
information fusion, road adhesion coefficient, simulation verification.

I. INTRODUCTION
With the low-carbon and zero-emission development
advocated by people in today’s society, the promotion of elec-
tric vehicles to replace traditional fuel vehicles has become
one of the effective means for the transformation of the
automotive industry in recent years. As one of the impor-
tant development directions of electric vehicles, distributed
drive electric vehicles have brought significant advantages
for vehicles in terms of active safety control and stability
control [1], [2]. Accurate acquisition of vehicle key states and
road adhesion coefficients is a prerequisite for active vehicle
safety control and stability control. But for the estimation of
these important parameter variables, algorithmmodel estima-
tors are commonly used. The road adhesion coefficient in the
algorithmmodel usually directly adopts a fixed value, and the
influence of these parameter changes is mostly ignored in the
process of estimating the driving state of the vehicle. Besides,
during the driving of the car, due to the continuous changes of
theworking conditions, these parameter variables also change
continuously, which affects the accuracy of the estimation
of the driving state. Therefore, it is particularly important to
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consider the change of the road adhesion coefficient in the
process of estimating the driving state of the vehicle.

In recent years, domestic and foreign scholars have suc-
cessively proposed a variety of methods for the estima-
tion of road adhesion coefficient. Reference [3] proposed a
method of integrating a friction estimator based on a smart
tire with an estimator based on a brush tire model. This
method can reliably estimate the coefficient of friction under
a wider range of excitations (low slip and high slip condi-
tions). Reference [4] proposed an online estimation method
of the bounded maxi-mum friction coefficient of series sen-
sors based on sensitivity and joint unscented Kalman filter.
By introducing local sensitivity analysis, robust estimation
of drift without parameter estimation can be achieved under
the condition of insufficient excitation. Reference [5] pro-
posed a specific nonlinear tire model estimation method
based on the unscented Kalman filter to estimate the lateral
and longitudinal friction and the friction coefficient of the
wheel. Reference [6] designed a vehicle driving state esti-
mator and a road adhesion coefficient estimator based on
dual CKF for distributed-drive front-wheel steering electric
vehicles. By linking the two together to form a closed-loop
system, an accurate estimation of the road adhesion
coefficient is achieved. Reference [7] uses the advantages
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and characteristics of distributed drive electric vehicles to
establish a dual Kalman filter fusion estimation algorithm,
which estimates road adhesion coefficient and vehicle speed
independent of each other, and verifies the effectiveness of
the algorithm through actual vehicles. Reference [8] consid-
ers that the variability of model parameters can easily lead
to the problem of excessive filtering errors or even diver-
gence, and thus introduces exponentially weighted decay
memory filtering. A road adhesion coefficient estimator is
designed based on UKF, which further improves the esti-
mation accuracy. Reference [9] proposed an improved par-
allel strong tracking road adhesion coefficient estimation
algorithm based on unscented Kalman theory. It constructs
two two-dimensional observers with a single fading factor
matrix, which can observe the road adhesion coefficients of
four tires of electric vehicles in real-time. Reference [10]
combined the Pacejka tire model and UKF theory to estimate
the tire longitudinal force and wheel slip rate, and the slope
of the slip rate curve corresponding to different road adhesion
coefficients can be obtained. Then through the relationship
between the different road adhesion coefficient and the slope
of the slip rate curve to obtain the road adhesion coefficient.
Reference [11] uses the extendedKalman filter to estimate the
lateral speed of the vehicle. The wheel speed sensor datas are
estimated by a specific algorithm to obtain the longitudinal
speed of the car, and then the sideslip angle information of
the center of mass is obtained, and then the state information
is combined with the extended Kalman filter to estimate the
road adhesion coefficient. Reference [12] is based on RLS
and introduces a forgetting factor to reduce the influence of
irrelevant information, and builds a road adhesion coefficient
observer, which can realize real-time estimation of road adhe-
sion coefficient under various conditions. Reference [13] uses
the seven-degree-of-freedom vehicle model and the extended
Kalman filter to estimate the longitudinal and lateral speed
of the car. By calculating the tire slip angle and using the
back-propagation neural network method, the road adhesion
coefficient is estimated. Reference [14] used a nonlinear filter
to estimate the longitudinal slip rate of thewheel by collecting
sensor signals. Then use the Kalman filter to estimate the
tire force, and use these parameters to estimate the friction
coefficient between the tire and the road through the recursive
least square method.

