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ABSTRACT This paper introduces the application of a newly developed heuristic nature-inspired opti-
mization technique, viz, tuned Marine Predator Algorithm (MPA), to solve the optimal power flow (OPF)
problem of multi-regional systems. The paper proposes MPA parameters’ tuning to enhance the algorithm
performance. The paper takes into account the variability of different types of renewable energy resources
(RERs) and loads. Two modeling approaches are presented: holistic (multi-regions are modeled as one large
network) and inter-bounded (modeling the regional interfaces). The MPA is applied to the IEEE-48 bus
connected system, and the results are compared with another well-established heuristic algorithm, namely
the Genetic Algorithm (GA). The results demonstrate the validation, applicability and effectiveness of using
the MPA for solving multi-region OPF problem considering renewable energy sources and load variability.

INDEX TERMS IEEE 48-Bus system, marine predator algorithm, multi-regional systems, optimal power
flow, renewable energy resources.

I. INTRODUCTION
Resilience operation of modern power systems is becoming
of increased importance due to the interconnection of several
regions and the accelerated proliferation of non-dispatchable
renewable energy sources and distributed generation. Albeit
these new challenges, grid operators are mandated to achieve
the most economical operations strategies as well as coordi-
nating the generation in order to minimize the operation cost
of the grid [1]. Typically, the electrical networks have some
restrictions for the voltage of the buses, in addition to the
power transmitted. These restrictions arise due to equipment
rating, system stability and security [2].

Finding the resilient optimal safe operating condition of the
power system is known as the security-constrained optimal
power flow (OPF) problem. Mathematically, the OPF is a
non-linear, non- convex optimization problem with an objec-
tive cost function subject to a set of equality and inequality
constraints. OPF objective functions aim at minimizing one
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or more of the following: fuel cost, emission cost, network
losses, etc [3]. Control variables that are utilized in the
OPF problem include generators scheduled voltage, genera-
tors dispatch level, transformer tap-settings, scheduled com-
pensate reactive power, etc [4].

In multi-regional power systems, OPF variables include
shared data from the neighboring connected areas, namely,
magnitudes and angles of boundary voltages and intercon-
nection line flows. Solving Inter-regional OPF can be done
in two ways: using holistic method, or iteratively using the
inter-bounded approach. In the holistic technique, the multi-
regional network is counted as one large grid, while for the
inter-bounded technique, the control variables of the intercon-
nected borders between the areas are only considered [5], [6].

Several optimization approaches have been deployed
to solve the OPF problem. These approaches are cat-
egorized into classical and artificial intelligence-based
approaches. Classical optimization techniques include linear
programming [7], non-linear programming [8], interior point
method [9], quadratic programming [10], Newton-Raphson
(NR) [11], and semi-definite method [12]. These techniques
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are reported to (a) possibly get trapped in local minima
instead of achieving the global optimum solution of the OPF
problem, (b) be computationally demanding, and (c) the best
solution is strongly affected by the initial guess of the prob-
lem [13], [14]. In an attempt to get over these drawbacks and
difficulties, artificial intelligence-based optimization tech-
niques are developed [15]. Artificial intelligence-based opti-
mization mostly utilizes meta-heuristic techniques. These
techniques are categorized into evolutionary-based, swarm-
based, and physics-based strategies. Some of these techniques
were used to solve the OPF problem, e.g., genetic algorithm
(GA) [16], modified particle swarm optimization (PSO) [17],
artificial bee colony (ABC) [18], grey wolf optimizer [19],
flower pollination algorithm (FPA) [20], moth-flame opti-
mization (MFO) [21], ant colony optimization (ACO) [22],
gravitational search algorithm (GSA) [23], whale optimiza-
tion algorithm (WOA) [24], [25], multi-objective dragonfly
algorithm (MODA) [26], shuffled frog leaping algorithm
(SFLA) [27], cuckoo Optimization Algorithm (COA) [28],
Jaya optimizer [29], tree seed algorithm (TSA) [30],
Sine-Cosine algorithm [31], and sunflower optimization
(SFO) [32]. In [33], improved GA is applied to solve the OPF
problem of a single area system by considering the presence
of renewable energy resources and energy storage units. The
PSO is implemented in [34] to decide the optimum hourly
load flow with the incorporation of renewable distributed
generation (DG) under various operating conditions in a
single regional system. The Crow Search Algorithm (CSA)
is used in [35] to solve OPF applied to the IEEE 30 bus
system. In [36], an efficient evolutionary algorithm (EEA)
was established to solve the OPF problem for IEEE 30, 118,
and 300 bus. In [37], a teaching-learning-based optimization
(TLBO) technique employing the Lévy mutation approach
for optimal settings of OPF problem control variables was
investigated. In [38], an algorithm based on the Shuffle
Frog Leaping Algorithm (SFLA) was introduced in order
to obtain the results for multi-objective OPF. A modified
SLFA (MSLFA) technique was also presented to reduce the
computational burden while improving the solution accuracy.
The Salp swarm algorithm (SSA) is employed in [39] for
solving different objective functions of OPF.

