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ABSTRACT The Spectral conjugate gradient (SCG) methods are among the efficient variants of CG
algorithms which are obtained by combining the spectral gradient parameter and CG parameter. The success
of SCGmethods relies on effective choices of the step-size αk and the search direction dk . This paper presents
an SCG method for unconstrained optimization models. The search directions generated by the new method
possess sufficient descent property without the restart condition and independent of the line search procedure
used. The global convergence of the new method is proved under the weak Wolfe line search. Preliminary
numerical results are presented which show that the method is efficient and promising, particularly for
large-scale problems. Also, the method was applied to solve the robotic motion control problem and portfolio
selection problem.

INDEX TERMS Spectral algorithm, conjugate gradient algorithms, unconstrained optimization models,
motion control, line search procedure, portfolio selection.

I. INTRODUCTION
In this paper, we consider the optimization model:

min f (x), x ∈ Rn. (1)

The function f : Rn
→ R has continuous partial

derivatives, whose gradient ∇f (x) = g(x) is available. This
type of problems often arise in economics, management sci-
ence, engineering and other industrial applications [1]–[4].
The spectral conjugate algorithms are widely used to solve
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problem (1) by

xk+1 = xk + tkdk , k ≥ 0, (2)

where x0 is the initial guess. The step-size tk > 0 is usually
calculated along dk . For k = 0, we have d0 = −g0 which is
known as the Steepest descent direction. However, the subse-
quent directions of search are recursively computed as

dk = −θkgk + βkdk−1, k ≥ 1. (3)

Here θk is the spectral parameter and βk is the conjugate
gradient parameter that differentiate the types of spectral CG
methods. Some of the known CG parameters are given by
Hestenes-Stiefel (HS) [5], Polak-Ribiere-Polyak (PRP) [6],
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[7], Liu-Storey (LS) [8], Fletcher-Reeves (FR) [9], Conjugate
Descent (CD) [10], Dai-Yuan (DY) [11] whose formulas are
given as follow:

βHSk =
gTk yk−1
dTk−1yk−1

, βPRPk =
gTk yk−1
‖gk−1‖2

,

βLSk =
gTk yk−1
−gTk−1dk−1

, βFRk =
‖gk‖2

‖gk−1‖2
,

βCDk =
‖gk‖2

−dTk−1gk−1
, βDYk =

‖gk‖2

dTk−1yk−1
.

In theory, when exact minimization rule is used, then,
all these choices of βk are equivalent for strongly convex
quadratic function f . However, for non-quadratic objective
functions, every βk chosen leads to different numerical per-
formances [12].

The convergence properties of these methods have been
studied by various scholars. From the computational point
of view, the method of PRP performed better than the FR
method. Also, when f is a convex objective function, then,
under the exact line search, the PRP algorithm would con-
verge globally [6]. For the exact line search, tk is computed
to satisfy:

f (xk + tkdk ) := min
t≥0

f (xk + tdk ). (4)

However, for certain non-convex functions, Powell [13]
shows that the PRP algorithm would not converge globally.

Other convergence results require the step-size tk to satisfy
the weak or strong Wolfe line search. The weak Wolfe search
technique expect tk to satisfy the inequalities.

f (xk + tkdk ) ≤ f (xk )+ δtkgTk dk . (5)

g (xk + αkdk)T dk ≥ σgTk dk . (6)

On the other hand, the strong Wolfe (SWP) search tech-
nique except tk to satisfy (5) and

g (xk + tkdk)T dk ≤ −σ |gTk dk |, (7)

where 0 < δ < σ < 1. Al-Baali [14] showed that FR
algorithm satisfies the sufficient descent condition:

gTk dk ≤ −C‖gk‖
2, C > 0, (8)

and established the convergence proof for general function
using SWP line search. For recent studies on conjugate gradi-
ent algorithms, please refer to [6], [10], [12], [13], [15]–[19].

