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ABSTRACT The Spectral conjugate gradient (SCG) methods are among the efficient variants of CG
algorithms which are obtained by combining the spectral gradient parameter and CG parameter. The success
of SCG methods relies on effective choices of the step-size o and the search direction dy. This paper presents
an SCG method for unconstrained optimization models. The search directions generated by the new method
possess sufficient descent property without the restart condition and independent of the line search procedure
used. The global convergence of the new method is proved under the weak Wolfe line search. Preliminary
numerical results are presented which show that the method is efficient and promising, particularly for
large-scale problems. Also, the method was applied to solve the robotic motion control problem and portfolio
selection problem.

INDEX TERMS Spectral algorithm, conjugate gradient algorithms, unconstrained optimization models,

motion control, line search procedure, portfolio selection.

I. INTRODUCTION
In this paper, we consider the optimization model:

min f(x), xeR" )

The function f : R" — R has continuous partial
derivatives, whose gradient Vf(x) = g(x) is available. This
type of problems often arise in economics, management sci-
ence, engineering and other industrial applications [1]-[4].
The spectral conjugate algorithms are widely used to solve
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problem (1) by
Xk+1 = Xk + fedi, k>0, (2)

where xg is the initial guess. The step-size #; > 0 is usually
calculated along di. For k = 0, we have dy = —go which is
known as the Steepest descent direction. However, the subse-
quent directions of search are recursively computed as

dr = —Okgk + Prdi—1, k=1 3)

Here 6 is the spectral parameter and S is the conjugate
gradient parameter that differentiate the types of spectral CG
methods. Some of the known CG parameters are given by
Hestenes-Stiefel (HS) [5], Polak-Ribiere-Polyak (PRP) [6],
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[7], Liu-Storey (LS) [8], Fletcher-Reeves (FR) [9], Conjugate
Descent (CD) [10], Dai-Yuan (DY) [11] whose formulas are
given as follow:

T T
‘311;—15 _ 8 Vk—1 ﬂ]fRP _ 8 Yk—1
Al k-1 llgr—11l?
T 2
ﬂ]?s _ 8k Yk—1 FR _ llg |l
—gl | dk llgk—12
cp llgxII? oy lekl?
B = T B = T .-
—d;_18k—1 di_1Yk—1

In theory, when exact minimization rule is used, then,
all these choices of B are equivalent for strongly convex
quadratic function f. However, for non-quadratic objective
functions, every B; chosen leads to different numerical per-
formances [12].

The convergence properties of these methods have been
studied by various scholars. From the computational point
of view, the method of PRP performed better than the FR
method. Also, when f is a convex objective function, then,
under the exact line search, the PRP algorithm would con-
verge globally [6]. For the exact line search, #; is computed
to satisfy:

SOk 4 trdy) = rtn>i(r)1f(Xk + 1dy). 4

However, for certain non-convex functions, Powell [13]
shows that the PRP algorithm would not converge globally.

Other convergence results require the step-size #; to satisfy
the weak or strong Wolfe line search. The weak Wolfe search
technique expect #; to satisfy the inequalities.

fO + tedi) < f () + Stegl dc. Q)
g +oxdi)T dp > ogldy. (6)

On the other hand, the strong Wolfe (SWP) search tech-
nique except f to satisfy (5) and

g + 1d)T diy < —o|gldil, 7

where 0 < § < o < 1. Al-Baali [14] showed that FR
algorithm satisfies the sufficient descent condition:

fdy < —Clal?, € >0, 8)

and established the convergence proof for general function
using SWP line search. For recent studies on conjugate gradi-
ent algorithms, please refer to [6], [10], [12], [13], [15]-[19].

Recently, Rivaie er al. [20] construct a variant of PRP
method and give the formula as:

RMIL __ g/{(gk — 8k-1)

, 9
Pi ldk—1 11 ®

where the authors replaced | gx—1 I? with ||dxk_1]|® in the
denominator of classical PRP CG parameter and showed that
the method satisfies (8) and further proved its global conver-
gence under exact minimization condition. However, Dai [21]
pointed out the use of a wrong inequality in establishing the
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convergence proof of the result in [20]. As a result, Dai [21]
presented a modification as:
Sh(gr—g—1) - T 2
pRMILY _ {W’ if 0 <ggr—1 =< llgkl”,
0, otherwise,
(10)

and studied the convergence of RMIL+ using exact min-
imization rule. Numerical result obtained showed that the
RMIL+ is promising. More recently, Yousif [22], studied
the convergence of RMIL+ method under strong Wolfe line
search.

However, some of the best performing conjugate gradients
algorithms, developed recently, are those that incorporated
the spectral parameters. An interesting feature of the spectral
CG algorithm is that only gradient directions are incorporated
at every line search while a non monotone strategy usually
guarantees the global convergence [23]. The first known
spectral CG algorithms was defined by Birgin and Martinez
[24] with the parameters defined as follows:

1 Gk —si) gk Ok8f Vi1
IBk - T k — T ’
Sp_1Vk—1 Tk —16k—18)_18k—1
3 Ok 8 8k
K = s
te—10k—18} 1 8k—1

where yr_1 = gr — gk—1 and sx—1 = xx — xx—1. The method
,8,1 reduces to a modified CG algorithm presented by Perry
[25]if 6 = 1, for all k. Moreover, if 6; = 1 holds, for all
k, and ﬂ,f satisfies the exact minimization condition, then,
the classical PRP CG method by Polak-Ribiere-Polyak [6] is
obtained. However, if the successive gradients are orthogonal
and the condition & = 1 holds, for all k, then ,3,? would
reduce to the classical Fletcher-Reeves (FR) [9] algorithm.
One of the drawbacks of this method is that d; may not be a
descent during the iteration process. Hence, restart procedure
was employed in [26] to guarantee that the method has a
descent direction in all iterations. The convergence analysis
of this method was studied under the standard Wolfe line
search. Birgin and Martinez [26] further extended their work
and introduced an alternative spectral parameter:

T
_ Sk—15k—1

O = .
T
Sk—1Yk—1

(1)

Computing the conjugate gradient coefficients B (11) with
the spectral parameter in (11) leads to the spectral conjugate
gradient (SCG) method. Numerical results obtained under
various line search procedures illustrate that the SCG is
more efficient compared to the classical methods of PRP
[6], FR [9], Perry [25] and the spectral gradient method
[27]. More work have been done to improve these methods.
Recent research focuses on memoryless BFGS updates for
unconstrained optimization [15], [28]-[31]. Another efficient
spectral FR (sFR) conjugate gradient method was introduced
by Zhang et al., [32] with the spectral parameter 6; and
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conjugate gradient parameter B defined as:

dkT_l}’kfl
h=—>5.
llgk—11I?

llgk I
Br = Bk =

= ) (12)
llgk—1ll

An interesting feature of sFR parameter is that, indepen-
dent of line search procedures employed, dj satisfies g,{dk =
—llgkll®>, Y k > 0. Also, the parameter reduces to classi-
cal FR parameter provided the exact minimization condition
is satisfied [29]. The convergence analysis was discussed
under a modified Armijo line search and results obtained
from numerical computations showed that sFR method is
efficient and promising compare to PRP method. Recently,
Liu et al. [33] extended the work of Birgin and Martinez,
[24] and Zhang et al., [32] to proposed a general spectral
parameter that will reduce to the main CG algorithm if
an exact line search is used. Under some mild conditions,
the authors established the global convergence of the method.
For more references on recent spectral conjugate gradient
method, please refer to [33]-[39].

Motivated by the above contributions, a new spectral con-
jugate gradient method is developed in this paper. Some of
the contributions of this paper are highlighted as follows:

e A new spectral conjugate gradient algorithm, based
on RMIL+, for solving unconstrained optimization is
developed.

o The search direction generated by the new algorithm sat-
isfies the sufficient descent property without the restart
condition and independent of any line search.

« The global convergence of the new method is proved
under the weak Wolfe line search.

o The efficiency of the new algorithm is demonstrated on
some standard large-scale problems.

o The new algorithm is applied to solve problems arising
from portfolio selection.

« Lastly, the new algorithm is successfully applied to deal
with robotic motion control problem.