The Marine predator algorithm (MPA) is a newly devel-
oped heuristic nature-inspired optimization algorithm [40].
MPA mimics the dominant forage trend in ocean
predators and the optimum conflict rate approach in the rela-
tionship between predator and prey in marine environments.
MPA is an efficient meta-heuristic with many benefits,
including the reduced number of variables configured,
compact structure, noticeable convergence velocity, near-
global approach, consistency, problem independence, and
gradient-free nature [41]. The MPA has been implemented
in [42] to precisely calculate the unidentified electrical
nine variables of the triple-diode photovoltaic (TDPV)
configuration of a PV module. Furthermore, the MPA
is being used in the prediction of confirmed Covid-19
cases [43].

This paper proposes a novel application of the MPA to
solve the highly non-linear and non-convex OPF problem for
multi-regional networks, considering the variability of loads
and renewable resources. In particular, the key contributions
of this paper are as follows: (i) investigating the effect of dif-
ferent controlling parameters of MPA on the solver accuracy,
(ii) modeling the OPF of multi-regional networks considering
two different approaches (holistic and inter-bounded), and
(c) considering the variability effect of loads and intermittent
generation. The tuned MPA is applied to IEEE-48 bus con-
nected network under various scenarios by using MATLAB
program.

This paper is structured as follows. Section II illus-
trates the OPF objective functions and its constraints for
multi-regional electric systems under two set-ups: holistic
and inter-bounded approaches. Section III explains the MPA
algorithm. Section IV describes the study system. Simulation
results and analysis are detailed in sections V-VII. Conclu-
sions and recommendations are presented in Section VIII.

II. PROBLEM FORMULATION
In this section, direct current (DC) OPF mathemati-
cal formulation is presented. In addition, modeling of
the multi-regional OPF problem using the holistic and
inter-bounded approaches is illustrated. Also, the renewables-
based intermittent generation is considered as an integrated
part of the OPF models well as the weekly variable load
profile.

A. DC-OPF
DC-OPF is considered a simplified version of the OPF prob-
lem by ignoring the resistance of the transmission lines, hence
linearizing the non-linear equations. Compared to AC-OPF,
DC-OPF often decreases the calculation time. The DC-OPF
governing equations are illustrated in equations (1)-(3) [44].

Min
∑
uε�G

f (Pu) (1)

Subjected to,

h (P) :


Pi − di =

∑
jε�i

θi − θj

Xij
∀i ε {1, 2 . . . Nb}

θref= 0

(2)

g (P) :


Pu ≤ Pu ≤ Pu ∀ u ε �G
θi − θj

Xij
≤ PL ij ∀ ij ε �L

Vi ≤ V i ≤ V̄i ∀ i ε �L

(3)

where, θ is the angle of the bus voltage, Vi and V̄i are
the minimum and maximum acceptable values of the bus
voltage I , ¯PLij is the maximum flow allowed in branch ij (due
to thermal limitations or other factors), Pi and di is the net
generation and demand at the ith bus, �G is the set of all the
generating units in the grid, �i is the set of all the generators
connected to ith bus, �L is the set of all the branches. f (Pu)
is the cost equation of the uth generator with dispatch Pu.
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The latter two functions h(x) and g(x) are the equality and
inequality constraints, respectively. Balances at nodal power
flow and the adjustment for the voltage angle of the reference
bus to zero are ensured by (2). Inequality (3) guarantees that
the output power of generating unit u, the voltage at bus I, and
the power flow in transmission line ij are within respective
ranges.

