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ABSTRACT With the global pandemic of infectious diseases, the demand for accurate nucleic acid detection
is daily increasing. The traditional threshold-based algorithms are adopted as the mainstream for processing
the images of digital polymerase chain reaction (dPCR) now, but they are facing huge challenges on complex
problems such as irregular noise, uneven illumination, and the lack of data. So, this paper proposed a
novel few-shot learning method based on our improved YOLOv3 model with fast processing speed and
high accuracy to deal with complicated situations. Besides, to reduce the requirement of the large training
dataset and annotation time of deep neural networks, we proposed the Random Background Transfer Method
(RBTM) and Source Traceability Annotation Method (STAM) as the data augmentation and annotation
method separately, which exploit the prior knowledge of the data and successfully realized the few-shot
learning. Bases on the domain knowledge of dPCR images, ourmethod could effectively augment images and
reduce the labeling time by 70% while retaining the visually prominent features and improves the detection
accuracy from 63.96% of the traditional threshold-based algorithm to as high as 98.98%. With the optimal
processing speed and accuracy, our method is the state-of-art strategy for the detection of dPCR images now.

INDEX TERMS Digital PCR, few-shot learning, deep neural network, improved YOLOv3.

I. INTRODUCTION
With the global pandemic of the SARS-CoV-2-based disease
(COVID-19), reverse transcription-polymerase chain reac-
tion and real-time polymerase chain reaction, which adopt
relative quantitative methods have exposed a serious short-
coming of the low accuracy. So, the demand for accurate
disease detection is daily increasing [1], [2]. Actually, digital
polymerase chain reaction (dPCR) adopts an absolute quan-
titative method and owns high accuracy which far beyond
the relative quantitative polymerase chain reaction. Accord-
ing to the study of Valeria Cento, for patients who had
false-negative results of the reverse transcription-polymerase
chain reaction but with clinical symptoms, the detection
results of the droplet dPCR which was verified by antibody
detection have the accuracy of 100% and 95% for posi-
tive and negative results separately [3]. Therefore, dPCR is
playing an increasingly important role in the detection of
pathogens.

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

Academia and industry still adopt traditional threshold-
based segmentation algorithms as the mainstream for dPCR
at present [4]–[7]. These traditional algorithms have high
requirements for image purity and simplicity, which is diffi-
cult to deal with complicated problems such as self-luminous
irregular debris and uneven illumination [8].When the bright-
ness and size of the interfering targets are highly similar to
the true positive targets, no matter how to adjust the settings
of the threshold value, the accuracy is still far below the
standard [9]. To reduce the problems of noise interference
and uneven illumination caused by sample distribution and
mechanical pressurization, the researchers put a lot of effort
into improving the hardware performance [10], [11]. But this
usually requires a higher cost of research and development,
which makes the products more expensive. Indeed, these
problems can be solved by more powerful algorithms. Some
new algorithms such as the grid location and Mask Region
Convolutional Neural Network (Mask R-CNN) have been
proposed to improve the above weaknesses [8], [12]. But the
grid location algorithm can only solve the noise problem of
the chip-based dPCR. Mask R-CNN uses a two-stage method
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of segmentation and detection which improves the accuracy
at the expense of the processing speed, so it cannot adapt
to the requirement of the high-throughput dPCR [13], [14].
However, with the global epidemic of many infectious dis-
eases, high-throughput and real-time PCR will become more
and more important for nucleic acid detection [15]–[18].
The You Only Look Once version 3 (YOLOv3) owns high
detection accuracy and fast speed, which is the state-of-art
algorithm for many areas such as fruit detection and ship
detection [19], [20]. But this superior algorithm has not been
brought into the field of dPCR.

Therefore, we proposed a novel method based on improved
YOLOv3, Random Background Transfer Method (RBTM),
and Source Traceability Annotation Method (STAM), which
realized effective detection for the complex situation of the
dPCR with relatively fast speed and high accuracy under the
situation of the small training dataset. Most machine learning
algorithms rely on classifiers for image recognition, while
YOLOv3 uses a completely different approach. YOLOv3 is
developed based on the darknet53 model and regards the
classification problem as a single regression problem. Every
single evaluation aims for the full image detection rather than
proposed the specific ROI step by step. The simplification of
the concept makes YOLOv3 have an extremely fast detection
speed. Compared with Mask R-CNN, YOLOv3 could realize
real-time object detection under the interference of complex
noises [21], [22].