Recently, Rivaie et al. [20] construct a variant of PRP
method and give the formula as:

βRMILk =
gTk (gk − gk−1)

‖dk−1‖2
, (9)

where the authors replaced ‖gk−1‖2 with ‖dk−1‖2 in the
denominator of classical PRP CG parameter and showed that
the method satisfies (8) and further proved its global conver-
gence under exact minimization condition. However, Dai [21]
pointed out the use of a wrong inequality in establishing the

convergence proof of the result in [20]. As a result, Dai [21]
presented a modification as:

βRMIL+k =

{
gTk (gk−gk−1)
‖dk−1‖2

, if 0 ≤ gTk gk−1 ≤ ‖gk‖
2,

0, otherwise,
(10)

and studied the convergence of RMIL+ using exact min-
imization rule. Numerical result obtained showed that the
RMIL+ is promising. More recently, Yousif [22], studied
the convergence of RMIL+ method under strong Wolfe line
search.

However, some of the best performing conjugate gradients
algorithms, developed recently, are those that incorporated
the spectral parameters. An interesting feature of the spectral
CG algorithm is that only gradient directions are incorporated
at every line search while a non monotone strategy usually
guarantees the global convergence [23]. The first known
spectral CG algorithms was defined by Birgin and Martínez
[24] with the parameters defined as follows:

β1k =
(θkyk−1 − sk−1)T gk

sTk−1yk−1
, β2k =

θkgTk yk−1
tk−1θk−1gTk−1gk−1

,

β3k =
θkgTk gk

tk−1θk−1gTk−1gk−1
,

where yk−1 = gk − gk−1 and sk−1 = xk − xk−1. The method
β1k reduces to a modified CG algorithm presented by Perry
[25] if θ ≡ 1, for all k . Moreover, if θk ≡ 1 holds, for all
k, and β2k satisfies the exact minimization condition, then,
the classical PRP CG method by Polak-Ribiere-Polyak [6] is
obtained. However, if the successive gradients are orthogonal
and the condition θ ≡ 1 holds, for all k, then β3k would
reduce to the classical Fletcher-Reeves (FR) [9] algorithm.
One of the drawbacks of this method is that dk may not be a
descent during the iteration process. Hence, restart procedure
was employed in [26] to guarantee that the method has a
descent direction in all iterations. The convergence analysis
of this method was studied under the standard Wolfe line
search. Birgin and Martínez [26] further extended their work
and introduced an alternative spectral parameter:

θk =
sTk−1sk−1
sTk−1yk−1

. (11)

Computing the conjugate gradient coefficients βk (11) with
the spectral parameter in (11) leads to the spectral conjugate
gradient (SCG) method. Numerical results obtained under
various line search procedures illustrate that the SCG is
more efficient compared to the classical methods of PRP
[6], FR [9], Perry [25] and the spectral gradient method
[27]. More work have been done to improve these methods.
Recent research focuses on memoryless BFGS updates for
unconstrained optimization [15], [28]–[31]. Another efficient
spectral FR (sFR) conjugate gradient method was introduced
by Zhang et al., [32] with the spectral parameter θk and
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conjugate gradient parameter βk defined as:

βk = β
FR
k =

‖gk‖2

‖gk−1‖
, θk =

dTk−1yk−1
‖gk−1‖2

. (12)

An interesting feature of sFR parameter is that, indepen-
dent of line search procedures employed, dk satisfies gTk dk =
−‖gk‖2, ∀ k ≥ 0. Also, the parameter reduces to classi-
cal FR parameter provided the exact minimization condition
is satisfied [29]. The convergence analysis was discussed
under a modified Armijo line search and results obtained
from numerical computations showed that sFR method is
efficient and promising compare to PRP method. Recently,
Liu et al. [33] extended the work of Birgin and Martinez,
[24] and Zhang et al., [32] to proposed a general spectral
parameter that will reduce to the main CG algorithm if
an exact line search is used. Under some mild conditions,
the authors established the global convergence of the method.
For more references on recent spectral conjugate gradient
method, please refer to [33]–[39].