The rest of the paper is designed as follows. In Section 1I,
a new spectral parameter is presented and the correspond-
ing algorithm is given. The global convergence results of
the new formula under the weak Wolfe line search is pre-
sented in Section III. Experimental numerical results are
presented in Section IV. Applications of the new algorithm
in portfolio selection and motion control are discussed in
Sections V and VI, respectively, where the finally conclusion
in section VII.

Il. NEW ALGORITHM
In this section, inspired by the idea of Birgin and Martinez,
[24] and Zhang et al., [40], we propose an efficient spectral
parameter as follows.

Consider the sequence {x;} computed using the spectral
CG parameter (2) and (3). Multiplying (3) by g,{ gives

gjzfldk—l

o e a3)

ol di = —Okgr + Prgl dx—1 =

75400

where,

Ide—111? gf dx—1
8i_ydx—1 llgkll?

gl
8t k-1

Y =

Ok + Br

This implies,
gldr  8f di-
lgkl?  Ndi—1l1?

Suppose for every k > 1, we choose the parameter Yy = 1,
then from (3) and (14), we get

Y. (14)

sed _ gt smd g
llgx I lld—111 " ldoll? )
From (15), we have
shdi = —lgl®, Vk > 1. (16)

Thus, if we choose the spectral parameter 6 to satisfy
Y = 1, then, the direction of search will always satisfy the
descent condition regardless of the search procedure used.
This analysis motivated us on defining a new parameter 6
as follows.

gr dr—1

gl di-
- k ,
llgx 112

lldy—111?
where k > land ¢ = 1.

The algorithm of our spectral conjugate method is as fol-
lows.

Or = a7

Algorithm 1 sRMIL+ Method

Step 1. Initialization: given xo € R", o > 0, ¥ > 0, set
k :=0.If ||gk || < e, stop. Otherwise,

Step 2. Compute B by (10).

Step 3. Compute di using (3) where 6 is defined in (17).
Step 4. Determine #; based on (5) and (6).

Step 5. Update new iterate based on (2).

Step 6. Check if || gk || = O, terminate. Else, go to step 2 with
k=k+1.

To analyze the convergence of the conjugate gradient
method, the assumptions below are often needed.
Assumption A:

1) f(x) is bounded from below on the level set 2 = {x €
R™[f(x) < f(x0)}-

2) In some neighborhood N of €, f is smooth and g(x)
is Lipchitz continuous on an open convex set N that
contains €2, such that, there exist L > 0 (constant)
satisfying;

lex) —gWIl = Llix =yl Vx,yeN. (18)

Remark 1: From the analysis above, we have shown that
the proposed sRMIL+ satisfies the descent condition (16)
regardless of the line search. This condition would play a
significant part in the convergence of the proposed sRMIL+
algorithm.
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IIl. CONVERGENCE ANALYSIS

The global convergence properties of SRMIL+ under weak
Wolfe line search will be studied in this section. Con-
sider the CG parameter defined by (10). If the condition
0 < gf gk—1 < llgkll*, holds then

sl — gk g1 _ _llgell®

ﬂRNﬂL+
ldi—11> = ldi-1l?

where the inequality is obtained by dropping the second term
since g,{ 8k—1 = 0. On the other hand, it also holds that the
condition 0 < gl'gx—1 < gkl is equivalent to —||g|> >
—g! gk—1. Therefore

gL _ lgicl® — gigr—1 _ Ngl® — llgell® _
lldi—11I? | di—11I?
Hence, it holds that
0< ﬂRM1L+ ||gk||2 1 (19)
Ide—1l1>"

The proofs would be based on the above inequality (19).
Consider the Assumptions A, then, there exists a constant
y > 0, in such a way that we have

lgxll <y, VkeN. (20)

The lemma that follows is based on Zoutendijk [18] condi-
tion and has been extensively used in the global convergence
analysis of different CG methods.

Lemma 1: Let’s suppose Assumption A is true. For CG
iterative method defined by (2) and (3), where the search
direction dy satisfies

ghdi <0,

for k € N and step-size ty follows from the weak Wolfe line
search, then,

2
Z(g d"; < +oo. 21)
2 g

The proof of this Lemma follows from [17]. From (19)
and using Lemma 1, we have the following convergence
theorem.

Theorem 1: Suppose Assumption A holds. Consider the
sequence {gi} and {dy} follows from the proposed algorithm,
where By is given by (19), and t;. satisfies the weak Wolfe line
search, then,

k
ldil® _ 1

=) (22)
gl = = llgill

Proof: Applying Cauchy-Schwarz inequality on the
descent condition (16), we deduce

1 1
- — <. (23)

lldill = llgkll <
il — llgkll
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Now, from (16), (3) and (17), we have

T T
8k_19k—1 8 dk—1
dp = ——8k — B gk + Brdi—1
dr—111 llgrll?
llgk—1? 81 di—
— 38k — Bk gk + Brdr—1
di—111? llgxll

llgx—1l?
lldi—11?

8k8
gk + B (1 iz |’|‘2>de (24)

Next, applying norm on both sides of (24) and using (23)
gives

llgk—111? gkgk
lde | < llgkll + B |1 i1 |
1112 g2
lgx—11> g8
< =gl + B |1 - i1 |
lge—111? lgelI?
T
8k8
< llgell + Be |1 — =25 | lidi—1
gl
= llgll + Brlldk-1ll. (25)

Squaring both sides and using (19) and (23) yields

Idell> < (lgell + Brlldk—11D?
= llgkl® + 2Bk gkl dk—1 1| + BElldk—1 11>

llgell? lgell* )
< llgell® +2—>— gk Il ldk—1 I+ k-1l
lldk—111 lld—111*
llgkll® llgxlI*
= llgkl* +2
ldi—1ll ~ lldk—1I?
3 4
< gl +2 llgkll L gl i
lgk—1ll  llgk—1ll
lgell* lgell* lgell* 26)
~ llel? lgrlllgk—1ll — llgk—11?
Rearranging gives
A 1 1 1
< 2 +
lgxll* — llgll® lgrlllge=1ll — llgr—1l?
1 1\
=(— + ) (27)
el llgk—1ll
k
i |12 1 I 1
. < + <> — @
gl el llgk—1ll = llgil
The proof is completed. ]

Theorem 2: Suppose Assumption A holds true. Consider
the sequence {gr} and {dy} generated by the proposed
method, where By is given by (19), and t satisfies the weak
Wolfe line search, then,

lim inf||gk]| = 0. (29)
k—o00
Proof: The proof of Theorem 2 would be done by

contradiction. That is, if the conclusion of Theorem 2 is not

true, then, there exist a constant ¢ > 0 in such a way that
lgell> = ¢, Vk =1, (30)
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TABLE 1. List of test functions, dimensions, and initial points.

75402

Number Functions Dimension Initial Points
1 Extended Rosenbrock 1,000 (-1.2,1,...,-1.2,1)
2 Extended Rosenbrock 1,000 (10,...,10)
3 Extended Rosenbrock 10,000 (-1.2,1,...,-1.2,1)
4 Extended Rosenbrock 10,000 (5,...,5)

5 Diagonal 4 500 1,..., 1

6 Diagonal 4 500 (-20,..., -20)
7 Diagonal 4 1,000 (1,.., 1

8 Diagonal 4 1,000 (-30,..., -30)
9 Hager 10 (1,.., 1
10 Hager 10 (-10.,..., -10)
11 Trecanni 2 (-1,0.5)
12 Trecanni 2 (-5, 10)
13 Shallow 1,000 O,..., 0
14 Shallow 1,000 (10.,..., 10)
15 Shallow 10,000 (-1,...,-1)
16 Shallow 10,000 (-10,..., -10)
17 Leon 2 2,2)

18 Leon 2 (8,8)

19 Extended Powel 100 (3,-1,0,1,..)
20 Extended Powel 100 (5,...,5)
21 Extended Beale 1,000 (1,0.8....,1,0.8)
22 Extended Beale 1,000 (0.5,...,0.5)
23 Extended Beale 10,000 (-1,...,-1)
24 Extended Beale 10,000 (0.5,...,0.5)
25 Six Hump Camel 2 (-1,2)