Aiming at the problems of low estimation accuracy and
poor real-time performance of ordinary algorithms, this paper
proposes a federated-cubature Kalman filter estimation algo-
rithm. Federal Kalman Filter (FKF) is gradually developed
based on decentralized filtering. It is mostly used in military
navigation fields that require high accuracy and robustness.
It has only been gradually applied to the automotive field
in recent years. It usually contains two layers of filter struc-
ture, one layer has several sub-filter structures, and the other
layer is the main filter structure. The core idea is the prin-
ciple of ‘‘information distribution’’, that is, the global state
information and system noise matrix are dispersed and dis-
tributed to each sub-filter, and then the estimated information

of each sub-filter is integrated through the main filter to
achieve the optimal fusion estimation. The structure does
not change the unique form of the sub-filter structure so
that it has the characteristics of flexible design and good
fault tolerance [15]. To improve the estimation accuracy of
the algorithm and ensure the real-time performance of the
algorithm, this paper selects the fusion reset structure and
uses two sub-filters and one main filter to design. For the time
update and measurement update in each sub-filter, the cuba-
ture Kalman filter algorithm is used. This combined method
makes full use of their respective advantages and can make
the process noise adaptively change during the estimation
process, that is, take different values at different moments,
and continuously modify the process noise statistical param-
eters in real-time. It effectively solves the problem of diver-
gence of estimation results [16], so that the algorithm not only
has good fault tolerance and stability but also improves the
estimation accuracy of the algorithm.

The rest of this paper is organized as follows. The vehicle
dynamics model and tire model are presented in Section II.
The joint estimation of driving state and road adhesion
coefficient for distributed drive electric vehicle designed in
Section III. In Section IV, we conduct software simulations
and results analysis. Finally, in Section V, we summarize the
conclusions and propose future work.

II. VEHICLE ESTIMATION MODEL
A. DISTRIBUTED-DRIVE ELECTRIC VEHICLE
DYNAMICS MODEL
The vehicle dynamics model represents the mathematical
relationship between different parameter variables during
the motion of a vehicle and is the basis for designing
the vehicle state and road adhesion coefficient estimation
algorithms. For distributed-drive electric vehicles, the three-
degree-of-freedom (3-DOF) vehicle estimation model is built
based on the traditional 2-DOF model [17], considering
the timeliness of the entire estimation algorithm and the
three aspects of longitudinal, lateral, and yaw. The nonlinear
3-DOF vehicle model is shown in Fig. 1 and the following
assumptions are made:
(1) The origin of vehicle coordinate system coincides with

the mass center of the vehicle estimation model.
(2) Suppose the vehicle is composed of a rigid body and

four wheels that are controlled independently of each
other.

(3) Assuming that the mechanical characteristics of the
tires are the same.

(4) The effect of the suspension system is ignored.
In Fig. 1, a and b are distance from the center of centroid

position to the front and rear axles, tf and tr are the front
and rear wheel tread, υij is the wheel center speed, δij is
the four-wheel angle obtained directly through the steering
motor, Fx−ij is the longitudinal force of the tire, Fy−ij is the
lateral force of the tire, and αij is side-slip angle of the tire.
Among them, i represents the front or rear wheel and j
represents the left or right wheel.
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FIGURE 1. Vehicle dynamics mode.

The dynamics equations of vehicle model are as follows:

u̇ = ax + νr (1)

ν̇ = ay − ur (2)

ṙ =
1
Iz
0 (3)

where u and ν are the longitudinal/lateral velocity, ax and ay
are the longitudinal/lateral acceleration, r is the yaw rate, Iz is
the moment of inertia about z-axis and 0 is the yaw moment.
Based on the dynamics equations, ax , ay and 0 are

calculated by:

ax =
1
m
(Fx−fl cos δfl − Fy−fl sin δfl

+Fx−fr cos δfr − Fy−fr sin δfr
+Fx−rl cos δrl + Fy−rl sin δrl
+Fx−rr cos δrr + Fy−rr sin δrr ) (4)

ay =
1
m
(Fx−fl sin δfl + Fy−fl cos δfl

+Fx−fr sin δfr + Fy−fr cos δfr
−Fx−rl cos δrl + Fy−rl sin δrl
−Fx−rr cos δrr − Fy−rr sin δrr ) (5)