Motivated by the above contributions, a new spectral con-
jugate gradient method is developed in this paper. Some of
the contributions of this paper are highlighted as follows:

• A new spectral conjugate gradient algorithm, based
on RMIL+, for solving unconstrained optimization is
developed.

• The search direction generated by the new algorithm sat-
isfies the sufficient descent property without the restart
condition and independent of any line search.

• The global convergence of the new method is proved
under the weak Wolfe line search.

• The efficiency of the new algorithm is demonstrated on
some standard large-scale problems.

• The new algorithm is applied to solve problems arising
from portfolio selection.

• Lastly, the new algorithm is successfully applied to deal
with robotic motion control problem.

The rest of the paper is designed as follows. In Section II,
a new spectral parameter is presented and the correspond-
ing algorithm is given. The global convergence results of
the new formula under the weak Wolfe line search is pre-
sented in Section III. Experimental numerical results are
presented in Section IV. Applications of the new algorithm
in portfolio selection and motion control are discussed in
Sections V and VI, respectively, where the finally conclusion
in section VII.

II. NEW ALGORITHM
In this section, inspired by the idea of Birgin and Martinez,
[24] and Zhang et al., [40], we propose an efficient spectral
parameter as follows.

Consider the sequence {xk} computed using the spectral
CG parameter (2) and (3). Multiplying (3) by gTk gives

gTk dk = −θkgk + βkg
T
k dk−1 =

gTk−1dk−1
‖dk−1‖2

‖gk‖2ψk , (13)

where,

ψk = −
‖dk−1‖2

gTk−1dk−1
θk + βk

‖dk−1‖2

gTk−1dk−1

gTk dk−1
‖gk‖2

.

This implies,

gTk dk
‖gk‖2

=
gTk−1dk−1
‖dk−1‖2

ψk . (14)

Suppose for every k ≥ 1, we choose the parameterψk = 1,
then from (3) and (14), we get

gTk dk
‖gk‖2

=
gTk−1dk−1
‖dk−1‖2

= . . . =
gT0 d0
‖d0‖2

= −1. (15)

From (15), we have

gTk dk = −‖gk‖
2, ∀k ≥ 1. (16)

Thus, if we choose the spectral parameter θk to satisfy
ψk ≡ 1, then, the direction of search will always satisfy the
descent condition regardless of the search procedure used.
This analysis motivated us on defining a new parameter θk
as follows.

θk = −
gTk−1dk−1
‖dk−1‖2

+ βk
gTk dk−1
‖gk‖2

, (17)

where k ≥ 1 and ψ ≡ 1.
The algorithm of our spectral conjugate method is as fol-

lows.

Algorithm 1 sRMIL+Method
Step 1. Initialization: given x0 ∈ Rn, σ > 0, ψk > 0, set
k := 0. If ‖gk‖ ≤ ε, stop. Otherwise,
Step 2. Compute βk by (10).
Step 3. Compute dk using (3) where θk is defined in (17).
Step 4. Determine tk based on (5) and (6).
Step 5. Update new iterate based on (2).
Step 6. Check if ‖gk‖ = 0, terminate. Else, go to step 2 with
k = k + 1.

To analyze the convergence of the conjugate gradient
method, the assumptions below are often needed.
Assumption A:
1) f (x) is bounded from below on the level set � = {x ∈

Rn
|f (x) ≤ f (x0)}.