Themethod proposed in this paper establishes an improved
YOLOv3 model based on a small set of experiment data,
which realizes the state-of-art detection of the dPCR images
at present. Compared with the other widely used meth-
ods from a comprehensive perspective, this method has
the optimal accuracy, processing speed, and annotation
time. It improves the accuracy of the complex situation
from 63.96% of the traditional threshold-based algorithm to
98.98%with a false-positive rate of less than 1.5%. Compared
with the Mask-RCNN, this method not only has comparable
accuracy but also has 4.5 times faster’s processing speed.
Besides, the two newly proposed data augmentation and
annotation methods in this paper, RBTM, and STAM, have
improved the labeling efficiency by over 70% and solved
a common dilemma of lacking high-quality data during the
design stage of dPCR. Therefore, we could foresee the huge
potential of this new few-shot learning method for the detec-
tion of dPCR images in the future.

II. RESULTS AND ASSESSMENT
A. DATASET RESOURCE AND PREPARATION
The droplet dPCR images with uneven illumination are
acquired from the previous work of Wu et al. in Zhejiang
University [23]. And the experimental dataset of Chip-based
dPCR with complex irregular noise is derived from the work
of our lab. Fluorescence reaction is produced by at least
35 thermal cycles of fluorescent droplet and luciferin respec-
tively, then photographed by fluorescence microscope with
490nm green excitation light. The size and the number of

reaction chambers of the chip-based dPCR are 100µm ×
80µm (diameter× height) with 11200 chambers. After using
the RBTM to augment the number of special images with
complex noise and uneven illumination, 120 training images
and 40 testing images of chip-based dPCR with the image
resolution of 1600× 1200 pixels, and 80 training images and
20 testing images of droplet dPCR with the image resolution
of 1600 × 1200 pixels are finally selected.

The deep neural network requires a large number of sam-
ples to construct reliable models but the preparation of a large
dPCR dataset is not only difficult but also time-consuming.
Especially for the experiment of respiratory diseases such as
the COVID-19, the experimenters need to wear protective
suits and operate in P3 laboratories [24]. Weakly supervised
deep learning algorithms based on scene-level tags have
been proposed in recent years, which greatly reduce the time
cost of data annotation and contribute to semantic segmen-
tation [25], [26]. However, weakly supervised learning still
requires a large number of training images, while the expense
of acquiring digital PCR images is high and the detec-
tion of dPCR focuses on the instance segmentation rather
than semantic segmentation. Few shot learning methods can
achieve high accuracy with only a few training images, so it
is more suitable for digital PCR. Therefore, we proposed
a new data augmentation method, the Random Background
Transfer Method in this paper to solve the common dilemma
of lacking datasets for dPCR. Our few-shot learning method
can complete learning by only 3 experimental images using
a novel data augmentation method. Besides, a corresponding
annotation method, Source Traceability Annotation Method,
is developed to reduce the annotation time.

B. A NEW DATA AUGMENTATION METHOD
The Random Background Transfer Method proposed in
this section realizes the effective data augmentation for the
dPCR dataset. Generally speaking, deep neural networks
need a large amount of data to ensure the quality of train-
ing [27], [28]. However, in practice, a large number of images
are not produced in the stage of design but after the mass
production of dPCR devices. Therefore, deep neural networks
usually face the dilemma of lacking the dataset for newly
designed tasks. If we want to exploit the advantages of deep
neural networks to deal with complex problems for dPCR,
an effective data augmentation method must be used.

The prior knowledge of the dPCR image makes it have the
potential to realize few-shot learning. For the true-positive
targets of dPCR, the distribution of different experiment
results of the same layout design follows the Poisson dis-
tribution with similar brightness and shape. And there are
often multiple true-positive targets in the same image, which
could be utilized by the data augmentation method. However,
the complex noise generated in the process of tablet pressing,
centrifugation, and thermal cycling is not only different in
shape but also unpredictable. So, the traditional data aug-
mentation methods such as brightness adjustment, color bal-
ance transformation, and rotation have limited augmentation
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efficiency and will change the visually prominent features
of the true-positive targets, which are not suitable to realize
few-shot learning for dPCR images [29]. Instead, we pro-
posed a new data augmentation method, Random Back-
ground Transfer Method, in this section.

To ensure the accuracy of deep neural networks and reduce
the cost of obtaining a large training dataset. The RBTM
takes advantage of the highly regularized domain knowledge
of the Chip-based dPCR to obtain the position and interval
size as the parameters of the range function. Then use ran-
dom.choice function to choose overwritten areas from the
range. By adjusting the iteration times and overwritten size of
the method, the different number of reaction chambers in the
original image can be rewritten, thus changing the distribution
of the original true-positive points while still preserving the
visual features.