B. HOLISTIC VERSUS INTER-BOUNDED OPF
The network of linked areas, as shown in Fig. 1, consists of
individual regions connected by one or more transmission
corridors. In the holistic method, the connected networks are
considered as one large network, for which OPF is solved
to find the control variables of both systems simultaneously.
In the inter-bounded method, each region’s OPF is solved
separately while considering the inter-connected boundaries
between the two areas separately [45]. It is obvious from the
planning point of view, that changing or controlling more
parameters in the system, in case of holistic, will lead to
better improvement in the system performance. On the other
hand, the time and effort will increase in controlling the
whole system parameters. So, if the changes need fast action
to be taken, the reliability coordinator between the regions
will go to the inter-bounded solution for a fast optimum
decision.. The study in this paper investigates the effect of
both modeling options.

FIGURE 1. I Two-Area system.

C. RENEWABLES RESOURCES
In practice, the output of wind and solar renewable energy
resources (RERs) is intermittent in nature. Thus, the gen-
erated energy from these sources is variable and non-
dispatchable. Typical wind and solar daily output profiles are
illustrated in Figs. 2 and 3, respectively [46]–[48]. The cost
of both wind/solar energies is taken from the International
Renewable Energy Agency (IRENA), the cost of solar energy
is equal to 14.597 $/MWand for wind energy, the cost is equal
to 10 $/MW [47].

III. MARINE PREDATOR ALGORITHM
The MPA is a metaheuristic (MH) algorithm that adopts the
survival of the fittest strategy. In the MPA, both predator and
prey are search agents, since the predator looks for the prey,
which in turn looks for its food [40].

As all MH approaches based the foraging approach of ani-
mals, MPA relies on the stochastic strategy, in which it starts
by discovering the search space and get random ranges of

FIGURE 2. Wind profile for a day.

FIGURE 3. Solar profile for a day.

initial solutions. Afterwards, the solutions are tailored based
on the algorithm’s primary framework, where the next loca-
tion (solution) will be based on the current location. Marine
predators alter between two search strategies while searching
for their prey, namely, Lévy and Brownian strategies, based
on the prey availability. In areas with lower prey collection,
the predators use a Lévy movement, while the Brownian
movement is applied when there is abundance of prey [40].

The initial solutions are arbitrarily selected and the position
updates are evaluated according to Eq. (4):

y0 = ymin + rand ∗ (ymax − ymin) (4)

where ymax and ymin are the design variable’s upper and lower
bound, respectively, and rand is a random vector ε [0,1].
In the MPA, there are two main matrices: The Elite/Best

matrix (the fittest predators) and the Pray matrix, as depicted
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in Eq. (5) and (6):

Elite =


y111 y112 · · · y11d
y121 y122 · · · y12d
· · · · · · · · · · · ·

y1n1 y1n2 · · · y1nd

 (5)

in which,
−→
y1 is a vector of the fittest predators that repeated

n times to organize Elitematrix. The parameters n and d refer
to the number and dimensions of the agents, accordingly. The
Elite is updated subsequent to each iteration by substituting
predators with better ones. The Prey matrix has the same
dimensions as the Elite matrix, and is the basis for the preda-
tors to update their positions. The Prey matrix is represented
as follows:

Prey =


y11 y12 · · · y1d
y21 y22 · · · y2d
· · · · · · · · · · · ·

yn1 yn2 · · · ynd

 (6)

in which, yij is the j-th dimension for i-th prey. For searching,
the MPA imposes random variables and operators during the
iterations to prevent the optimizer from getting trapped in
local minima [40].

A. MPA PHASES
The MPA is based on imitating the whole life of the prey and
predator. The speed ratio between the prey and the predator is
the most significant control parameter of the MPA during the
iterations. Based on the value of this parameter, the MPA is
divided into three major phases, high-speed ratio in the first
phase, unity ratio in the second phase, then sub-unity ratios
in the last phase. For each defined phase, a specific number
of iterations is specified. Details of each phase are presented
in [40] and summarized in the following section.