2) In some neighborhood N of �, f is smooth and g(x)
is Lipchitz continuous on an open convex set N that
contains �, such that, there exist L > 0 (constant)
satisfying;

‖g(x)− g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (18)

Remark 1: From the analysis above, we have shown that
the proposed sRMIL+ satisfies the descent condition (16)
regardless of the line search. This condition would play a
significant part in the convergence of the proposed sRMIL+
algorithm.
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III. CONVERGENCE ANALYSIS
The global convergence properties of sRMIL+ under weak
Wolfe line search will be studied in this section. Con-
sider the CG parameter defined by (10). If the condition
0 ≤ gTk gk−1 ≤ ‖gk‖

2, holds then

βRMIL+k =
‖gk‖2 − gTk gk−1
‖dk−1‖2

≤
‖gk‖2

‖dk−1‖2
,

where the inequality is obtained by dropping the second term
since gTk gk−1 ≥ 0. On the other hand, it also holds that the
condition 0 ≤ gTk gk−1 ≤ ‖gk‖

2 is equivalent to −‖gk‖2 ≥
−gTk gk−1. Therefore

βRMIL+k =
‖gk‖2 − gTk gk−1
‖dk−1‖2

≥
‖gk‖2 − ‖gk‖2

‖dk−1‖2
= 0.

Hence, it holds that

0 ≤ βRMIL+k ≤
‖gk‖2

‖dk−1‖2
, ∀k ≥ 1. (19)

The proofs would be based on the above inequality (19).
Consider the Assumptions A, then, there exists a constant

γ > 0, in such a way that we have

‖gk‖ ≤ γ, ∀k ∈ N. (20)

The lemma that follows is based on Zoutendijk [18] condi-
tion and has been extensively used in the global convergence
analysis of different CG methods.
Lemma 1: Let’s suppose Assumption A is true. For CG

iterative method defined by (2) and (3), where the search
direction dk satisfies

gTk dk < 0,

for k ∈ N and step-size tk follows from the weak Wolfe line
search, then,

∞∑
k=0

(gTk dk )
2

‖dk‖2
< +∞. (21)

The proof of this Lemma follows from [17]. From (19)
and using Lemma 1, we have the following convergence
theorem.
Theorem 1: Suppose Assumption A holds. Consider the

sequence {gk} and {dk} follows from the proposed algorithm,
where βk is given by (19), and tk satisfies the weak Wolfe line
search, then,

‖dk‖2

‖gk‖4
≤

k∑
i=0

1
‖gi‖

. (22)

Proof: Applying Cauchy-Schwarz inequality on the
descent condition (16), we deduce

‖dk‖ ≥ ‖gk‖ H⇒
1
‖dk‖

≤
1
‖gk‖

. (23)

Now, from (16), (3) and (17), we have

dk =
gTk−1dk−1
‖dk−1‖2

gk − βk
gTk dk−1
‖gk‖2

gk + βkdk−1

= −
‖gk−1‖2

‖dk−1‖2
gk − βk

gTk dk−1
‖gk‖2

gk + βkdk−1

= −
‖gk−1‖2

‖dk−1‖2
gk + βk

(
I −

gkgTk
‖gk‖2

)
dk−1. (24)

Next, applying norm on both sides of (24) and using (23)
gives

‖dk‖ ≤
‖gk−1‖2

‖dk−1‖2
‖gk‖ + βk

∥∥∥∥∥I − gkgTk
‖gk‖2

∥∥∥∥∥ ‖dk−1‖
≤
‖gk−1‖2

‖gk−1‖2
‖gk‖ + βk

∥∥∥∥∥I − gkgTk
‖gk‖2

∥∥∥∥∥ ‖dk−1‖
≤ ‖gk‖ + βk

∥∥∥∥∥I − gkgTk
‖gk‖2

∥∥∥∥∥ ‖dk−1‖
= ‖gk‖ + βk‖dk−1‖. (25)

Squaring both sides and using (19) and (23) yields

‖dk‖2 ≤ (‖gk‖ + βk‖dk−1‖)2

= ‖gk‖2 + 2βk‖gk‖‖dk−1‖ + β2k ‖dk−1‖
2

≤ ‖gk‖2 + 2
‖gk‖2

‖dk−1‖2
‖gk‖‖dk−1‖+

‖gk‖4

‖dk−1‖4
‖dk−1‖2

= ‖gk‖2 + 2
‖gk‖3

‖dk−1‖
+
‖gk‖4

‖dk−1‖2

≤ ‖gk‖2 + 2
‖gk‖3

‖gk−1‖
+
‖gk‖4

‖gk−1‖2

≤
‖gk‖4

‖gk‖2
+ 2

‖gk‖4

‖gk‖‖gk−1‖
+
‖gk‖4

‖gk−1‖2
. (26)