26 Six Hump Camel 2 (-5, 10)
27 Three Hump Camel 2 (-1,2)

28 Three Hump Camel 2 (2,-1)

29 POWER 10 (1,..., 1
30 POWER 10 (10,..., 10)
31 Colville 4 (2,2,2,2)
32 Colville 4 (10,10,10,10)
33 Dixon and Price 3 1,1, 1)
34 Dixon and Price 3 (10, 10, 10)
35 Sphere 5,000 (1,...,1)
36 Sphere 5,000 (10.,...,10)
37 Sum Squares 50 0,1,...,0,1)
38 Sum Squares 50 (10,..., 10)
39 NONSCOMP 2 3.,3)

40 NONSCOMP 2 (10, 10)
41 Extended DENSCHNB 10 1,..., 1
42 Extended DENSCHNB 10 (10.,..., 10)
43 Extended DENSCHNB 100 (10.,..., 10)
44 Extended DENSCHNB 100 (-50...., -50)
45 Extended Penalty 10 (1, 2,..., 10)
46 Extended Penalty 10 (-10.,..., -10)
47 Extended Penalty 100 (1,...,1)
48 Extended Penalty 100 (-2,...,-2)
49 ENGVALL1 50 2,...,2)
50 ENGVALI1 100 2,...,2)
51 ENGVALS 50 (.,...,0)
52 ENGVALS 100 (,...,0)
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TABLE 1. (Continued.) List of test functions, dimensions, and initial points.

VOLUME 9, 2021

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
&3
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

Extended White & Holst
Extended White & Holst
Extended White & Holst
Extended White & Holst
Extended Tridiagonal 1
Extended Tridiagonal 1
Extended Tridiagonal 1
Extended Tridiagonal 1
FLETCHCR
FLETCHCR
Zettl
Zettl
Quartic
Quartic
Generalized Tridiagonal 1
Generalized Tridiagonal 1
Ext Freudenstein & Roth
Ext Freudenstein & Roth
Extended Himmelblau
Extended Himmelblau
Extended Himmelblau
Extended Himmelblau
Extended Maratos
Extended Maratos
Booth
Booth
Quadratic QF2
Quadratic QF2
Matyas
Matyas
Quadratic QF1
Quadratic QF1
Quadratic QF1
Quadratic QF1
Generalized Tridiagonal 2
Generalized Tridiagonal 2
Raydan 1
Raydan 1
Raydan 1
Raydan 1
Generalized Quartic
Generalized Quartic
Extended Quadratic Penalty QP1
Extended Quadratic Penalty QP1
Extended Quadratic Penalty QP2
Extended Quadratic Penalty QP2
Extended Quadratic Penalty QP2
Extended Quadratic Penalty QP2
QUARTICM
QUARTICM
QUARTICM
QUARTICM
DENSCHNA

1,000
1,000
10,000
10,000
500
500
1,000
1,000

10,000
50,000
1,000
1,000
10,000
10,000
10
10

50
50

50
50
500
500

10
10
100
100
1,000
1,000

100
100
500
500
5,000
10,000
15,000
20,000
10,000

12, 1,...-1.2,)
(10,...,10)
12, 1,..,-1.2,1)
(5,...,5)
2,...,2)
(10,..., 10)
(1, 1)
(-10,..., -10)
0,..., 0)
(10,..., 10)
(-1,2)

(10, 10)

(10,10,10,10)
(15,15,15,15)

2,..., 2)
(10,..., 10)
(-5,...,-5)
(-5,...,-5)

(1, 1)
(20,..., 20)
1, -1)
(50...., 50)

(1.1,0.1,.., 1.1,)
1,y -1)
(5,5)

(10, 10)
(0.5,...,0.5)
(30...., 30)
(1, 1)

(20, 20)

(1, 1)
(10,..., 10)

(1, 1)
(-5,..., -5)
(1,1,1,1)

(10,10,10,10)
(1, 1)
(-10,..., -10)
1, -1)
(-10,..., -10)

(5,...,5)
(20....,20)
(1,1,1,1)

(10,10,10,10)

(1,..., 1)
(10,..., 10)
(10,...,10)
(20,..., 20)

2,..2)

2,..2)

@,...2)

@,...2)
1, 1)
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TABLE 1. (Continued.) List of test functions, dimensions, and initial points.

106 DENSCHNA 100,000 (-1,...,-1)
107 DENSCHNC 5,000 (100....,100)
108 DENSCHNC 50,000 (100,...,100)
109 Extended Block-Diagonal BD1 5,000 (1.02,...,1.02)
110 Extended Block-Diagonal BD1 50,000 (1.02,...,1.02)
111 Extended Block-Diagonal BD1 100,000 (1.02,...,1.02)
112 HIMMELBH 50 0.2,...,0.2)
113 HIMMELBH 100 0.2,...,0.2)
114 HIMMELBH 1,000 0.2,...,0.2)
115 Extended Hiebert 10,000 (1.04,...,1.04)
116 Extended Hiebert 50,000 (1.04,...,1.04)
117 Extended Hiebert 100,000 (1.04,...,1.04)
118 Price 4 2 (-2,-2)

119 Price 4 2 (3,-2)

120 Rotated Ellipse 2 (-2,-2)

121 Rotated Ellipse 2 (0.2,0.2)
122 Zirilli or Aluffi-Pentini’s 2 2,2)

123 Zirilli or Aluffi-Pentini’s 2 (-2,-2)

124 Diagonal Double Border Arrow Up 500 (1.005....,1.005)
125 Diagonal Double Border Arrow Up 5,000 (1.005....,1.005)
126 Diagonal Double Border Arrow Up 50,000 (1.005....,1.005)
127 HARKERP 1,000 (1,...,1000)
128 HARKERP 50,000 (1,2,...,50000)
129 Extended Quadratic Penalty QP3 10 (15,15,...,15)
130 Extended Quadratic Penalty QP3 100 (15,15,...,15)

From Theorem 1, we have

&> k+1
I kll4 < + 31
llgxll c
which implies
leel* _ <
0. 32
Z del? = kX:kJrl 32
However, since (16) hold true, then, from (21), we obtain
o 4
143 (g1 di)?
P Z - < oo (33)
Sdl? T A

It is clear that (32) and (33) yield contradiction. This
implies that (29) holds and thus completes the proof. 0

IV. PRELIMINARY RESULTS

This section presents the numerical results on 130 benchmark
test problems to illustrate the efficiency of the proposed
sRMIL+ method and compare the performance with the
RMIL+ method [21], PRP method [6], [7], sFR method [40],
and sPRP method [33]. These algorithms were coded in MAT-
LAB R2019a and compiled with personal laptop; Intel Core
i7 processor, 16 GB RAM, 64bit Windows 10 Pro operating
system. A large number of the benchmark functions and ini-
tial points are considered by Andrei [41] and Jamil-Yang [42]
as in Table 1. The dimensions of our test problems ranging
from 2 to 100,000. All the methods are implemented using

75404

the weak Wolfe line search with § = 0.0001, o = 0.001 and
the termination criteria was set as ||gx || < 107°. We use “F”
to denote when the iteration is bigger than 10,000 or never
reach the optimal point.

All numerical results are presented in Table 2 and Table 3,
where NOI represents the number of iterations, NOF repre-
sents the number of function evaluations, and CPU represents
the central processing unit time. Tables 2 and 3 show that all
methods failed to successfully solve the ENGVALS function
with dimension 100, and for all, we get that the RMIL+
method solves 73% (95 out of 130), the PRP method 71%
(93 out of 130), the sFR method 85% (111 out of 130), sPRP,
and sRMIL+ methods 96% (125 out of 130). So, this is
indicating that the SRMIL+ method is superior at solving
the test problems considered compared with RMIL, PRP, and
sFR methods. However, the SRMIL+ method is competitive
with the SPRP method.