1) FIRST PHASE: THE EXPLORATION STAGE
In the exploration phase, the prey is faster than the predator,
i.e., speed ratio is greater than 10. This phase takes place in the
first one-third of the iterations. In this stage, the fittest preda-
tors do not move at all, while the prey moves very rapidly to
secure their food. This stage is representedmathematically by
Eq. (7) and (8) [40]:

For Iter < 1
3 IterMax

−−−−−→
stepsizei =

−→
RB ⊗

(
−−→
Elitei −

−→
RB ⊗

−−→preyi
)

(7)

where, i = 1, 2, 3, . . . n

−−→preyi =
−−→preyi + P.

−→
R ⊗
−−−−−→
stepsizei (8)

where
−→
RB is a normally distributed random vector repre-

senting the Brownian movement. The notation ⊗ marks out
the vector multiplications, P is a constant equal to 0.5, and
R constitutes a uniform random vector within [0,1]. Iter and
IterMax are the current and maximum number of iterations,
respectively.

2) SECOND PHASE: TRANSITION STAGE
In this stage, the predator and prey travel at nearly the same
speed. In this phase, the prey (half of the population) is
responsible for exploitation, and exploration is the respon-
sibility of the predator. Eqs. (9) and (10) reflect the first
half population (exploitation) and Eqs. (11)-(13) represent the
other half population (exploration) as follows [40]:

For the exploitation-based population:
For 1

3 IterMax < iter < 2
3 IterMax

−−−−−→
stepsizei =

−→
RL ⊗ (

−−→
Elitei −

−→
RL ⊗

−−→preyi) (9)

where, i = 1, 2,3, . . . n/2

−−→preyi =
−−→preyi + P.

−→
R ⊗
−−−−−→
stepsizei (10)

where
−→
RL represents a vector of random numbers referring to

the Lévy distribution.
For the exploration-based population:

−−−−−→
stepsizei =

−→
RB ⊗ (

−→
RB ⊗

−−→
Elitei −

−−→preyi) (11)

where, i = n/2, . . . n

−−→preyi =
−−→
Elitei + P.CF ⊗

−−−−−→
stepsizei (12)

CF =
(
1−

Iter
IterMax

)(2∗ Iter
IterMax

)
(13)

where, CF is a tuned parameter to control the step size of the
predator.

3) THIRD PHASE: EXPLOITATION STAGE
In the final stage of theMPA, the predatormovesmore rapidly
than the prey. In this rule, the mathematical model is adopted
as shown [40]:

For Iter > 2
3 IterMax

−−−−−→
stepsizei =

−→
RL ⊗ (

−→
RL ⊗

−−→
Elitei −

−−→
Preyi) (14)

where, i = 1, 2,3, . . . n
−−→
Preyi =

−−→
Elitei + P.CF ⊗

−−−−−→
stepsizei (15)

B. ESCAPING LOCAL MINIMA
In the marine life, eddy formation or Fish Aggregating
Devices (FADs) influence the marine predator’s behavior.
Mathematically, the FADs are local minima. To prevent MPA
from getting trapped in non-globally optima, Eq. (16) is
applied [40].

−−→
Preyi =



−−→
Preyi + CF

[
−→ymin + R⊗

(
−−→ymax −

−→ymin
)]
⊗
−→
U

if r ≤ FAD
−−→
Preyi + [FAD× (1− r)+ r]

(
−−−→
Preyr1 −

−−−→
Preyr2

)
if r > FAD

(16)

where
−→
U is a vector of zeros and ones, −−→ymax and

−→ymin are the
vectors including upper and lower bounds of the dimensions,
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FIGURE 4. MPA optimization flowchart.

subscripts (r1 and r2) represent a random indices of Prey
matrix. FAD usually is assigned a value of 0.2 [40].

The MPA is depicted in the flowchart of Fig. 4 to summa-
rize the proposed algorithm structure [40]–[43].