0 = a(Fx−fl sin δfl + Fy−fl cos δfl)

−
tf
2
(Fx−fl cos δfl − Fy−fl sin δfl)

+ a(Fx−fr sin δfr + Fy−fr cos δfr )

+
tf
2
(Fx−fr cos δfr − Fy−fr sin δfr )

+ b(Fx−rl cos δrl − Fy−rl sin δrl)

−
tr
2
(Fx−rl cos δrl + Fy−rl sin δrl)

+ b(Fx−rr cos δrr − Fy−rr sin δrr )

+
tr
2
(Fx−rr cos δrr − Fy−rr sin δrr ) (6)

where the slip angle, line speed and normal reaction force of
the four wheels are calculated by:

αfl,fr = δfl,fr − arctan(
ν + ar

u± tf
2 r

)

αrl,rr = δrl,rr − arctan(
−ν + br

u± tr
2 r

) (7)

νfl,fr =

√
(u±

tf
2
)2 + (ν + ar)2

νrl,rr =

√
(u±

tr
2
)2 + (ν − br)2 (8)

Fz−fl,fr = (
1
2
mg± may

h
tf
)
b
l
−

1
2
max

h
l

Fz−rl,rr = (
1
2
mg± may

h
tr
)
b
l
+

1
2
max

h
l

(9)

where Fz−ij is the normal reaction force of the ground to the
wheel, m is the mass of the vehicle, l is the wheelbase and h
is the height of the center of mass.

The four-wheel longitudinal force can be calculated by:

Fx−ij =
Tij − Jij · ω̇ij

Re
(10)

where Tij is the driving torque of the four wheels, Jij repre-
sents the moment of inertia of the four wheels, ωij represents
the angular acceleration of the four wheels.

B. DUGOFF TIRE MODEL
The Dugoff tire model [18] is used in the vehicles estimation
model. The tire model can directly obtain the lateral force
of the tire through the slip rate. The formula is as shown
in (11) ∼ (14):

Fy−ij = µ−ijFz−ijCy
tan

(
αij
)

1− λ
−ij
f (L) (11)

where µij is the road adhesion coefficient, Cy is the tire
cornering stiffness, λ

−ij is the longitudinal slip rate.

f (L) =

{
L.(2− L), L < 1
1, L ≥ 1

(12)

L =
1

2
√
C2
x λ

2
_ij+C

2
y tan2 αij

(1− λ_ij)

× (1− ε · u ·
√
C2
x λ

2
_ij+C

2
y tan2 αij) (13)

where Cx is the longitudinal stiffness of the tire and ε is the
impact factor of velocity.

The corresponding slip rate equations for braking and driv-
ing were calculated by using (14).

λij =
Re ωij− vij

vij
=
Re ωij
vij
− 1 < 0 (brake)

λ
ij
=

Re ωij− vij
Re ωij

= 1−
vij

Re ωij
> 0 (drive) (14)

Since the value of tire longitudinal stiffness and lateral
stiffness is affected bymany factors, such as its own structure,
specifications and dimensions, inflation pressure, load, and
various driving conditions, etc, among which the load has the
greatest impact on these two parameters. Therefore, this paper
only considers the impact of the load on the tire, ignoring
the impact of other complex factors. Through the standard
tire model parameters in the simulation software CarSim,
the longitudinal and lateral stiffness values of a group of tires

75462 VOLUME 9, 2021



Y. Wu et al.: Joint Estimation of Driving State and Road Adhesion Coefficient

TABLE 1. Value of tire longitudinal stiffness and lateral stiffness.

FIGURE 2. Tire characteristic diagram: (a) Tire longitudinal slip
characteristic diagram; (b) Tire side deflection characteristic diagram.

under different loads are obtained by interpolation, as shown
in Table 1.

Fig. 2 reflects the tire characteristics of the tire model under
different loads.