On the other hand, to compare and visually characterize
the numerical results in Tables 2 and 3, we use the perfor-
mance profile tool of Dolan and Moré [43] to describe the
performance of the RMIL+, PRP, sFR, sPRP, and sRMIL+
methods based on the NOI, NOF, and CPU time, respectively.
Let S is set of solvers, P is test problems, for ng solvers and

n, problems, the performance profile £ : R — [0,1] is
formulated as follows:
1 . "
&(t) == —size{p € Pillogy(rps) <1}, VT € RT,

np
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TABLE 2. Numerical results of RMIL+, PRP, and sFR methods.
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Number RMIL+ PRP sFR
NOI NOF CPU NOI NOF CPU NOI NOF CPU

1 27 176 0.0488 19 123 0.0377 179 293 0.1955
2 40 243 0.0667 F F F 163 1181 0.2378
3 32 192 0.3874 19 123 0.231 200 986 1.6746
4 40 195 0.3768 20 136 0.4796 831 5101 8.4652
5 F F F F F F 31 90 0.0254
6 F F F F F F 56 165 0.0392
7 F F F F F F 39 114 0.053
8 F F F F F F 64 189 0.0549
9 F F F F F F 34 105 0.0048
10 F F F F F F 89 309 0.0091
11 1 3 0.0013 1 3 1.95E-04 1 3 1.88E-04
12 5 23 0.007 5 23 6.89E-04 7 30 7.20E-04
13 11 39 0.0154 F F F 55 171 0.0483
14 14 59 0.0303 13 51 0.018 96 389 0.0928
15 F F F F F F 47 149 0.3167
16 F F F F F F 372 1298 2.4379
17 31 179 0.0023 17 136 0.0012 66 363 0.0035
18 35 265 0.0033 28 243 0.0032 709 4235 0.0522
19 70 863 0.0716 3337 10084  0.7111 5589 16877 1.0729
20 39 225 0.0443 2312 7053 0.4623 6019 18187 1.2789
21 52 191 0.0992 15 69 0.0479 75 249 0.1303
22 F F F 9 44 0.0367 81 267 0.1455
23 11 48 0.2153 F F F 87 288 1.1917
24 F F F 10 47 0.222 87 285 1.2099
25 8 36 0.0053 6 30 0.007 27 96 0.0103
26 11 66 0.0026 F F F 536 2070 0.0438
27 F F F F F F F F F
28 15 400 0.0108 F F F F F F
29 123 369 0.0102 10 30 7.66E-04 10 30 9.52E-04
30 139 417 0.0123 10 30 8.78E-04 10 30 9.73E-04
31 1032 4339  0.0726 148 818 0.2155 F F F
32 669 2819  0.0324 86 372 0.0167 33 169 0.0029
33 1 3 0.0083 1 3 0.0167 1 3 0.0071
34 1 3 0.0056 1 3 0.0071 1 3 0.0057
35 F F F F F F 16 60 2.10E-03
36 46 194 0.0083 56 266 0.0063 25 122 0.0013
37 46 138 0.0152 25 75 0.0057 25 75 0.0043
38 81 243 0.2223 41 123 0.0097 41 123 0.0181
39 54 193 0.0183 15 76 0.0048 156 637 0.0136
40 17 94 0.2085 F F F 93 405 0.0115
41 6 22 8.45E-04 5 19 4.20E-03 9 31 0.0012
42 8 37 0.0022 8 37 0.0023 11 49 0.0017
43 8 37 0.0093 8 37 0.0044 11 49 0.01
44 9 43 0.0181 7 37 0.0032 63 223 0.0257
45 27 112 0.0038 31 117 0.0017 20 76 0.0027
46 26 103 0.0021 9 46 6.12E-04 19 74 0.0018
47 19 87 0.0056 12 82 0.006 F F F
48 19 89 0.0124 13 87 0.0077 F F F
49 47 817 0.0301 22 409 0.0147 23 431 0.019
50 F F F 22 416 0.0251 22 386 0.0273
51 14 63 0.2976 14 78 0.2305 F F F
52 F F F F F F F F F
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TABLE 2. (Continued.) Numerical results of RMIL+, PRP, and sFR methods.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
&3
84
&5
86
87
88
&9
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

16
F
16
38
6
5

207
31

78
71

69
78
447
500

27
37
109
180
802
806

102
F
102
260
37
26
40
55
311
548
69
F
F
F
74
120
63
63
44
34
42
50
923
195

280
334

207
234
1341
1500
21

105
170
505
841
2788
2811
53
68
313
296
620
743

ipsliesiieslies e sMiss]

0.0588
F
0.3907
0.9512
0.0144
0.0145
0.0276
0.0425
0.0084
0.0183
0.0028
F
F
F
0.0058
0.003
0.1356
0.4922
0.0215
0.0165
0.0952
0.137
0.0331
0.0134
2.58E-04
2.84E-04
0.0225
0.0327
F
F
0.0115
0.0104
0.1716
0.2046
0.0027

0.0026
0.0062
0.0394
0.0609
0.0517
0.0454
0.0012
0.0013
0.0254
0.0252
0.1127
0.1158

ipsiieslies e s s viies!

15
21
15
22
F
5
F
13
56
71
10
12

oYM oowonowwoo N oo

58

38

131
137

104
181
104
203

26

68
263
376

45

59

77
117
54
54
34
31
45
44

188

250
275

114
120
393
411
F
59
87
157
409
F
696
495
28
49
235
296
493
528
F
F
F
F
44
44

0.0525
0.0898
0.3841
0.7392

0.0139

0.0458
0.0055
0.0078
0.0011
0.0012
F
F
0.0057
0.0037
0.1141
0.3937
0.0327
0.0127
0.1075
0.1027
F
0.004
2.34E-04
4.06E-04
0.0241
0.0322
F
F
0.0049
0.0073
0.0719
0.072
F
0.0019
0.0021
0.0036
0.032
F
0.0138
0.0133
6.26E-04
9.52E-04
0.0161
0.0233
0.087
0.082
F
F
F
F
0.1867
1.4056

49
850
50
130
26

35
29
1208
299
26
20
537

131
137
34

21
197
95

272
273
20
51
388
490
1217
1436
3
3
3
3
23
27

214
4788
127
1308
97
50
127
121
5994
1489
95
82
14628
1330
90
173
80
80
56
40
115
55
F
1750
6
6
407
F
63
77
114
120
393
411
101

&4
635
475

1075
1096
72
194
4075
5020
21367
25608
27
27
27
27
66
78

0.1055
1.763
0.8213
4.4304
0.0399
0.0182
0.0716
0.0718
0.0791
0.0333
2.50E-03
0.0027
2.2454
0.5172
0.004
0.0038
0.1977
0.5808
0.0243
0.0185
0.2521
0.1317
F
0.0338

2.41E-04
2.96E-04

0.2404
F
0.0102
0.0034
0.0061
0.0068
0.063
0.0683
2.18E-01
F
0.0071
0.0325
0.2468
F
0.0248
0.0253
0.0041
0.0042
0.1787
0.2081
3.459
4.0323
0.0847
0.1332
0.17
0.217
0.265
2.4636
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TABLE 2. (Continued.) Numerical results of RMIL+, PRP, and sFR methods.

91 0.0745 50 222 0.2247
91 07072 52 228  1.8732
256 0.236 10 194  0.1955
199  1.6463 9 131 1.0683
257 40298 12 255  4.0832

15 0.0011 10 30 0.005

15 0.0031 10 30 0.006

15 0.0101 F F F
220 04321 60 281  0.5859
220 15976 66 299  2.5239
220 3.6466 66 299  4.8565
91 0.0018 4013 12128  0.1617
150  0.0036 4796 14474 02015
1484  0.012 F F F
1304  0.0124 F F F

F F 33 97 0.0032

F F 29 62 0.006

F F F F F

F F F F F

F F F F F

F F 16 114  0.0388

F F F F F
77 0.0016 15 66 0.0022
108 0.0089 F F F

107 10 86 0.1111 11
108 10 86 0.6165 11
109 12 269 0.2379 11
110 13 246 1.8967 11
111 12 286 4.412 11
112 7 22 0.0076 5
113 7 30 0.003 5
114 7 48 0.0292 5
115 F F F 26
116 F F F 26
117 F F F 26
118 20 127 0.0025 16
119 39 171 0.0172 24
120 42 1261 0.0185 48
121 31 946 0.0086 42
122 F F F F
123 F F F F
124 14 421 0.0595 F
125 36 1067  0.7225 F
126 F F F F
127 F F F F
128 F F F F
129 10 51 0.0018 13
130 27 159 0.0213 16
]
08f /_/.r’_’_'_/_
0.6
0.4
RMIL+
02 ——PRP
—sFR
——SsPRP
— sRMIL+
0 ‘ ‘ ‘ :
0 2 4 6 8

T

FIGURE 1. Performance profiles based on NOL.

where 1 < s < ny, 1, is the performance ratio which is
defined by: r, s := 1, ;/ min{z, s} and for each solver s € §;
and each problem p € Py, they define z, ; is NOI or NOF or
CPU time required to solve problem p by solver s. According
to their rules, the method with the curve at the top is the best.