IV. THE TEST SYSTEM: IEEE 48-BUS NETWORK
The MPA is applied to the IEEE-48 bus interconnected areas
electrical power system grid [49]. This network consists of
two interconnected regions as shown in Fig. 5. Prefix 1 iden-
tifies the elements of the first area, and prefix 2 identifies the
elements in the second area. As an example, G 115 defines
a unit of generation in the first area at bus number 15. Three
transmission lines link the two areas with each other, and are
marked in Fig. 5 as bold red lines. The system parameters are
included in [49].

V. TUNING MPA PARAMETERS
This section investigates the impact of tuning three specific
control parameters of the MPA performance as applied to the
OPF problem. These parameters are (a) distribution of itera-
tion between the three phases of the algorithm, (b) population
of the second stage of the MPA, and (c) FAD’s effect. As dis-
cussed in [40], these parameters govern the performance of
the MPA.

A. IMPACT OF THE SHARE OF EACH PHASE IN NUMBER
OF ITERATIONS
First, the strategy of one-third of iterations allocated to each
phase is tested. Changing this ratio yielded slightly better
results, as illustrated in Table 1. It can be concluded that the
least cost for the OPF of the IEEE 48-Bus system could be
obtained when the distribution of iterations is 3/5 for the first
stage, 1/5 for the second stage and 1/5 for the third one.

TABLE 1. Variations in the distribution of iteration for each phase.

B. IMPACT OF THE POPULATION OF THE SECOND STAGE
As stated earlier in Section III, the second stage of the
MPA accomodates both exploration and exploitation, with
the overall population split in half between these two steps.
Table 2 shows the effect of changing the population distribu-
tion between exploration and exploitation on the quality of
the OPF solution as applied to the IEEE 48 Bus system.

As seen from Table 2, the best result (minimum OPF cost)
could be achieved when the distribution is divided into 2/3 for
the prey and 1/3 for the predator.

C. IMPACT OF CHANGING THE FAD VALUE
As denoted in Section III, the FAD is imposed in the MPA to
avoid getting trapped in local minima. In [40], FAD was set
at 0.2. However, and as shown in Table 3, tuning the FAD to
0.3 instead can realize marginally better performance of the
algorithm.

Based on the above, it can be concluded that – for the OPF
of the IEEE-48 bus – tuning the following parameters of the
MPA yields marginally better results:
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FIGURE 5. The IEEE-48 bus interconnected network.

TABLE 2. Variations in the population in the second stage.

• The distribution of iterations to: 3/5 for the first stage,
1/5 for the second stage and 1/5 for the third one.

• The population of the second stage to be distributed
to 2/3 for the prey and 1/3 for the predator.

• FAD to be equal 0.3.

VI. COMPARING MPA AND GA
This section compares the performance of the tuned MPA
against the well-established GA, as applied to solving the

TABLE 3. Variations in the FAD.

OPF of the IEEE 48-Bus two-area system. Then, the effect
of load and renewables variations on the MPA robustness is
illustrated.

A. COMPARING MPA AND GA – NO INTERMITTENT
RESOURCES
The OPF of the power system of Fig. 5 is calculated using
both the tuned MPA and GA, without considering the impact
of the renewables variability. Both OPF techniques explained
in Section II are considered, namely:
• The holistic technique by considering the two connect-
ing areas as one region.
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TABLE 4. Optimum cost for OPF OF IEEE 48 bus two area system without
renewables variability.

FIGURE 6. Convergence curve of the Holistic-based OPF without
renewables variability.

FIGURE 7. Convergence curve of the Inter-bounded OPF without
renewables variability.

• The Inter-bounded technique, the algorithm is executed
on each of the two areas separately, while considered
the boundary conditions of the tie-lines between the two
areas.

Table 4 illustrates the comparison between the optimum
cost in each case. The corresponding values of the OPF vari-
ables are depicted in Table 5 and Table 6. The converegnce
rates of MPA and GA for both OPF approaches are shown
in Fig. 6 and Fig. 7. In Fig. 8, the voltage profile curve is
also presented for both inter-bounded and holistic approaches
respectively.

TABLE 5. Power flow results for the Holistic-based OPF without
renewables variability.

From Table 4, the holistic (detailed) approach showed
approximatly 54% reduction in cost compared to the initial
solution. The inter bounded solution showed almost 10%
reduction in the system operating cost.