III. DESIGN FOR DRIVING STATE AND ROAD ADHESION
COEFFICIENT ESTIMATION ALGORITHM
A. PRINCIPLE OF ESTIMATION ALGORITHM
The principle of joint estimation of driving state and road
adhesion coefficient for distributed drive electric vehicle is
shown in Fig. 3. It can be seen from the figure that the
vehicle-mounted sensor signals are collected through the
vehicle communication network, which mainly includes
the longitudinal acceleration, lateral acceleration, yaw rate,

FIGURE 3. Joint estimation schematic.

four-wheel angle, four-wheel speed, and four-wheel-drive
torque. These sensor signals are simultaneously transmitted
to the main/sub-filters in the driving state estimator and the
adhesion coefficient estimator, as well as the Dugoff tire
model as the signal input of the algorithm model. The tire
lateral force is calculated through the tire model, and the
collected four-wheel-drive torque is directly converted into
the longitudinal force of the four wheels through the tire
longitudinal force calculationmodule. Its purpose is to reduce
the error caused by the tire model itself in calculating the
tire force. The tire force obtained is used as another input
of each main/sub filter in the driving state estimator and
the adhesion coefficient estimator. The difference with the
independent driving state estimator is that the road adhesion
coefficient no longer takes a fixed value, but receives the
estimated value from the algorithm estimator. Themain filters
in the two joint estimators are initialized after receiving these
signals, and the default value of the information distribution
coefficient is zero. The driving state variables, adhesion coef-
ficient variables, covariance matrix, and process noise matrix
are assigned to each sub-filter accordingly, and then each
sub-filter integrates the received sensor signal and the dis-
tributed signal. First, completes the time update to obtain the
prior state estimation value, and then completes the measure-
ment update according to the respective measurement values
to obtain the posterior partial estimation value, and then pass
the datas to the main filter for integration to complete the
global optimal estimation. The optimal estimate is used as
the output and at the same time, information is distributed
again to each sub-filter according to a specific distribution
principle, so as to complete an iteration. Iteratively over
time, a closed-loop is formed in the driving state estimator
and the adhesion coefficient estimator. At the same time,
the estimated value of the global optimal driving state is
fed back to the road adhesion coefficient estimator and the
tire model. The estimated value of the global optimal road
adhesion coefficient is fed back to the driving state estimator
and the tire model, and its state parameters are continuously
modified to form a closed loop. It completes the joint accurate
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estimation of the vehicle driving state and the road adhesion
coefficient.

B. JOINT ESTIMATION ALGORITHM
The specific algorithm such as formulas (15) to (54).

1) THE INFORMATION DISTRIBUTION PROCESS
OF VEHICLE DRIVING STATE
First, the driving state variables, error covariance matrix,
and system process noise covariance matrix are distributed
to each sub-filter according to the principle of information
distribution through the main filter.

X∧si,k−1 = Xsf ,k−1 (15)

P−1si,k−1 = βsiP
−1
sf ,k−1 (16)

Q−1si,k−1 = βsiQ
−1
sf ,k−1 (17)

where βsi is the distribution coefficient of driving state infor-
mation, i = 1, 2 (i.e. two sub-filters), according to the
principle of information conservation, there is βs1+βs2 = 1.

2) THE INFORMATION DISTRIBUTION PROCESS
OF ROAD ADHESION COEFFICIENT
Through the main filter, the parameter variables of the road
adhesion coefficient, the error covariance matrix, and the
system process noise covariance matrix are allocated to
each sub-filter according to the principle of information
distribution.

X∧pi,k−1 = Xpf ,k−1 (18)

P−1pi,k−1 = βpiP
−1
pf ,k−1 (19)

Q−1pi,k−1 = βpiQ
−1
pf ,k−1 (20)

where βpi is the distribution coefficient of driving state infor-
mation, i = 1, 2 (i.e. two sub-filters), according to the
principle of information conservation, there is βp1+βp2 = 1.

3) THE TIME UPDATE PROCESS OF VEHICLE DRIVING STATE
The time update is performed independently in each driving
state sub-filter.