From Figures 1,2 and 3, we can see that the SRMIL+ curve
is mostly at the top of the RMIL+, PRP, and sFR curves,
so it is indicating that the SRMIL+ algorithm outperforms
the RMIL+, PRP, and sFR methods based on NOI, NOF,
and CPU time. Meanwhile, when we compare the sSRMIL+
method with the sSPRP method, both methods are competitive
based on NOI, NOF, and CPU time. Finally, by combining
Tables 2, 3 and Figures 1, 2, 3, we can take conclusion that

VOLUME 9, 2021

RMIL+
——PRP
—sFR
——SsPRP
= sRMIL+

4 5 6 7 8
FIGURE 2. Performance profiles based on NOF.

SRMIL+ method perform better than RMIL+-, PRP and SFR,
on other hand the sPRP and sRMIL+ methods are almost
the same performance. This demonstrates that the methods
proposed in this paper have good numerical performance.

V. APPLICATION IN PORTFOLIO SELECTION

In this section, we present the application of the proposed
method for solving portfolio selection problem. Theory of
portfolio selection was first proposed by Harry Markowitz in
his paper “Portfolio Selection™ [44]. In this paper, we only
consider the stock portfolio. Stock portfolio can be defined
as a collection of stocks owned by investors. Portfolio theory
is based on the fact that investors will invest their money in
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TABLE 3. Numerical results of sPRP, and sRMIL+ methods.

Number sPRP SRMIL+
NOI NOF CPU NOI NOF CPU

1 18 120 0.0318 23 147 0.0365
2 20 144 0.0438 26 295 0.0676
3 18 120 0.2253 23 147 0.2603
4 19 129 0.243 36 508 0.7877
5 5 13 0.0051 6 16 0.0051
6 5 13 0.0058 6 16 0.0048
7 5 13 0.0062 8 22 0.0086
8 5 13 0.0094 8 22 0.0063
9 36 94 0.007 16 53 0.0016
10 31 95 0.0032 19 93 0.0023
11 1 3 2.22E-04 1 3 1.59E-04
12 5 23 5.43E-04 5 23 5.33E-04
13 8 32 0.019 7 30 0.0145
14 14 63 0.0287 17 74 0.026
15 12 43 0.0952 14 48 0.1018
16 11 57 0.1207 13 73 0.1853
17 14 108 0.002 19 197 0.0017
18 29 308 0.0039 34 303 0.0037

19 3261 9856  0.7004 70 863 0.0693
20 101 401 0.0382 39 225 0.0245

21 13 64 0.0349 16 121 0.0865
22 10 47 0.0371 10 43 0.0332
23 10 47 0.201 9 49 0.2068
24 10 47 0.2192 10 43 0.2101
25 6 30 8.17E-04 7 33 7.39E-04
26 8 42 1.10E-03 12 57 1.20E-03
27 16 430 0.2081 11 214 0.0044
28 9 240 0.0072 13 367 0.0112
29 10 30 1.10E-03 10 30  9.30E-04
30 10 30 9.12E-04 10 30 9.30E-04
31 137 801 0.0083 134 1471  0.0107
32 87 371 0.0043 67 433 0.0036
33 1 3 0.0041 1 3 0.0036
34 1 3 0.0074 1 3 0.0064
35 27 92 0.002 19 78  9.20E-04
36 60 281 0.0036 30 144 0.0027
37 25 75 0.004 50 150 0.0097
38 41 123 0.008 88 273 0.0108
39 15 79 0.009 15 72 0.0041
40 13 73 0.0041 16 69 0.003
41 5 19  8.60E-03 5 19  6.72E-04
42 8 37 0.0046 11 49 0.0013
43 8 37 0.0035 11 49 0.0035
44 8 41 0.0039 8 41 0.0034
45 33 125 0.1931 19 90 0.0095
46 7 36 0.0036 9 44 0.0026
47 13 85 0.0092 23 142 0.0171
48 F F F 21 141 0.0163
49 22 419 0.0229 48 813 0.0465
50 24 489 0.0323 43 719 0.0434
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TABLE 3. (Continued.) Numerical results of sPRP, and sRMIL+ methods.
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51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

F

F

14
23
14
31
13
5

13
7
56
53

131
137
16
14
20
32
76
169
163
113

21
27
41
37

F
F
98
229
98
308
63
26
63
45
263
285
43
49
434
477
77
117

31
31
45
33
263
208

250
275
63
77
114
120
393
411
40
60
80
146
446
900
695
495
28
50
228
296
508
440
27
27
27

F
F
0.0547
0.1045
0.362
1.0713
0.0287
0.0128
0.044
0.0338
0.0077
0.006
1.90E-03
1.30E-03
0.1061
0.1394
0.0019
0.003
F
F
0.0126
0.0135
0.1121
0.0867
0.2415
0.0048
4.12E-04
2.42E-04
0.0065
0.0069
0.0079
0.0033
0.0059
0.0091
0.0661
0.0699
7.40E-03
7.10E-03
0.0094
0.0086
0.0363
0.0576
0.0131
0.0136
5.27E-04
9.32E-04
0.0178
0.0193
0.0881
0.0806
0.0751
0.1336
0.1772

F
F
17
30
17
33

12
13
58
68
12
15
18
14
24
31

ErmwwogmTd

—_
S NN
—_

~N = [N |
- A — ©

262
260

11
22
46
117
152
88
51

22
27
41
53

F
F
111
408
111
220
46
26
94
104
279
524
57
67
411
340
83
144

45
31
44
36

257

497
392
63
77
353
321
1755
1211
26
54
90
308
1259
1789
1403
305
28
49
203
253
442
568
27
27
27

F
F
0.0562
0.1625
0.4085
0.7971
0.025
0.0138
0.053
0.059
0.0108
0.0164
8.27E-04
0.0014
0.1426
0.1119
0.0016
0.0026
F
F
0.0155
0.0228
0.0999
0.0909
F
0.0087
2.43E-04
2.34E-04
0.0143
0.0152
7.60E-03
0.0024
0.0149
0.0148
0.2009
0.22
7.03E-04
1.30E-03
0.0024
0.01
0.0537
0.0812
0.0176
0.0091
5.97E-04
9.12E-04
0.0189
0.0158
0.0828
0.1064
0.0709
0.1228
0.1687
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TABLE 3. (Continued.) Numerical results of sPRP, and sRMIL+ methods.

104 3 27 0.2193 3 27 0.2145
105 7 27 0.1166 11 42 0.1878
106 7 27 1.1403 9 35 1.2819
107 11 91 0.086 12 92 0.0861
108 11 91 0.7223 11 89 0.6681
109 12 263 0.2703 11 149 0.1724
110 12 242 2.0159 12 195 1.5232
111 13 275 4.2859 11 149 2.7943
112 5 15 0.0012 5 15 0.0011
113 5 15 0.0024 5 15 0.0015
114 5 15 0.0111 5 15 0.0107
115 25 217 0.4152 23 144 0.2744
116 25 217 1.8073 21 136 0.969
117 25 217 3.3591 21 136 21777
118 18 110 0.0023 11 77 0.0022
119 19 119 0.0023 10 68 0.0018
120 50 1387  0.0151 40 1183  0.0108
121 43 1196 28 878 0.0083
122 7 20  7.89E-04 6 22 7.17E-04
123 22 55 0.0019 10 33 9.82E-04
124 39 1267  0.1274 14 421 0.0614
125 61 1825  1.2331 36 1066  0.7244
126 72 2154 14.1106 41 1322 10.273
127 8 68 0.0238 8 68 0.0218
128 10 170 1.2856 8 101 0.7042
129 8 43 0.001 8 43 9.96E-04
130 16 113 0.012 17 111 0.0126

0.8

RMIL+
0.2 ——PRP
—sFR
——sPRP
——sRMIL+

0 2 4 6 8
T

FIGURE 3. Performance profiles based on CPU time.

various types of stocks, where the main objective is to reduce
risk. According to [45], the return R; on stock s; is formulated
by
R = P, — P, ’
Py

where P; is the price of the stock at time ¢t and P;_ is the price
of stock at time t — 1. The expected return of the portfolio’s
return is defined as

n n
uw=E (Z WiRi) = Zwiﬂi, (34)
i=1 i=1

75410

and variance of the portfolio’s return is defined as

n n n
0% = Var (Z wl-Ri) = > > wiwCov(R;, Ry), (35)
i=1

i=1 j=1

where n is number of stocks, w; is the percentage of the value
of the stock contained in the portfolio and Cov(R;, R)) is the
covariance of R; and R;.