It can be observed from the results of Table 4 that the
tuned MPA outperformed the GA in terms of achieving
better values for the OPF objective function, regardless of
the OPF approach being used. Moreover, the curves of
Fig. 6 and Fig. 7 shows that the MPA yielded faster con-
vergences compared to the GA approach. These two find-
ings indicate that the MPA is more accurate and faster than
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TABLE 6. Power flow results of the interface busses for the
inter-bounded OPF without renewables variability.

TABLE 7. Best locations of applied RERs for case 1.

TABLE 8. Optimum cost with integration of RERs for case 1.

the GA when applied to the OPF problems, regardless of the
approach (holistic vs. inter-bounded). One more observation
is with respect to comparing the convergence rates between
Fig. 6 and Fig. 7 indicate that the inter-bounded approach
yielded a much faster convergence rate than the hollistic
appraoch, which is attributed to the assumption of decoupling
the load flow solution of both regions in the inter-bounded
approach.

Moreover, as can be seen in the results of Table 4, the hol-
listic approach yields significant reduction in the system oper-
ating cost compared to the inter-bounded approach. This can
be attributed to the fact that the hollistic approach optimizes
the voltages and flows across the entire interconnected power
system, while the inter-bounded approach only optimizes the
variables at the interface busses between different regions.
This is also evident in the results of Fig. 8, where the voltages
of almost all busses in both regions are changed and boosted
to 1.05 pu to minimize reactive power flows (hence reducing
system losses). On the other hand, the bus voltages with the
inter-bounded approach are marginally changed (except for
the interface busses). In addition, comparing the convergence
rates of both approachs (Fig. 6 and 7) shows that the inter-
bounded approach provides a fast optimization technique that
mainly focus on changing the variables on few busses –
namely the interface busses. This - of course - comes at the

TABLE 9. Detailed power flow with integration of wind RER only
for case 1.

expense of a less optimal system cost compared to the holistic
approach. As discussed in Section II-B, the inter-bounded
approach can be used when different regions have different
system operators, while a reliability coordinator takes care of
the flows on the intertie lines.

B. EFFECT OF RENEWABLES VARIABILITY
After selection of the favorable tuning parameters for the
executed technique (MPA), the effect of variable renewable
sources (Wind and/or Solar) on the robustness of the MPA
is investigated – as compared to the GA solver. Both cases –
holistic and inter-bounded – are considered.
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TABLE 10. Detailed power flow with integration of solar RER only for
case 1.

In each case three sensitivities are considered:
• Integration of wind generation only to cover 30% of
demand.

• Integration of solar generation only to cover 30% of
demand.

• Integration of both wind and solar generation to cover
40% of demand.

The algorithms will also select the best busses to con-
nect the RERs to in order to minimize the overall system
cost.

TABLE 11. Detailed power flow with integration of both wind and solar
RERs for case 1.

1) CASE 1: THE HOLISTIC TECHNIQUE
Table 7 depicts the best bus location and corresponding
installed capacity RERs for each case in order to achieve
the best solution under uncertainty in loads with MPA. The
simulation results showed the suitable locations at which
the RERS can be located. Table 8 shows the optimal costs
corresponding to three sensitivity cases.

The corresponding values of the best control variables are
shown briefly in Table 9, Table 10, and Table 11. Fig. 9,
Fig. 10 and Fig. 11 show the convergence of the objective
function in each case. It is shown that the optimal solution
converged rapidly under different scenarios.
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FIGURE 8. Voltage profile for the inter-bounded and holistic approaches
without renewables variability.

FIGURE 9. Convergence curve of MPA and GA with the integration of
Wind RER only for case 1.

FIGURE 10. Convergence curve of MPA and GA with the integration of
Solar RER only for case 1.

2) CASE 2: THE INTER-BOUNDED TECHNIQUE
In this case, the two interconnected areas are counted as one
electric network and the integration of renewables by the three
mentioned strategies are illustrated. Table 12 represents the
best bus location as well as, the added power of RERs for each

FIGURE 11. Convergence curve of MPA and GA with the integration of
Both Wind and Solar RERs for case 1.

FIGURE 12. Convergence curve of MPA and GA with the integration of
Wind RER only for case 2.