This method could select any pixel-wise RGB value of the
original image as the selected value then apply it to rewrite
other areas. The size and RGB value of the overwritten areas
could be adjusted according to the actual demand optionally.
As the examples of Figure 1 show, if we select the value
of the yellow box area in Figure 1(a) which represents the
background, the more the iteration time increases, the less the
true-positive targets are.

FIGURE 1. RBTM result. (a) Original experimental Image (b) Augmented
image of 1 iteration. (c) 10 iterations. (d) 15 iterations.

The key parameters of RBTM could be calculated as the
following formulas show:

Xnl = X1 + (nl − 1)

∑m
i=2 (Xi − Xi−1)
(m− 1)

nl ε
{
1, 2, · · · ,

[
(La − X1)

lb

]}
(1)

Ynw = Y1 + (nw − 1)

∑n
i=2 (Yi − Yi−1)
(n− 1)

nw ε
{
1, 2, · · · ,

[
(Wa − Y1)

wb

]}
(2)

La = L − min
(
lb,

∑n
i=2 (Xi − Xi−1)
(n− 1)

)
(3)

Wa = W − min
(
wb,

∑n
i=2 (Yi − Yi−1)
(n− 1)

)
(4)

where L and W represent the length and width of the image,
La andWa represent the length and width of the max selective
area. lb and wb represent the length and width of the trans-
ferred box. Xnl and Ynw represent the top-left coordinate of
transferred boxes. The m and n represent the target number
of the first row and the first column separately.

f (i, j) = z (i, j) p (nl, nw)+ u (i, j) (1− p (nl, nw)) (5)

p (nl, nw) = δ
(
0< i− Xnl < lb&0 < j− Y nw<wb& u (i, j)

− u
(
Xnl +

lb
2
,Ynw +

wb
2

)
< ε

)
(6)

where f is the augmented image, i is the x-axis of the
image pixel and j is the y-axis of the image pixel, u is the
original experimental image, z is the background image, δ
equals 1 when the condition is satisfied and 0 otherwise. ε is
the maximum allowable pixel value difference.

C. A NEW TIME-SAVING ANNOTATION METHOD
The Source Traceability Annotation Method proposed in this
section successfully reduces the annotation time for deep neu-
ral networks by over 70%. After adopting the RBTMmethod,
the newly generated images still have an intrinsic correlation
with the original image, so we exploit this property to develop
a new annotation method called Source Traceability Annota-
tion Method.

The STAM requires that all images augmented from the
same source should be stored in the same folder and named
according to the number of iterations. In the duration of anno-
tation, only the source needs to bemarked fullymanually. The
rest of the augmented data produced by RBTMwill select the
annotation file which has the smallest absolute difference of
the name to copy, and renames as the number of its iteration
times, then reverse inputted the newly generated annotation
file into the LabelImg or Labelme. Because the RBTM adopts
linear iteration during the process of the background transfer,
the chambers of dPCR Images will gradually decrease with
the iteration times increasing. Due to the intrinsic relationship
brought by the RBTM, for the augmented images, we only
need to delete the redundant labels which belong to the
covered chambers based on the newly generated annotation
file. Therefore, the STAM could reduce the labeling time
significantly.

As shown in Figure 2, the traditional annotation method
which relies on fully manual annotation is time-consuming.
After using STAM, the annotation time of Mask R-CNN and
YOLO has been decreased by 75% and 70%, respectively.
Although the labeling time of Mask R-CNN and YOLO was
both decreased prominently, the labeling time of YOLO is
shorter, which less than 35% of the Mask R-CNN.

74448 VOLUME 9, 2021



Z. Beini et al.: New Few-Shot Learning Method of Digital PCR Image Detection

FIGURE 2. Comparison of the annotation time for chip-based dPCR.

FIGURE 3. Detection results for irregular noise. (a) Image of Chip-based
dPCR with irregular noise. (b) Comprehensive Threshold. (c) Simple
Threshold. (d) Mask R-CNN. (e) YOLOv3 (f) Improved YOLOv3.