One way to optimize a portfolio is to minimize risk. Risk
here is defined as the variance of the portfolio’s return o 2.
So that the problem of portfolio selection can be written in

the following model

minimize : 6% = Var (Z?:l wiR,-)

36
subjectto: ) i, w; = 1. (36)

In this research, the stock price used is the weekly
closing price of 9 stocks and the stocks being considered
are PT Bank Central Asia Tbk (BBCA), PT Bank Rakyat
Indonesia (Persero) Tbk (BBRI), PT Unilever Indonesia
Tbk (UNVR), PT Telekomunikasi Indonesia Tbk (TLKM),
PT Indofood CBP Sukses Makmur Tbk (ICBP), PT Bank
Mandiri (Persero) Tbk (BMRI), PT Perusahaan Gas Negara
Tbk (PGAS), PT Astra International Tbk (ASII) and PT Bank
Negara Indonesia Tbk (BBNI) where the stock closing price
is obtained from the data http://finance.yahoo.com/., over a
period of 3 years (Jan 1, 2018 - Dec 31, 2020). Based on this
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TABLE 4. Mean and Variance of return of all stocks.

Stocks BBCA BBRI UNVR TLKM ICBP BMRI PGAS ASII BBNI

Mean -0.0020 0.0003 0.0031 0.0025 0.0005 0.0028 0.0036 0.0032 0.0037

Variance 0.0013  0.0027 0.0013 0.0017 0.0014 0.0031 0.0067 0.0024 0.0035

TABLE 5. Covariance of return of all stocks.

Stocks BBCA BBRI UNVR TLKM ICBP BMRI PGAS ASII BBNI
BBCA 0.0013 0.0013 0.0005 0.0006 0.0005 0.0014 0.0017 0.0012 0.0015
BBRI 0.0013 0.0027 0.0006 0.0009 0.0006 0.0024 0.0023 0.0018 0.0025
UNVR 0.0005 0.0006 0.0013 0.0005 0.0006 0.0009 0.0010 0.0007 0.0007
TLKM 0.0006 0.0009 0.0005 0.0017 0.0005 0.0011 0.0016 0.0009 0.0012
ICBP 0.0005 0.0006 0.0006 0.0005 0.0014 0.0008 0.0009 0.0005 0.0008
BMRI 0.0014 0.0024 0.0009 0.0011 0.0008 0.0031 0.0028 0.0019 0.0028
PGAS 0.0017 0.0023 0.0010 0.0016 0.0009 0.0028 0.0067 0.0023 0.0031
ASII  0.0012 0.0018 0.0007 0.0009 0.0005 0.0019 0.0023 0.0024 0.0019
BBNI 0.0015 0.0025 0.0007 0.0012 0.0008 0.0028 0.0031 0.0019 0.0035

data, we have return of each weekly closing stock price and
also obtained the mean, variance, and covariance values of
return in Tables 4 and 5, respectively.

Let wy, wa, ..., wg be the proportions allocated to BBCA,
BBRI, UNVR, TLKM, ICBP, BMRI, PGAS, ASII and BBNI,
respectively. By settingwg = 1 —wp —wo —w3 —wg —ws5 —
wg —w7 —wg and using the data in Tables 4 and 5, we can form
problem (36) into an unconstrained optimization problem as
follows:

min
weR8

{(—0.26 —3w; —0.2¢ — 3wy — 0.10e — 2w3

—0.9¢ — 3wy — 0.10e — 2ws — 0.1e — 3wg
+0.2¢ — 3wy — 0.3¢ — 3wg + 0.15¢ — 2)w1 +
(—0.12¢ — 2w1 + 0.2e — 3wy — 0.19¢ — 2w3
—0.16e¢ — 2w4 — 0.19¢ — 2ws — 0.1e — 3wy
—0.2¢ — 3w7 — 0.7¢ — 3wg + 0.25¢ — 2)w,
+(—0.2¢ — 3w; — 0.1e — 3wy 4+ 0.6 — 3w3
—0.2¢ — 3wyg — 0.1 — 3ws + 0.2¢ — 3wy
+0.3¢ — 3wy 4+ 0.7¢ — 3)w3 4+ (—0.6e — 3w,
—0.3¢ — 3wy, — 0.7¢ — 3wz 4+ 0.5¢ — 3wy
—0.7¢ — 3ws — 0.1e — 3wg + 0.4e — 3wy
—0.3¢ — 3wg + 0.12¢ — 2)wq + (—0.3e — 3w,
—0.2¢ — 3wy — 0.2¢ — 3wz — 0.3¢ — 3wy
+0.6¢ — 3ws + 0.8¢ —3 + 0.1e — 3wy

—0.3¢ — 3wg)ws + (—0.14e — 2wy

—0.4e — 3wy — 0.19¢ — 2w3 — 0.17¢ — 2wy
—0.20e — 2ws + 0.3¢ — 3wg + 0.28e — 2
—0.9¢ — 3wg)wg + (—0.14¢ — 2w; — 0.8
e—3wy —0.21le — 2wz — 0.15¢ — 2wy
—0.22¢ — 2ws — 0.3e¢ — 3wg + 0.36e — 2wy
—0.8¢ — 3wg + 0.31e — 2)w7 + (—0.7¢ — 3w,
—0.1e — 3wy — 0.12¢ — 2w3 — 0.10e — 2wy

VOLUME 9, 2021

—0.14¢ — 2ws5 + 0.19¢ — 2 4+ 0.4e — 3wy
+0.5¢ — 3wg)wg + (—0.20e — 2wy

—0.10e — 2wy — 0.28¢ — 2w3 — 0.23¢ — 2wy
—0.27¢ — 2ws — 0.7¢ — 3wg — 0.4e — 3wy
—0.16e — 2wg + 0.35¢ — 2)(1 — w; — wn

—W3—W4—W5—W6—W7—W8)}.

By running Algorithm 1 with an initial point
(0.25,...,0.25), then the problem above has a solution
wyp = 0.4322, wp = 0.1201, w3 = 0.2892, wy = 0.2464,
ws = 02333, ws = —0.1818, w; = —0.0854,
wg = 0.0187, and also we obtained w9 = 0.0727. Fur-
thermore, based on (34) and (35), we have © = 0.0003
and 02> = 0.0006, respectively. Therefore, we can take
the proportion of each stock with minimal risk, i.e, 43.22%
BBCA, 12.01% BBRI, 28.92% UNVR, 24.64% TLKM,
23.33% ICBP, —18.18%, BMRI, —8.54% PGAS, 1.87%
ASII and 7.27% BBNI. Because there is a minus sign in
the proportion of ICBP and BMRI stocks, it indicates that
investor can do short shelling. As a final conclusion here,
investors can consider this portfolio with a minimal risk is
0.0006 and an expected portfolio return value is 0.0003.

VI. APPLICATION IN TWO-JOINT PLANAR ROBOTIC
MOTION CONTROL

Additional efficiency test for the good performance of the
SRMIL+ method is demonstrated by implementing it to solve
a two-joint planar robotic motion control problem. To begin
with, a brief description of discrete-time kinematics equation
of two-joint planar robot manipulator will be given as pre-
sented in [46]. Let uy € RZ? denotes the joint angle vector
and v; € R? be end effector position vector. A discrete-time
kinematics equation of two-joint planar robot manipulator at
a position level is described by the following model

Q(uk) = V. (37)
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FIGURE 4. Manipulator trajectories.