FIGURE 13. Convergence curve of MPA and GA with the integration of
Solar RER for case 2.

case in order to obtain the best solution uncertainty in loads
with MPA. Table 13 outlines the optimal values of cost based
on the three separate sensitivity cases mentioned before.
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FIGURE 14. Convergence curve of MPA and GA with the integration of
both Wind and Solar RERs for case 2.

TABLE 12. Best locations of applied RERs for case 2.

TABLE 13. Optimum cost with integration of RERs for case 2.

TABLE 14. Detailed power flow with integration of wind RERs for case 2.

The values of the best control variables are illustrated
briefly in Table 14, Table 15, and Table 16, based on case 2.
To ensure the reliability of the MPA, the trials have been
reiterated more than once. Fig. 12, Fig. 13 and Fig. 14 rep-
resent the convergence of the objective function in each case.
It is shown that the optimal solution converged rapidly under
different scenarios.

Albeit the results of Table 13 show that both MPA and GA
yield similar accuracy, Figures 12, 13 and 14 indicate that

TABLE 15. Detailed power flow with integration of solar RER for case 2.

TABLE 16. Detailed power flow with integration of both wind and solar
RERs for case 2.

TABLE 17. Load profile for a week.

TABLE 18. Cost under different days.

theMPA converges faster, which indicates less computational
burden compared to the GA.

Figure 15 shows the voltage profiles of the MPA with the
integration of RERs based on cases 1 and 2 all the mentioned
cases. It is noted that in case 1; holistic approach; the voltage
is approximately 1.05 pu at many buses with the addition of
RERs. While in case two; the inter-bounded approach; the
voltage is approximately 1 pu at many buses with the addition
of RERs. Similar to the discussion in Section IV-B, the inter-
bounded approach yields a fast, yet less optimal solution,
compared to the holistic approach. Depends on the need of
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FIGURE 15. Voltage profile curves of MPA with integration of RERs for holistic and inter-bounded cases.

the system operator, both approachs are available for use.
Howeber, in both cases theMPAmarginally outperformed the
GA in terms of solution accuracy (Tables 8 and 13). More-
over, the MPA superpassed the GA in terms of convergence
rate (Figs. 9-14).

VII. WEEKLY LOAD PROFILE VARIABILITY
In this section, the weekly load profile resolution is firstly
presented, and then the system is studied based on this load
profile variability.

A. WEEKLY LOAD PROFILE
The weekday/weekend load profile shown in Table 17 [50]
will be used to analyze the impact of load variability on the
robustness of the MPA technique.

B. IMPACT OF LOAD VARIABILITY
The system is studied byMPA for a heavily loaded day (Tues-
day) which is the peak day 100% load and light loaded
day (Sunday) which is 75% load, considering both Solar and
Wind RERs. The OPF costs are shown in Table 18.

The results of Table 18 show that the load reduction
between the heavy loaded day (Tuesday) and light loaded
day (Sunday) caused a significant reduction in the Sys-
tem cost. As discussed in Section VI, the holistic approach
will always yield a far optimal solution compared to the
inter-bounded approach, but needs much more computational

power. It is up to the system controller to choose the suitable
approach based on the available computation resources and
the urgency of an optimization decision.

VIII. CONCLUSION
A new innovative meta-heuristic MPA algorithm has been
applied in this paper to solve the OPF problem in power
systems, considering the variability of load and renewable
generation. The optimum solver parameters were tuned for
the MPA. Consequently, the performance of the MPA is
compared with that of the well-known GA algorithm con-
sidering renewables and load variability. Two OPF models
were used, namely holistic and inter-bounded models. The
network considered in this paper is the two-connected areas,
IEEE-48 electrical grid.

The results showed that while the holistic approach yields
more optimal solution, it requires more computational power
since it considers the entire interconnected system in the
OPF model. On the other hand, the inter-bounded OPF
approach yields much faster solution – yet less optimal com-
pared to the holistic approach. The inter-bounded approach is
suitable for fast decisions, and when the interties are operated
by an independent reliability coordinator that only focuses on
optimizing the tie line flows.

Regardless of the implemented OPF model, the results
also indicated that the MPA outperforms the GA in terms of
accuracy, computational burden, and convergence rates.
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