D. EVALUATION METRIC
Accuracy (ACC) and False Positive Rate (FPR) are one of
the most important indicators of PCR detection. To compare
the predictive performance of YOLO and threshold segmen-
tation, the following formula is adopted for comparison in this
paper [30]–[32]:

ACC =
TP+ TN

TP+ TN + FP+ FN
(7)

FPR =
FP

FP+ TN
(8)

TPR =
TP

TP+ FN
(9)

For the predictive results of the algorithms, they can be
divided into four categories: True Positive (TP), False Pos-
itive (FP), False Negative (FN), and True Negative (TN).
TP means the positive target is correctly predicted to be
positive, FP means the negative target is incorrectly predicted
to be positive, FN means the positive target is incorrectly
predicted to be negative, TN means the negative target is
correctly predicted to be negative.

E. RESULTS OF INTERNAL IRREGULAR NOISE
The ideal dPCR image should be highly clean, but in actual
experiments, the irregular noise is often produced after the
process of centrifugation and thermal cycling, which greatly
affects the recognition accuracy. As shown in Figure 3,
the noise has complicated characteristics such as irregular,
high-brightness, and similar size to the true positive targets.

FIGURE 4. Accuracy comparison of Chip-based dPCR.

FIGURE 5. Detection results for uneven illumination. (a) Image of droplet
dPCR with uneven illumination. (b) Comprehensive Threshold. (c) Simple
Threshold. (d) Mask R-CNN. (e) YOLOv3 (f) Improved YOLOv3.

For the Simple Threshold Segmentation algorithm,
the accuracy is as low as 50.60% with the FPR as high as
61.08%. The Comprehensive Threshold Segmentation could
successfully ignore the small noise, so it performs better than
the Simple Threshold Segmentation. But if we focus on the
9 complicated noise, the Comprehensive Threshold Segmen-
tation has the false-positive rate which exceeds 80%. On the
contrary, the improved YOLOv3 and Mask R-CNN perform
much better under the interference of the complicated noise,
which owns the overall high accuracy of 99.60% and 99.20%
with low FPR. Besides, our improved YOLOv3 model shows
comparable accuracy and FPR with the YOLOv3.

F. RESULTS OF UNEVEN ILLUMINATION
Due to the complexity of the actual environment, the imbal-
ance of illumination often occurs during the process of image
preparation, which causes great trouble to target detection.
As shown in Figure 5, the point light source of the image
is placed on the upper right, resulting in the fluorescence
intensity of the targets on the left are far below that of the
right.

The threshold-based methods perform well on high-
brightness targets but for the true positive targets affected
by uneven illumination on the left, the accuracy of Simple
Threshold segmentation and Comprehensive Threshold Seg-
mentation was 0%. So, the overall accuracy of them is only
70% and 82.07%, separately. TheMask R-CNN performance
better on the uneven area but the false-negative rate is higher
than improved YOLOv3, so the overall accuracy is 86.90%.
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TABLE 1. Performance comparison.

FIGURE 6. Accuracy comparison of droplet dPCR.

While the improved YOLOv3 and YOLOv3 show the com-
parably optimal accuracy of 99.31% with FPR around 1.5%.

G. ASSESSMENT
The improved YOLOv3 owns the optimal detection accuracy
and processing speed for complex situations. Table 1 illus-
trates the average of accuracy, false-positive rate, and process
time results of 40 validation images tested by CPU. From the
aspect of the detection accuracy, Threshold Segmentation <
Comprehensive Threshold Segmentation <Mask R-CNN <
Improved YOLOv3<YOLOv3. For processing speed, Mask
R-CNN<YOLOv3< ImprovedYOLOv3<Comprehensive
Threshold-Segmentation < Threshold Segmentation.
For the Precision-Recall (PR) curve for ablation study

as Figure 7 shows,Mask R-CNN, YOLOv3, and Improved
YOLOv3 under the few-shot learning strategy own the Aver-
age Precision (AP) of 91.21%, 98.49%, and 97.61% respec-
tively. The PR curve of vanilla YOLOv3 under the small
dataset only has the AP around 54.68%, which far below
the above methods and well illustrates the contribution of
RBTM and STAM. From the aspect of the performance
analysis, the curve of Mask R-CNN is completely wrapped
by the curves of YOLO-based algorithms while the curve
trends of Improved-YOLOv3 and YOLOv3 are very similar.
So, the Yolo-based algorithms outperform the Mask R-CNN
under the few-shot-learning strategy. And the Improved
YOLOv3 has comparable performance with YOLOv3 while
the computation speed is greatly improved.

Although the Threshold Segmentation has the fastest oper-
ation speed, it also has the worst detection accuracy for
complex situations. The Comprehensive Threshold Segmen-
tation could filter the noise which has a great difference in
brightness or size with the targets, but the detection accuracy

FIGURE 7. Precision-Recall curve comparison.