Let ¢1 and €5, respectively, denote the lengths of the first
and second rod. The mapping 2 : R" — R" is the kinematics
mapping where its structure is given as follows

Q(u) :|:£1 cos(uy) + €y cos(uy + up), £y sin(uy)

T
+ £y sin(u; + uz):| .

In motion control problem, at each instant time, say
tr € [0, tfina1] Where tgina1 is the end of task duration, a series
nonlinear least squares problems which are a special case of
the unconstrained optimization problem needed to be solved
as follows

min 1 v, 912, (38)
VkE]RZ 2
where vy, represents the end effector controlled track.

Following similar approach presented in [1], [47], the end
effector, that is Vg, used in this experiment, is controlled to
track a Lissajous curve given as

R 3 1. (7 V3 1. [(2nn w
k= 2+58m<5>’ 2 +ssm< 5 T3

(39)

The implementation of the sRMIL+ algorithm with
regards to the motion control experiment was performed
using MATLAB R2019b and run on a PC with intel
Core(TM) 15-8250u processor with 4 GB of RAM and CPU
1.60 GHZ. The initial point used is ug = [u1, u2] = [0, %]T
with the task duration [0, ffina1] being divided into 200 equal
parts, where tfina = 10 seconds and €1 = €> = 1.

The motion control experimental results are presented
in Figures 4-7, where Figure 4 depicts the robot trajectories
synthesized by the sSRMIL+ algorithm and Figure 5 plots
the end effector trajectory and desired path. The errors of
the SRMIL+ algorithm are reported in Figures 6—7, where
Figure 6 shows the error recorded on horizontal axis and
Figure 7 shows the error recorded on the vertical axis. It is
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FIGURE 5. End effector trajectory and desired path.
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FIGURE 6. Tracking errors on the horizontal x-axis.
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FIGURE 7. Tracking errors on the vertical y-axis.

apparent from Figures 4 and 5 that the SRMIL+ algorithm
successfully executed the task given to it. The error recorded
during the execution of the task is as low as 107>, This is
evident from Figures 6 and 7. This confirms the efficiency
and applicability of the proposed sSRMIL+ algorithm.
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VIi. CONCLUSION

In this paper, we presented a new spectral conjugate gradient
direction based on the idea of recent RMIL+ CG coefficient.
For the proposed method, the sufficient descent condition
always holds regardless of the line search procedure used. The
global convergence proof was established under some stan-
dard assumptions. Preliminary experiment was conducted
to check the performance of the proposed algorithm. The
numerical results obtained showed that the new algorithm
is not only efficient but also promising in practice when
compared with some existing CG algorithms. Furthermore,
the proposed spectral method was extended to solve problems
of portfolio selection and robotic motion control to demon-
strate its applicability to real-world problems.

ACKNOWLEDGMENT

The author Aliyu Muhammed Awwal would like to thank the
Postdoctoral Fellowship from the King Mongkut’s University
of Technology Thonburi (KMUTT), Thailand. The author
Ibrahim Mohammed Sulaiman would like to thank the Pos-
doctoral Fellowship from the Universiti Sultan Zainal Abidin,
Kuala Terengganu, Malaysia.

REFERENCES

[1] A. M. Awwal, P. Kumam, L. Wang, S. Huang, and W. Kumam, “‘Inertial-
based derivative-free method for system of monotone nonlinear equations
and application,” IEEE Access, vol. 8, pp. 226921-226930, 2020.

[2] 1. Sulaiman and M. Mamat, “A new conjugate gradient method with
descent properties and its application to regression analysis,” J. Numer.
Anal., Ind. Appl. Math., vol. 12, nos. 1-2, pp. 25-39, 2020.

[3] Z.DaiandJ. Kang, “Some new efficient mean-variance portfolio selection
models,” Int. J. Finance Econ., vol. 2021, pp. 1-13, 2021.

[4] Z. Dai and H. Zhu, “Stock return predictability from a mixed model
perspective,” Pacific-Basin Finance J., vol. 60, Apr. 2020, Art. no. 101267.

[5] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solv-
ing linear systems,” J. Res. Nat. Bur. Standards, vol. 49, no. 6, p. 409,
Dec. 1952, doi: 10.6028/jres.049.044.

[6] E. Polak and G. Ribiere, “Note sur la convergence de méthodes de
directions conjuguées,” ESAIM, Math. Model. Numer. Anal.-Modélisation
Mathématique et Analyse Numérique, vol. 3, no. R1, pp. 35-43, 1969.

[71 B. T. Polyak, “The conjugate gradient method in extremal problems,”

USSR Comput. Math. Math. Phys., vol. 9, no. 4, pp. 94-112, Jan. 1969.

Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms,

Part 1: Theory,” J. Optim. Theory Appl., vol. 69, no. 1, pp. 129-137,

Apr. 1991.

[9] R.Fletcher and M. J. D. Powell, ““A rapidly convergent descent method for
minimization,” Comput. J., vol. 6, no. 2, pp. 163-168, Aug. 1963.

[10] R.Fletcher, Practical Methods of Optimization. Hoboken, NJ, USA: Wiley,
2013.

[11] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y.-X. Yuan, “Convergence
properties of nonlinear conjugate gradient methods,” SIAM J. Optim.,
vol. 10, no. 2, pp. 345-358, Jan. 2000.

[12] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient
methods,” Pacific J. Optim., vol. 2, no. 1, pp. 35-58, Jan. 2006.

[13] M. J. Powell, “Nonconvex minimization calculations and the conjugate
gradient method,” in Numerical Analysis. Berlin, Germany: Springer,
1984, pp. 122-141.

[14] M. Al-Baali, “Descent property and global convergence of the
Fletcher—Reeves method with inexact line search,” IMA J. Numer.
Anal., vol. 5, no. 1, pp. 121-124, 1985.

[15] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with
a strong global convergence property,” SIAM J. Optim., vol. 10, no. 1,
pp. 177-182, Jan. 1999.

[16] L. Guanghui, H. Jiye, and Y. Hongxia, “Global convergence of the
Fletcher—Reeves algorithm with inexact linesearch,” Appl. Math., J. Chin.
Univ., vol. 10, no. 1, pp. 75-82, Mar. 1995.

[8

VOLUME 9, 2021

(17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

Y. Dai and Y.-X. Yuan, “Convergence properties of the Fletcher—Reeves
method,” IMA J. Numer. Anal., vol. 16, no. 2, pp. 155-164, Apr. 1996.

G. Zoutendijk, “Nonlinear programming, computational methods,”
in Integer and Nonlinear Programming, J. Abadie, Ed. Amsterdam,
The Netherlands: North-Holland, 1970, pp. 37-86. [Online]. Available:
https://ci.nii.ac.jp/naid/10030666308/en/

M. Malik, M. Mamat, S. S. Abas, and I. M. Sulaiman, “A new coefficient
of the conjugate gradient method with the sufficient descent condition and
global convergence properties,” Eng. Lett., vol. 28, no. 3, pp. 704-714,
2020.

M. Rivaie, M. Mamat, L. W. June, and I. Mohd, “A new class of nonlinear
conjugate gradient coefficients with global convergence properties,” Appl.
Math. Comput., vol. 218, no. 22, pp. 11323-11332, Jul. 2012.

Z. Dai, “Comments on a new class of nonlinear conjugate gradient coeffi-
cients with global convergence properties,” Appl. Math. Comput., vol. 276,
pp- 297-300, Mar. 2016.

0. O. O. Yousif, “The convergence properties of RMIL+ conjugate gra-
dient method under the strong Wolfe line search,” Appl. Math. Comput.,
vol. 367, Feb. 2020, Art. no. 124777.

J. Liu and Y. Jiang, “Global convergence of a spectral conjugate gradient
method for unconstrained optimization,” Abstract Appl. Anal., vol. 2012,
pp. 1-12, Jan. 2012.

E. G. Birgin, J. M. Martinez, and M. Raydan, ‘“Nonmonotone spectral
projected gradient methods on convex sets,” SIAM J. Optim., vol. 10, no. 4,
pp. 1196-1211, Jan. 2000.

A. Perry, “A modified conjugate gradient algorithm,” Oper. Res., vol. 26,
no. 6, pp. 1073-1078, 1978.

E. G. Birgin and J. M. Martinez, “A spectral conjugate gradient method
for unconstrained optimization,” Appl. Math. Optim., vol. 43, no. 2,
pp. 117-128, Jan. 2001.