¬ To decompose the covariance matrix Ps,k−1 through
SVD

Ps,k−1 = As,k−13s,k−1ATs,k−1 (21)

where As,k−1 is the characteristic matrix corresponding
to the driving state covariance matrix Ps,k−1, 3s,k−1 =

diag[S2s1,k−1, S
2
s2,k−1 . . . . . . , S

2
sn,k−1], S

2
si,k−1 is the square

root of the eigenvalues corresponding to Ps,k−1.
­ The cubature point of the previous moment

Xsj,k−1 = Asi,k−1Ssi,k−1ξj + X∧s,k−1 (22)

where i = 1, 2 . . . . . . n, n is the dimension of the driving

state variable, ξj is the cubature point, and ξj =
√

m
2 [1]j,

j = 1, 2 . . . . . .m, m is the number of cubature points and

the size is twice the dimension of the driving state variable,
[1]j represents the j-th cubature point element.
In this paper, the number of vehicle driving state variables

is n = 6, then the cubature point set is:


1
0
0
0
0
0

 ,

0
1
0
0
0
0

 ,

0
0
1
0
0
0

 ,

0
0
0
1
0
0

 ,

0
0
0
0
1
0

 ,

0
0
0
0
0
1

 ,

−1
0
0
0
0
0

 ,


0
−1
0
0
0
0

 ,


0
0
−1
0
0
0

 ,


0
0
0
−1
0
0

 ,


0
0
0
0
−1
0

 ,


0
0
0
0
0
−1




.

® The cubature point after iteration of the system equation

X∗sj,k/k−1 = f
(
Xsj,k/k−1,Uk

)
(23)

¯ The predicted value after time update

X∧s,k/k−1 =
m∑
j=1

1
m
X∗sj,k/k−1 (24)

° The predicted value of the error covariance matrix

Ps,k/k−1 =
m∑
j=1

1
m
X∗sj,k/k−1X

∗T
sj,k/k−1

−X∧s,k/k−1X
∧T
s,k/k−1 + Qs (25)

whereQs is the process noise covariance matrix of the driving
state.

4) THE TIME UPDATE PROCESS OF ROAD ADHESION
COEFFICIENT
The time update is performed independently in each road
adhesion coefficient sub-filter.

¬ To decompose the covariance matrix Pp,k−1 based on
SVD

Pp,k−1 = Ap,k−13p,k−1ATp,k−1 (26)

where Ap,k−1 is the characteristic matrix corresponding
to the road adhesion coefficient covariance matrix Pp,k−1,
3p,k−1 = diag[S2p1,k−1, S

2
p2,k−1 . . . . . . , S

2
pn,k−1], S

2
pi,k−1 is

the square root of the eigenvalues corresponding to Pp,k−1.
­ The cubature point of the previous moment

Xpj,k−1 = Api,k−1Spi,k−1ξj + X∧p,k−1 (27)

where i = 1, 2 . . . . . . n, n is the dimension of the driving

state variable, ξj is the cubature point, and ξj =
√

m
2 [1]j,

j = 1, 2 . . . . . .m, m is the number of cubature points and
the size is twice the dimension of the driving state variable,
[1]j represents the j-th cubature point element.
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In this paper, the number of road adhesion coefficient
parameter variables is 4, and the cubature point set is:

1
0
0
0

,

0
1
0
0

,

0
0
1
0

,

0
0
0
1

,

−1
0
0
0

,


0
−1
0
0

,


0
0
−1
0

,


0
0
0
−1


.

® The cubature point after iteration of the system equation

X∗pj,k/k−1 = f
(
Xpj,k/k−1,Uk

)
(28)

¯ The predicted value after time update

X∧p,k/k−1 =
m∑
j=1

1
m
X∗pj,k/k−1 (29)

° The predicted value of the error covariance matrix

Pp,k/k−1 =
m∑
j=1

1
m
X∗pj,k/k−1X

∗T
pj,k/k−1

−X∧p,k/k−1X
∧T
p,k/k−1 + Qp (30)

where Qp is the process noise covariance matrix of the road
adhesion coefficient.

5) MEASUREMENT UPDATE OF VEHICLE STATE ESTIMATION
Measurements are updated individually in each driving state
sub-filter.