Rearranging gives

‖dk‖2

‖gk‖4
≤

1
‖gk‖2

+ 2
1

‖gk‖‖gk−1‖
+

1
‖gk−1‖2

=

(
1
‖gk‖

+
1

‖gk−1‖

)2

. (27)

‖dk‖2

‖gk‖4
≤

(
1
‖gk‖

+
1

‖gk−1‖

)2

≤

k∑
i=0

1
‖gi‖

. (28)

The proof is completed. �
Theorem 2: Suppose Assumption A holds true. Consider

the sequence {gk} and {dk} generated by the proposed
method, where βk is given by (19), and tk satisfies the weak
Wolfe line search, then,

lim
k→∞

inf ‖gk‖ = 0. (29)

Proof: The proof of Theorem 2 would be done by
contradiction. That is, if the conclusion of Theorem 2 is not
true, then, there exist a constant c > 0 in such a way that

‖gk‖2 ≥ c, ∀k ≥ 1. (30)
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TABLE 1. List of test functions, dimensions, and initial points.
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TABLE 1. (Continued.) List of test functions, dimensions, and initial points.
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TABLE 1. (Continued.) List of test functions, dimensions, and initial points.

From Theorem 1, we have

‖dk‖2

‖gk‖4
≤
k + 1
c

, (31)

which implies

∞∑
k=0

‖gk‖4

‖dk‖2
≥

∞∑
k=0

c
k + 1

= ∞. (32)

However, since (16) hold true, then, from (21), we obtain
∞∑
k=0

‖gk‖4

‖dk‖2
=

∞∑
k=0

(gTk dk )
2

‖dk‖2
<∞. (33)

It is clear that (32) and (33) yield contradiction. This
implies that (29) holds and thus completes the proof. �

IV. PRELIMINARY RESULTS
This section presents the numerical results on 130 benchmark
test problems to illustrate the efficiency of the proposed
sRMIL+ method and compare the performance with the
RMIL+method [21], PRP method [6], [7], sFR method [40],
and sPRPmethod [33]. These algorithmswere coded inMAT-
LAB R2019a and compiled with personal laptop; Intel Core
i7 processor, 16 GB RAM, 64bit Windows 10 Pro operating
system. A large number of the benchmark functions and ini-
tial points are considered by Andrei [41] and Jamil-Yang [42]
as in Table 1. The dimensions of our test problems ranging
from 2 to 100,000. All the methods are implemented using

the weak Wolfe line search with δ = 0.0001, σ = 0.001 and
the termination criteria was set as ‖gk‖ ≤ 10−6. We use ‘‘F’’
to denote when the iteration is bigger than 10,000 or never
reach the optimal point.

All numerical results are presented in Table 2 and Table 3,
where NOI represents the number of iterations, NOF repre-
sents the number of function evaluations, and CPU represents
the central processing unit time. Tables 2 and 3 show that all
methods failed to successfully solve the ENGVAL8 function
with dimension 100, and for all, we get that the RMIL+
method solves 73% (95 out of 130), the PRP method 71%
(93 out of 130), the sFR method 85% (111 out of 130), sPRP,
and sRMIL+ methods 96% (125 out of 130). So, this is
indicating that the sRMIL+ method is superior at solving
the test problems considered compared with RMIL, PRP, and
sFR methods. However, the sRMIL+ method is competitive
with the sPRP method.