FIGURE 8. Workflow of improved YOLOv3.

for complex noise and uneven illumination is still lower than
deep learning methods. Mask R-CNN has higher accuracy
for complex situations compares with traditional methods,
but its computation speed is the slowest, which makes it
difficult to carry out the real-time computation. The pro-
cessing speed of our improved YOLOv3 method is around
1.68 times faster than YOLOv3 and around 4.5 times faster
than Mask R-CNN. Besides, the annotation time of Mask
R-CNN is 3 times longer than YOLO-based methods. And
our method, improved YOLOv3, owns comparable accuracy
with YOLOv3 and improves the processing speed by over
40%. In another word, when improved YOLOv3 uses the
equivalent small dataset with other methods, it owns the
optimal accuracy and processing speed, which has a huge
potential to do real-time processing in the future.

III. METHOD AND STRUCTURE
A. METHOD OVERVIEW
We can understand the process of the detection as a regression
problem. For the input image, the model will first resize
the input image to the specific size then divide it as S × S
grids, and each grid will produce B prediction results and
confidence score. When the target is large and spans over
multiple grids, the grid which the gravity center of the object
falls into will be responsible for prediction. Although the
prediction boxes are generated by a single grid, the refer-
ence information is from the global image. The improved
YOLOv3 runs the convolutional network for the entire image
and the predictions are produced based on the global image
which could effectively avoid detecting the noise of the back-
ground as the target. For the example shown in the schematic
diagram, each scale will produce 3 boxes so the totally tensor
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FIGURE 9. The structure of improved YOLOv3.

FIGURE 10. The backbone comparison. (a) Darknet53. (b) Improved
YOLOV3.

number is S× S× [3 ∗ (4+ 1+ C)] and the C is the number
of the class types [12]. Finally, the prediction results will be
processed by model confidence and only the prediction boxes
which exceed predetermined confidence will be output as the
final detection results.

B. STRUCTURE AND PARAMETERS
The improved model proposed in this paper inher-
its the structure of a fully convolutional network from
YOLOv3 and improved the residual networks and convolu-
tional set as Figure 9 shows to realize the balance between
detection accuracy and processing speed. The improved
YOLOv3 could be mainly divided into two types: Feature
Pyramid Network (FPN) and prediction layer. The FPN is
used for building and mining multi-dimensional information
from images. And the prediction layer is used to effectively
identify and judge the features mined by FPN. The predic-
tions produced by the prediction layer complete the fusion of
high-level features and low-level features through downward
transmission, because the information of multiple dimension
features could be contained in the same layer so it could
reduce the judgment damage caused by single dimension
information which completely separated with the features
from upper layers.

The ordinary initial size for output size could be:
1024∗1024, 640∗640, 448∗448, and 256∗256 pixels. And the
most commonly used one for YOLOv3 is 256∗256 pixels.

TABLE 2. Key parameters.

However, this commonly initial size is too small for dPCR
to do full image detection. This is because we utilize several
down-sampling layers to improve processing speed, and most
of our detection targets are small targets or medium targets
that are less than 32∗32 or between 32∗32 and 96∗96. If the
initial value is too small, it will make the features of dPCR
images cannot be extracted and recognized effectively. After
several attempts, we found out that the best initial size of our
dataset is 448∗448.
Besides, YOLOv3 adopts logistic rather than softmax to do

classification and the loss function for class prediction is the
binary cross-entropy in (10), (11). The y represents the label
with 1 for positive and 0 for negative:

loss = −
∑n

i=1
ŷi log yi +

(
1− ŷi

)
log

(
1− ŷi

)
(10)

∂loss
∂y
= −

∑n

i=1

ŷi
yi
−

1− ŷi
1− yi

(11)

The softmax function, avgpool, and connected layers are
designed for the Imagenet dataset particularly, so it is not nec-
essary for our dataset. In order to avoid the loss of low-level
features caused by pooling, instead of using any pool layers or
connected layer, we adopted the fully convolutional network.
For example, the function of down-sampling was realized by
setting the stride of the convolutional layer to be 2.

The key parameters to train the model are shown in
Table-2. Except for the requirement of small targets, specify-
ing the length andwidth of the image could avoid any possible
problems such as the slow processing speed caused by the
failure of parallel GPU processing.