¬ To decompose the predicted covariance matrix based on
SVD

Ps,k/k−1 = As,k/k−13s,k/k−1ATs,k/k−1 (31)

­ The cubature point

Xsj,k/k−1 = Asi,k/k−1Ssi,k/k−1ξj + X∧s,k/k−1 (32)

® The new cubature point based on the measured variables

Zsj,k/k−1 = h
(
Xsj,k/k−1,X∧sj,k/k−1,U (k)

)
(33)

¯ The mean of the cubature points

Z∧sj,k/k−1 =
m∑
j=1

1
m
Zsj,k/k−1 (34)

° The innovation covariance

Pszz,k/k−1 =
m∑
j=1

1
m
Zsj,k/k−1 ZTsj,k/k−1

− Z∧s,k/k−1 Z
∧T
s,k/k−1+Rs (35)

where Rs is the measured noise covariance matrix of the
driving state.

± The cross-covariance

Psxz,k/k−1 =
m∑
j=1

1
m
Xsj,k/k−1 ZTsj,k/k−1

− X∧s,k/k−1 Z
∧T
s,k/k−1 (36)

² The filter gain matrix

Ks,k = Psxz,k/k−1 P
−1
szz,k/k−1 (37)

³ State estimates value after correction of measured vari-
ables

X∧s,k = X∧s,k/k−1+Ks,k (Zs,k −Z
∧

s,k/k−1) (38)

´ The error covariance matrix

Ps,k = Ps,k/k−1−Ks,k Pszz,k/k−1 KT
s,k (39)

6) MEASUREMENT UPDATE OF ROAD ADHESION
COEFFICIENT ESTIMATION
Measurements are updated individually in each road adhesion
coefficient sub-filter.

¬ To decompose the predicted covariance matrix based on
SVD

Pp,k/k−1 = Ap,k/k−13p,k/k−1ATp,k/k−1 (40)

­ The cubature point

Xpj,k/k−1 = Api,k/k−1Spi,k/k−1ξj + X∧p,k/k−1 (41)

® The new cubature point based on the measured variables

Zpj,k/k−1 = h
(
Xpj,k/k−1,X∧pj,k/k−1,U (k)

)
(42)

¯ The mean of the cubature points

Z∧pj,k/k−1 =
m∑
j=1

1
m
Zpj,k/k−1 (43)

° The innovation covariance

Ppzz,k/k−1 =
m∑
j=1

1
m
Zpj,k/k−1 ZTpj,k/k−1

− Z∧p,k/k−1 Z
∧T
p,k/k−1+Rp (44)

where Rp is the measured noise covariance matrix of the
driving state.

± The cross-covariance

Ppxz,k/k−1 =
m∑
j=1

1
m
Xpj,k/k−1 ZTpj,k/k−1

− X∧p,k/k−1 Z
∧T
p,k/k−1 (45)

² The filter gain matrix

Kp,k = Ppxz,k/k−1 P
−1
pzz,k/k−1 (46)

³ State estimates value after correction of measured vari-
ables

X∧p,k = X∧p,k/k−1+Kp,k (Zp,k −Z
∧

p,k/k−1) (47)

´ The error covariance matrix

Pp,k = Pp,k/k−1−Kp,k Ppzz,k/k−1 KT
p,k (48)

VOLUME 9, 2021 75465



Y. Wu et al.: Joint Estimation of Driving State and Road Adhesion Coefficient

7) INFORMATION FUSION OF VEHICLE STATE ESTIMATION
The local estimated values of each sub-filter in the vehicle
driving state are fused through the main filter to obtain the
global optimal estimation.

P−1sf ,k = P−1s1,k + P
−1
s2,k (49)

X∧sf ,k = P−1sf ,k
(
P−1s1,kX

∧

s1,k + P
−1
s2,kX

∧

s2,k

)
(50)

8) INFORMATION FUSION OF ROAD ADHESION
COEFFICIENT ESTIMATION
The local estimation values of each sub-filter in the road adhe-
sion coefficient are fused through the main filter to obtain the
global optimal estimation.

P−1pf ,k = P−1p1,k + P
−1
p2,k (51)

X∧pf ,k = P−1pf ,k
(
P−1p1,kX

∧

p1,k + P
−1
p2,kX

∧

p2,k

)
(52)

Establish the state and measurement equations of the non-
linear system and give the parameters contained in each
variable. The formula is shown in (53):

Xs/pi,k = f
(
Xs/pi,k−1,Us/pi,k−1,Ws/pi,k−1

)
Zs/pi,k = h

(
Xs/pi,k , vs/pi,k

)
(53)

The state variables of the two sub-filters in the driving state
estimator are: Xsi,k = [u, v, ax , ay, γ, 0].