On the other hand, to compare and visually characterize
the numerical results in Tables 2 and 3, we use the perfor-
mance profile tool of Dolan and Moré [43] to describe the
performance of the RMIL+, PRP, sFR, sPRP, and sRMIL+
methods based on the NOI, NOF, and CPU time, respectively.
Let S is set of solvers, P is test problems, for ns solvers and
np problems, the performance profile ξ : R → [0, 1] is
formulated as follows:

ξ (τ ) :=
1
np
size {p ∈ Pl | log2(rp,s) ≤ τ }, ∀τ ∈ R+,
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TABLE 2. Numerical results of RMIL+, PRP, and sFR methods.
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TABLE 2. (Continued.) Numerical results of RMIL+, PRP, and sFR methods.
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TABLE 2. (Continued.) Numerical results of RMIL+, PRP, and sFR methods.

FIGURE 1. Performance profiles based on NOI.

where 1 ≤ s ≤ ns, rp,s is the performance ratio which is
defined by: rp,s := tp,s/min{tp,s} and for each solver s ∈ Sl
and each problem p ∈ Pl , they define tp,s is NOI or NOF or
CPU time required to solve problem p by solver s. According
to their rules, the method with the curve at the top is the best.

From Figures 1, 2 and 3, we can see that the sRMIL+ curve
is mostly at the top of the RMIL+, PRP, and sFR curves,
so it is indicating that the sRMIL+ algorithm outperforms
the RMIL+, PRP, and sFR methods based on NOI, NOF,
and CPU time. Meanwhile, when we compare the sRMIL+
method with the sPRP method, both methods are competitive
based on NOI, NOF, and CPU time. Finally, by combining
Tables 2, 3 and Figures 1, 2, 3, we can take conclusion that

FIGURE 2. Performance profiles based on NOF.

sRMIL+method perform better than RMIL+, PRP and SFR,
on other hand the sPRP and sRMIL+ methods are almost
the same performance. This demonstrates that the methods
proposed in this paper have good numerical performance.

V. APPLICATION IN PORTFOLIO SELECTION
In this section, we present the application of the proposed
method for solving portfolio selection problem. Theory of
portfolio selection was first proposed by Harry Markowitz in
his paper ‘‘Portfolio Selection’’ [44]. In this paper, we only
consider the stock portfolio. Stock portfolio can be defined
as a collection of stocks owned by investors. Portfolio theory
is based on the fact that investors will invest their money in
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TABLE 3. Numerical results of sPRP, and sRMIL+ methods.
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TABLE 3. (Continued.) Numerical results of sPRP, and sRMIL+ methods.
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TABLE 3. (Continued.) Numerical results of sPRP, and sRMIL+ methods.

FIGURE 3. Performance profiles based on CPU time.

various types of stocks, where the main objective is to reduce
risk. According to [45], the return Ri on stock si is formulated
by

Ri =
Pt − Pt−1
Pt−1

,

wherePt is the price of the stock at time t andPt−1 is the price
of stock at time t − 1. The expected return of the portfolio’s
return is defined as

µ = E

(
n∑
i=1

wiRi

)
=

n∑
i=1

wiµi, (34)

and variance of the portfolio’s return is defined as

σ 2
= Var

(
n∑
i=1

wiRi

)
=

n∑
i=1

n∑
j=1

wiwjCov(Ri,Rj), (35)

where n is number of stocks, wi is the percentage of the value
of the stock contained in the portfolio and Cov(Ri,Rj) is the
covariance of Ri and Rj.

One way to optimize a portfolio is to minimize risk. Risk
here is defined as the variance of the portfolio’s return σ 2.
So that the problem of portfolio selection can be written in
the following model{

minimize : σ 2
= Var

(∑n
i=1 wiRi

)
subject to :

∑n
i=1 wi = 1.

(36)

In this research, the stock price used is the weekly
closing price of 9 stocks and the stocks being considered
are PT Bank Central Asia Tbk (BBCA), PT Bank Rakyat
Indonesia (Persero) Tbk (BBRI), PT Unilever Indonesia
Tbk (UNVR), PT Telekomunikasi Indonesia Tbk (TLKM),
PT Indofood CBP Sukses Makmur Tbk (ICBP), PT Bank
Mandiri (Persero) Tbk (BMRI), PT Perusahaan Gas Negara
Tbk (PGAS), PT Astra International Tbk (ASII) and PT Bank
Negara Indonesia Tbk (BBNI) where the stock closing price
is obtained from the data http://finance.yahoo.com/., over a
period of 3 years (Jan 1, 2018 - Dec 31, 2020). Based on this
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TABLE 4. Mean and Variance of return of all stocks.