M. Raydan, “The Barzilai and Borwein gradient method for the large
scale unconstrained minimization problem,” SIAM J. Optim., vol. 7, no. 1,
pp. 26-33, Feb. 1997.

X. Wu, “A new spectral Polak-Ribiére-Polak conjugate gradient method,”
ScienceAsia, vol. 41, pp. 345-349, Oct. 2015.

U. A. Yakubu, M. Mamat, M. A. Mohamed, and M. Rivaie, ‘““Modification
on spectral conjugate gradient method for unconstrained optimization,”
Int. J. Eng. Technol., UAE, vol. 7, no. 3.28, pp. 307-311, 2018.

N. Andrei, “A scaled BFGS preconditioned conjugate gradient algo-
rithm for unconstrained optimization,” Appl. Math. Lett., vol. 20, no. 6,
pp. 645-650, Jun. 2007.

S. Babaie-Kafaki, “Two modified scaled nonlinear conjugate gradient
methods,” J. Comput. Appl. Math., vol. 261, pp. 172-182, May 2014.

L. Zhang, W. Zhou, and D.-H. Li, “A descent modified
Polak—Ribiere—Polyak conjugate gradient method and its global
convergence,” IMA J. Numer. Anal., vol. 26, no. 4, pp. 629-640, Oct. 2006.
J. K. Liu, Y. M. Feng, and L. M. Zou, “A spectral conjugate gradi-
ent method for solving large-scale unconstrained optimization,” Comput.
Math. with Appl., vol. 77, no. 3, pp. 731-739, Feb. 2019.

P. Faramarzi and K. Amini, “A modified spectral conjugate gradient
method with global convergence,” J. Optim. Theory Appl., vol. 182, no. 2,
pp. 667-690, Aug. 2019.

J. Jian, Q. Chen, X. Jiang, Y. Zeng, and J. Yin, “A new spectral conju-
gate gradient method for large-scale unconstrained optimization,” Optim.
Methods Softw., vol. 32, no. 3, pp. 503-515, May 2017.

J. Jian, L. Yang, X. Jiang, P. Liu, and M. Liu, “A spectral conjugate
gradient method with descent property,” Mathematics, vol. 8, no. 2, p. 280,
Feb. 2020.

M. Hamoda, M. Mamat, M. Rivaie, and Z. Salleh, “A conjugate gradient
method with strong Wolfe—Powell line search for unconstrained optimiza-
tion,” Appl. Math. Sci., vol. 10, pp. 721-734, 2016.

S.-Y. Liu and Y.-Y. Huang, ‘““Several guaranteed descent conjugate gradi-
ent methods for unconstrained optimization,” J. Appl. Math., vol. 2014,
pp. 1-14, Jan. 2014.

M. K. Riahi and I. A. Qattan, “Linearly convergent nonlinear conju-
gate gradient methods for a parameter identification problems,” 2018,
arXiv:1806.10197. [Online]. Available: http://arxiv.org/abs/1806.10197
L. Zhang, W. Zhou, and D. Li, “Global convergence of a modified
Fletcher—Reeves conjugate gradient method with Armijo-type line search,”
Numerische Math., vol. 104, no. 4, pp. 561-572, Sep. 2006.

N. Andrei, Nonlinear Conjugate Gradient Methods for Unconstrained
Optimization. Cham, Switzerland: Springer, 2020.

M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimisation problems,” Int. J. Math. Modeling Numer. Optim.,
vol. 4, no. 2, pp. 150-194, 2013.

75413


http://dx.doi.org/10.6028/jres.049.044

IEEE Access

A. M. Awwal et al.: Spectral RMIL+ Conjugate Gradient Method for Unconstrained Optimization

[43] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Math. Program., vol. 91, no. 2, pp.201-213,
Jan. 2002.

[44] H. Markowitz, “Portfolio selection,” J. Finance, vol. 7, no. 1, pp. 77-91,
1952.

[45] S. Roman, Introduction to the Mathematics of Finance: From Risk Man-
agement to Options Pricing. Berlin, Germany: Springer, 2004.

[46] Y. Zhang, L. He, C. Hu, J. Guo, J. Li, and Y. Shi, “General four-step
discrete-time zeroing and derivative dynamics applied to time-varying
nonlinear optimization,” J. Comput. Appl. Math., vol. 347, pp. 314-329,
Feb. 2019.

[47] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, and W. Kumam, “Two
hybrid spectral methods with inertial effect for solving system of nonlinear
monotone equations with application in robotics,” IEEE Access, vol. 9,
pp. 30918-30928, 2021.

ALIYU MUHAMMED AWWAL received the
B.Sc. degree from Gombe State University,
the M.Sc. degree from Bayero University Kano,
and the Ph.D. degree in applied mathematics from
the King Mongkut’s University of Technology
Thonburi (KMUTT). He has authored or coau-
thored a number of research articles in high impact
journals. His research interest includes iterative
algorithms for solving nonlinear problems, such as
numerical optimization problems, nonlinear least
squares problems and system of nonlinear equations with applications in
signal recovery, image deblurring, and motion control.

IBRAHIM MOHAMMED SULAIMAN received
the Ph.D. degree in fuzzy systems from the Uni-
versiti Sultan Zainal Abidin (UniSZA), Malaysia,
in 2018. Since 2019, he has been a Postdoctoral
Researcher with the Faculty of Informatics
and Computing, UniSZA. He has published
research articles in various international jour-
nals and attended international conferences. His
research interests include numerical research,
fuzzy nonlinear systems, and unconstrained
optimization.

MAULANA MALIK received the B.Sc. and M.Sc.
degrees in mathematics from the Universitas
Indonesia (UI), Indonesia. He is currently pur-
suing the Ph.D. degree with the Universiti Sul-
tan Zainal Abidin (UniSZA), Kuala Terengganu,
Malaysia. Since 2016, he has been a Lecturer
with the Department of Mathematics, Faculty of
Mathematics and Natural Sciences, UL His current
research focuses on optimization includes the con-
jugate gradient (CG) method and its application in
financial mathematics.

75414

MUSTAFA MAMAT received the Ph.D. degree
in optimization from the UMT, in 2007. He was
appointed as a Senior Lecturer, in 2008, and an
Associate Professor with UMT, in 2010. Since
2013, he has been a Professor with the Fac-
ulty of Informatics and Computing, Universiti
Sultan Zainal Abidin. He has published more
than 411 research articles in various international
journals and conferences. His research interest
includes applied mathematics, with a field of con-
centration of optimization include conjugate gradient, steepest descent meth-
ods, Broyden’s family, and quasi Newton methods.

POOM KUMAM (Member, IEEE) received the
Ph.D. degree in mathematics from Naresuan Uni-
versity, Thailand. He is currently a Full Pro-
fessor with the Department of Mathematics,
King Mongkut’s University of Technology Thon-
buri (KMUTT). He is also the Head of the
Fixed Point Theory and Applications Research
Group, KMUTT, and also with the Theoretical
and Computational Science Center (TaCS-Center),
KMUTT. He is also the Director of the Com-
putational and Applied Science for Smart Innovation Cluster (CLASSIC
Research Cluster), KMUTT. He has provided and developed many math-
ematical tools in his fields productively over the past years. He has over
800 scientific articles and projects either presented or published. He is
editorial board journals more than 50 journals and also he delivers many
invited talks on different international conferences every year all around
the world. His research interests include fixed point theory, variational
analysis, random operator theory, optimization theory, approximation theory,
fractional differential equations, differential game, entropy and quantum
operators, fuzzy soft set, mathematical modeling for fluid dynamics, inverse
problems, dynamic games in economics, traffic network equilibria, band-
width allocation problem, wireless sensor networks, image restoration, signal
and image processing, game theory, and cryptology.

KANOKWAN SITTHITHAKERNGKIET received
the B.Sc., M.Sc., and Ph.D. degrees. She is
currently a Lecturer with the Department of
Mathematics, King Mongkut’s University of Tech-
nology North Bangkok (KMUTNB). Her research
interests include fuzzy optimization, fuzzy regres-
sion, fuzzy nonlinear mappings, least squares
method, optimization problems, and image
processing.

VOLUME 9, 2021