The parameter variables of the two sub-filters in the adhe-
sion coefficient estimator are: Xp.k = [µfl, µfr , µrl, µrr ].

The measured variables of sub-filter 1 in the driving state
estimator are: Zs,k = [ax , ay, γ ].

The measured variables of sub-filter 2 in the driving state
estimator are: Zs,k = [ay, γ ].

The measured variables of sub-filter 1 in the adhesion
coefficient estimator are: Zp,k = [ax , ay,

·
γ ].

The measured variables of sub-filter 2 in the adhesion
coefficient estimator are: Zp,k = [ay,

·
γ ].

The control inputs are: Us/p,k = [δfl, δfr , δrl, δrr , ωfl, ωfr ,
ωrl, ωrr ], where δij is the four-wheel angle, which is calcu-
lated by the sensor collecting the steering wheel angle signal
according to the certain rule.

The determination of the information distribution coeffi-
cients is a key issue in the design of the federated filter.
A reasonable selection of information distribution coeffi-
cients between the main filter and the sub-filters can effec-
tively improve the algorithmic estimation accuracy and fault
detection sensitivity of the sub-filters, so as to ensure the
optimization of the global estimation. The covariance matrix
can reflect the estimation accuracy of each sub-filter to a great
extent, so it is used as a measure to calculate the in-formation
distribution coefficient. The distribution coefficient in this
paper is calculated by using (54).

βi =
tr (pi)

tr (p1)+ tr (p2)
(54)

where tr(pi) is the trace of the error covariance matrix and the
initial value of the information distribution coefficient is set
as: β1 = β2 = 0.

IV. SIMULATION VERIFICATION
In order to verify the feasibility and reliability of the pro-
posed estimation algorithm, a corresponding algorithmmodel
was built in the Matlab/Simulink environment. And at the
same time, a joint simulation was performed with CarSim
to evaluate the effect of the estimation algorithm on the
nonlinear driving state of the vehicle. Set the corresponding
test conditions and select the dual-line-shifting test conditions
of the docking road. The part parameters of the vehicle model
are shown in Table 2.

TABLE 2. Part parameters of vehicle model.

For this simulation experimental condition, the parame-
ters are selected as follows: the constant vehicle speed is
30km/h, the road adhesion coefficient is set to 0.5 in the first
110 meters, the last 100 meters is set to 0.3, and the sampling
is a fixed step length of 0.01s.

The initial values of two sub-filters in the driving state
estimator are selected as:

Xs1,0 = [30/3.6, 0, 0, 0, 0, 0]

Ps1,0 = eye(6) ∗ 100

Qs1,0 = eye(6) ∗ 100

Rs1.0 = diag([0.03, 1, 100]) ∗ 0.01 (55)

Xs2,0 = [30/3.6, 0, 0, 0, 0, 0]

Ps2,0 = eye(6)

Qs2,0 = eye(6) ∗ 100

Rs2.0 = diag([1, 70]) ∗ 0.01 (56)

The initial values of two sub-filters in the road adhesion
coefficient estimator are selected as:

Xp1,0 = [1, 1, 1, 1]

Pp1,0 = eye(4)

Qp1,0 = eye(4)

Rp1.0 = diag([0.009, 1, 1]) ∗ 10000 (57)

Xp2,0 = [1, 1, 1, 1]

Pp2,0 = eye(4)

Qp2,0 = eye(4)

Rp2.0 = eye(2) ∗ 10000 (58)
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FIGURE 4. Sensor signal: (a) Longitudinal acceleration; (b) Lateral acceleration; (c) Yaw rate; (d) Four-wheel angle; (e) Four-wheel speed; (f) Driving
torque.