TABLE 5. Covariance of return of all stocks.

data, we have return of each weekly closing stock price and
also obtained the mean, variance, and covariance values of
return in Tables 4 and 5, respectively.

Let w1,w2, . . . ,w9 be the proportions allocated to BBCA,
BBRI, UNVR, TLKM, ICBP, BMRI, PGAS, ASII and BBNI,
respectively. By setting w9 = 1−w2−w2−w3−w4−w5−

w6−w7−w8 and using the data in Tables 4 and 5, we can form
problem (36) into an unconstrained optimization problem as
follows:

min
w∈R8

{
(−0.2e− 3w1 − 0.2e− 3w2 − 0.10e− 2w3

−0.9e− 3w4 − 0.10e− 2w5 − 0.1e− 3w6

+0.2e− 3w7 − 0.3e− 3w8 + 0.15e− 2)w1 +

(−0.12e− 2w1 + 0.2e− 3w2 − 0.19e− 2w3

−0.16e− 2w4 − 0.19e− 2w5 − 0.1e− 3w6

−0.2e− 3w7 − 0.7e− 3w8 + 0.25e− 2)w2

+(−0.2e− 3w1 − 0.1e− 3w2 + 0.6e− 3w3

−0.2e− 3w4 − 0.1e− 3w5 + 0.2e− 3w6

+0.3e− 3w7 + 0.7e− 3)w3 + (−0.6e− 3w1

−0.3e− 3w2 − 0.7e− 3w3 + 0.5e− 3w4

−0.7e− 3w5 − 0.1e− 3w6 + 0.4e− 3w7

−0.3e− 3w8 + 0.12e− 2)w4 + (−0.3e− 3w1

−0.2e− 3w2 − 0.2e− 3w3 − 0.3e− 3w4

+0.6e− 3w5 + 0.8e− 3+ 0.1e− 3w7

−0.3e− 3w8)w5 + (−0.14e− 2w1

−0.4e− 3w2 − 0.19e− 2w3 − 0.17e− 2w4

−0.20e− 2w5 + 0.3e− 3w6 + 0.28e− 2

−0.9e− 3w8)w6 + (−0.14e− 2w1 − 0.8

e− 3w2 − 0.21e− 2w3 − 0.15e− 2w4

−0.22e− 2w5 − 0.3e− 3w6 + 0.36e− 2w7

−0.8e− 3w8 + 0.31e− 2)w7 + (−0.7e− 3w1

−0.1e− 3w2 − 0.12e− 2w3 − 0.10e− 2w4

−0.14e− 2w5 + 0.19e− 2+ 0.4e− 3w7

+0.5e− 3w8)w8 + (−0.20e− 2w1

−0.10e− 2w2 − 0.28e− 2w3 − 0.23e− 2w4

−0.27e− 2w5 − 0.7e− 3w6 − 0.4e− 3w7

−0.16e− 2w8 + 0.35e− 2)(1− w1 − w2

−w3 − w4 − w5 − w6 − w7 − w8)
}
.

By running Algorithm 1 with an initial point
(0.25, . . . , 0.25), then the problem above has a solution
w1 = 0.4322, w2 = 0.1201, w3 = 0.2892, w4 = 0.2464,
w5 = 0.2333, w6 = −0.1818, w7 = −0.0854,
w8 = 0.0187, and also we obtained w9 = 0.0727. Fur-
thermore, based on (34) and (35), we have µ = 0.0003
and σ 2

= 0.0006, respectively. Therefore, we can take
the proportion of each stock with minimal risk, i.e, 43.22%
BBCA, 12.01% BBRI, 28.92% UNVR, 24.64% TLKM,
23.33% ICBP, −18.18%, BMRI, −8.54% PGAS, 1.87%
ASII and 7.27% BBNI. Because there is a minus sign in
the proportion of ICBP and BMRI stocks, it indicates that
investor can do short shelling. As a final conclusion here,
investors can consider this portfolio with a minimal risk is
0.0006 and an expected portfolio return value is 0.0003.