C. COMPARATIVE METHODS AND IMPLEMENTATION
In this paper, we adopt Simple Threshold Segmentation,
Comprehensive Threshold Segmentation, and Mask R-CNN
three methods as the comparative methods. Threshold Seg-
mentation is the mainstream for processing PCR image in
academia and industry at present, it only considers the targets
whose brightness are higher than the threshold as valid and
produce masks for them to measure later. On the basis of
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the Threshold Segmentation, Comprehensive Threshold Seg-
mentation brings in area selection to reduce the interference
of regular fluorescent noise. It could successfully filter the
noise which owns obviously different size or brightness with
true positive targets but cannot deal with the noise which
owns similar size and brightness with true positive targets.
Mask R-CNN is a famous deep neural network that has been
proposed in recent years, and it will first carry out a full image
scan to propose the Region of Interest (RoI) that may contain
the targets, then propose the classification and produce mask
and detection boxes.

In our experiments, we adopt the function of adap-
tiveThreshold in OpenCV for Simple Threshold Segmen-
tation. As for the Comprehensive Threshold Segmentation,
we apply the function of Threshold and contourArea of
OpenCV to calculate the threshold and produce masks.
It could filter out the targets whose areas are much larger or
smaller than the mean value. For Mask R-CNN, we utilize
the open-source code from He Kaiming et al. [33], which
needs Python 3.4, TensorFlow 1.3, and Keras 2.0.8 on Ubuntu
16.04 to process.

D. TRAINING AND ENVIRONMENT
Considering the applicability for portable PCR devices in the
future, we utilized the deep learningworkstation and common
computers to process the training and testing separately. The
training of deep neural networks requires high performances
of computer graphic memory and workstation configuration.
The hardware of the training computer is the PG620-P2G
deep learning workstation with Intel Core I7-9800X proces-
sor and GeForce RTX 2080 Ti Graphic Card which possesses
11G graphic memory. The testing computer is the Precision
5820 which owns the processor of intel Xeon W-2245 and
the whole procedure of testing is processed by CPU. The
operating system is Ubuntu 16.04 and the project is written
and tested on the darknet and anaconda3-4.4.0-Linux-x86
with python 3.6 and OpenCV2. The annotation tool labelImg
needs a global operation, so it is installed under the Ubuntu
main system disk with PyQt5. The vast majority of labelImg
libraries can be installed uniformly as an integration package,
but the libxcb-Xinerama library needs to be installed addi-
tionally to accommodate the Source Traceability Annotation
Method’s cross-environment tracking requirements.

We adopted the image dataset of red blood cells to pre-train
the network. The training starts by entering the training com-
mandwith the path of the config file, training dataset, and pre-
trained weight. If it is necessary to visually analyze the loss
and average IoU of the model, the corresponding command
to save the training log shall be entered before the training.
Saving the training log can check the source of problems
when a large number of -Nan-regions appear and determine
whether the model converges well, but it will slow down the
training speed as well. So, it can be decided whether to save
the training log according to the actual demand.

Yolo generates detecting results for all bounding boxes
whose confidence level is above the threshold. By adjusting

the threshold value, it can effectively select which detection
boxes are visualized or not. Unless specially noted, 0.5 is
adopted as the default threshold value in this paper, which
means only the detection boxes with a confidence level
greater than 0.5 will be considered as valid detection boxes
and shown on the final detection result diagram.

IV. CONCLUSION
In this paper, we conducted the improved YOLOv3 model
with the new data augmentation and annotation method for
processing the dPCR images with irregular noise and uneven
illumination under the situation of the small dataset. For
this task, the average accuracy of the traditional threshold
segmentation method is less than 65%, and the false positive
rate is as high as over 40%, which makes it difficult to
achieve effective detection. The disadvantages of deep neural
networks compared to traditional algorithms are requiring
more training samples and longer labeling time. But the
RBTM and STAMproposed in this paper greatly reduce these
disadvantages. It can effectively decrease the labeling time
by more than 70% and rapidly augment the dataset without
affecting the prominent visual features of dPCR. And the
average accuracy of our improved YOLOv3 model achieves
98.98%, which shows obvious superiority among compara-
tive methods. The processing speed of our model is 4.5 times
faster and 1.68 times faster than Mask R-CNN and YOLOv3
separately, which realized the state-of-art for dPCR image
detection. Besides, our model is more lightweight than Mask
R-CNN and YOLOv3 so that it is more likely to be deployed
on the embedded system and adapt to the requirements of
high-throughput and real-time dPCR. In the future, we will
work on using this model to achieve real-time development
of dPCR on embedded and portable devices.
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