The simulation experiment results are shown in Fig. 4 and
Fig. 5. (a), (b), (c), (d), (e), and (f) in Fig. 5 are the sen-
sor signals output by the CarSim simulation results, that
is, the Vehicle-mounted sensor signals collected through the
vehicle network. (a), (b), (c), and (d) in Fig. 5 are the com-
parison results between the estimated values of the vehicle
driving state and the road adhesion coefficient obtained by

the joint estimation algorithm and the actual value output
by CarSim. Fig. 5 (a) is the comparison curve between the
estimated value of the longitudinal vehicle speed obtained
through the joint algorithm and the actual value output by the
vehicle simulation model. From the curve in the figure, it can
be seen that the algorithm estimated value has a good effect on
stability and accuracy at the initial moment. As the simulated
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FIGURE 5. Simulation output of vehicle driving state and road adhesion coefficient: (a) Longitudinal speed; (b) Lateral speed; (c) Sideslip angle of
centroid; (d) Road adhesion coefficient.

vehicle speed changes become more complex, the estimated
value gradually produces a certain error with the true value,
but then it returns to a stable state, and the overall effect is
good. Fig. 5(b) is the comparison curve between the esti-
mated value of lateral vehicle speed obtained through the
joint algorithm and the actual value output by the vehicle
simulation model. It can be seen that in addition to a certain
delay and error of the estimated value relative to the true
value at the peak of the curve, a good estimation effect can be
guaranteed at other times. Fig. 5(c) is the comparison curve
between the estimated value of the sideslip angle obtained by
the joint algorithm and the actual value output by the vehicle
simulation model. From the curve in the figure, it can be seen
that the estimated value is in good agreement with and the
actual value when the vehicle is in a steady state. Only when
the curve is at the peak, there is a slight delay and error in
the estimated value, but the overall effect of the algorithm
estimation is still very good. Fig. 5(d) is the comparison curve
between the estimated value of the four-wheel road adhesion
coefficient obtained by the joint algorithm and the actual
value set by the experimental conditions. It can be seen from
the curve in the figure that after the start of the simulation,
the estimated values of the four rounds start to track the

actual value after about 3s from the initial value and remain
stable. After the actual value changes suddenly, its algorithm
responds quickly and converges to the actual value in a short
time and the error between the two is also very small. The
overall estimate effect is good.

V. CONCLUSION
Active safety technology based on vehicle dynamics control
has been widely used in automobiles. In order to further
reduce control costs and accelerate the maturity of emerging
active safety technologies, the paper focuses on the unique
dynamics control characteristics of distributed drive electric
vehicles and the advantages of multiple information sources,
and adopts multi-information fusion technology based on
federated Kalman filtering to realize the accurate estimation
of the driving state and road adhesion coefficient for the
distributed driving electric vehicle.

First, the nonlinear 3-DOF vehicle dynamics model and
a Dugoff tire model of distributed drive electric vehicle are
established, and the vehicle driving state estimator is designed
based on the federated Kalman filter theory. The sub-filter is
designed with CKF to improve the accuracy of the algorithm
estimation. The vehicle-mounted sensor signals are obtained
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through the vehicle network as the input of the estimator,
which realizes the accurate estimation of the vehicle driving
state.

Second, considering the influence of different roads on the
driving state of the vehicle, the road adhesion coefficient esti-
mator is designed based on the federated Kalman filter theory
on the basis of the driving state estimation, and the sub-filter
adopts CKF. The joint estimation of the two estimators not
only improves the adaptability of the estimation algorithm to
different roads, but also improves the accuracy and stability
of the estimation. In order to further verify the reliability
and accuracy of the algorithm, the Matlab/Simulink modular
programming software is used to build the joint estimation
algorithm model and co-simulate with CarSim for verifica-
tion under multiple conditions. The results show that the joint
estimation algorithm of vehicle driving state and road adhe-
sion coefficient based on federatedKalman filter significantly
improves the estimation accuracy and anti-interference of the
model, which also proves the effectiveness and accuracy of
the algorithm.

Due to the lack of experimental conditions and equipment,
the estimation algorithm cannot be verified on the actual
vehicle. Future research should mainly establish a dSPACE
semi-physical simulation system for distributed drive electric
vehicles, and further verify the actual operation effect of
the estimation algorithm through hardware-in-the-loop and
real vehicle testing. After completing the algorithm test and
optimization of the physical hardware system, we will try
more vehicle parameters and road condition estimation, and
try to apply the algorithm to the big data environment of the
Internet of Vehicles.
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