VI. APPLICATION IN TWO-JOINT PLANAR ROBOTIC
MOTION CONTROL
Additional efficiency test for the good performance of the
sRMIL+method is demonstrated by implementing it to solve
a two-joint planar robotic motion control problem. To begin
with, a brief description of discrete-time kinematics equation
of two-joint planar robot manipulator will be given as pre-
sented in [46]. Let uk ∈ R2 denotes the joint angle vector
and vk ∈ R2 be end effector position vector. A discrete-time
kinematics equation of two-joint planar robot manipulator at
a position level is described by the following model

�(uk ) = vk . (37)
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FIGURE 4. Manipulator trajectories.

Let `1 and `2, respectively, denote the lengths of the first
and second rod. The mapping� : Rn

→ Rn is the kinematics
mapping where its structure is given as follows

�(u) =
[
`1 cos(u1)+ `2 cos(u1 + u2), `2 sin(u1)

+ `2 sin(u1 + u2)
]T
.

In motion control problem, at each instant time, say
tk ∈ [0, tfinal] where tfinal is the end of task duration, a series
nonlinear least squares problems which are a special case of
the unconstrained optimization problem needed to be solved
as follows

min
vk∈R2

1
2
‖vk − v̂k‖2 , (38)

where v̂k represents the end effector controlled track.
Following similar approach presented in [1], [47], the end

effector, that is v̂k , used in this experiment, is controlled to
track a Lissajous curve given as

v̂k =

[
3
2
+

1
5
sin
(
π tk
5

)
,

√
3
2
+

1
5
sin
(
2π tk
5
+
π

3

)]T
.

(39)

The implementation of the sRMIL+ algorithm with
regards to the motion control experiment was performed
using MATLAB R2019b and run on a PC with intel
Core(TM) i5-8250u processor with 4 GB of RAM and CPU
1.60 GHZ. The initial point used is u0 = [u1, u2] = [0, π

3 ]
T

with the task duration [0, tfinal] being divided into 200 equal
parts, where tfinal = 10 seconds and `1 = `2 = 1.
The motion control experimental results are presented

in Figures 4–7, where Figure 4 depicts the robot trajectories
synthesized by the sRMIL+ algorithm and Figure 5 plots
the end effector trajectory and desired path. The errors of
the sRMIL+ algorithm are reported in Figures 6–7, where
Figure 6 shows the error recorded on horizontal axis and
Figure 7 shows the error recorded on the vertical axis. It is

FIGURE 5. End effector trajectory and desired path.

FIGURE 6. Tracking errors on the horizontal x-axis.

FIGURE 7. Tracking errors on the vertical y-axis.

apparent from Figures 4 and 5 that the sRMIL+ algorithm
successfully executed the task given to it. The error recorded
during the execution of the task is as low as 10−5. This is
evident from Figures 6 and 7. This confirms the efficiency
and applicability of the proposed sRMIL+ algorithm.
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VII. CONCLUSION
In this paper, we presented a new spectral conjugate gradient
direction based on the idea of recent RMIL+ CG coefficient.
For the proposed method, the sufficient descent condition
always holds regardless of the line search procedure used. The
global convergence proof was established under some stan-
dard assumptions. Preliminary experiment was conducted
to check the performance of the proposed algorithm. The
numerical results obtained showed that the new algorithm
is not only efficient but also promising in practice when
compared with some existing CG algorithms. Furthermore,
the proposed spectral method was extended to solve problems
of portfolio selection and robotic motion control to demon-
strate its applicability to real-world problems.
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