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ABSTRACT In this paper, we aim to explore the possibility of the Transformer model in detecting the spam
Short Message Service (SMS) messages by proposing a modified Transformer model that is designed for
detecting SMS spam messages. The evaluation of our proposed spam Transformer is performed on SMS
Spam Collection v.1 dataset and UtkMl’s Twitter Spam Detection Competition dataset, with the benchmark
of multiple established machine learning classifiers and state-of-the-art SMS spam detection approaches.
In comparison to all other candidates, our experiments on SMS spam detection show that the proposed
modified spam Transformer has the optimal results on the accuracy, recall, and F1-Score with the values
of 98.92%, 0.9451, and 0.9613, respectively. Besides, the proposed model also achieves good performance
on the UtkMl’s Twitter dataset, which indicates a promising possibility of adapting the model to other similar
problems.

INDEX TERMS SMS spam detection, transformer, attention, deep learning.

I. INTRODUCTION
A. MOTIVATION AND OBJECTIVE
THE Short Message Service (SMS) has been widely used
as a communication tool over the past few decades as the
popularity of mobile phone and mobile network grows. How-
ever, SMS users are also suffering from SMS spam. The SMS
spam, also known as drunk message, refers to any irrelevant
messages delivered using mobile networks [1]. There are
several reasons that lead to the popularity of spam messages.
Firstly, there is a large number of users who use mobile
phones in the world, making the potential victims of the spam
messages attack also high. Secondly, the cost of sending out
spam messages is low, which could be good news to the
spam attacker. Last but not least, the capability of the spam
classifier on most mobile phones is relatively weak due to the
shortage of computational resources, which limits them from
identifying the spam message correctly and efficiently.

Machine learning is one of the most popular topics in
the last few decades, and there are a great number of
machine learning based classification applications inmultiple
research areas. Specifically, spam detection is a relatively
mature research topic with several establishedmethods. How-
ever, most of the machine learning based classifiers were
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dependent on the handcrafted features extracted from the
training data [2].

As a class of machine learning techniques, deep learning
has been developing rapidly recently thanks to the surprising
growth of computational resources in the last few decades.
Nowadays, deep learning based applications play a signifi-
cant part in our society, making our lives much easier in many
aspects. As one of the most effective and widely used deep
learning architectures, Recurrent Neural Network (RNN),
as well as its variants such as Long Short-Term Memory
(LSTM), were applied to spam detection and proved to be
extremely effective during the last few years.

The Transformer [3] is an attention-based sequence-to-
sequence model that was originally designated for transla-
tion task, and it achieved great success in English-German
and English-French translation. Moreover, there are multiple
improved Transformer-based models such as GPT-3 [4] and
BERT [5] proposed recently to address different Natural Lan-
guage Process (NLP) problems. The accomplishments of the
Transformer and its successors have proved how powerful
and promising they are. In this paper, we aim to explore
whether it is possible to adapt the Transformer model to
the SMS spam detection problem. Therefore, we propose a
modified model based on the vanilla Transformer to identify
SMS spam messages. Additionally, we analyze and compare
the performance of SMS spam detection between traditional
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machine learning classifiers, an LSTM deep learning solu-
tion, and our proposed spam Transformer model.

B. RELATED WORK
There are several different machine learning based classifi-
cation applications proposed in the last few decades [6], [7]
[8], [9]. In the field of SMS spam detection, a great number
of these approaches are based on traditional machine learning
techniques, such as Logistic Regression (LR), RandomForest
(RF) [10], Support Vector Machine (SVM) [11], Naïve Bayes
(NB), and Decision Trees (DT). Recently, with the prosperity
of the deep learning techniques, an increasing number of
methods have been introduced to address the SMS spam
problem using deep learning based solutions such as Convo-
lutional Neural Network (CNN), Recurrent Neural Network
(RNN), and Long Short-Term Memory (LSTM), which is a
successful variant of RNN.

In [12], Gupta et al. compared the performance of 8 differ-
ent classifiers including SVM, NB, DT, LR, RF, AdaBoost,
Neural Network, and CNN. The experimental tests on the
SMS Spam Collection v.1 [13] dataset that was conducted
by the authors shows that the CNN and Neural Network are
better compared to other machine learning classifiers, and the
CNN and Neural Network achieved an accuracy of 98.25%
and 98.00%, respectively.

In [14], Jain et al. proposed a method to apply rule-based
models on the SMS spam detection problem. The authors
extracted 9 rules and implemented Decision Tree (DT), RIP-
PER [15], and PRISM [16] to identify the spam messages.
According to the experimental results from the authors,
the RIPPER outperformed the PRISM and the DT, yielding
a 99.01% True Negative Rate (TNR) and a 92.82% True
Positive Rate (TPR).

In [1], Roy et al. aimed to adapt the CNN and LSTM
to the SMS spam messages detection problem. The authors
evaluated the performance of CNN and LSTM by comparing
them with Naïve Bayes (NB), Random Forest (RF), Gra-
dient Boosting (GB) [17], Logistic Regression (LR), and
Stochastic Gradient Descent (SGD) [18]. The experiments
that were conducted by the authors showed that the CNN and
LSTM perform significantly better than the tested traditional
machine learning approaches when it comes to SMS spam
detection.

In [2], the authors proposed the Semantic Long Short-Term
Memory (SLSTM), a variant of LSTM with an additional
semantic layer. The authors employed the Word2vec [19],
the WordNet [20], and the ConceptNet [21] as the seman-
tic layer, and combined the semantic layer with the LSTM
to train an SMS spam detection model. The experimental
evaluation that was conducted by the authors claimed that
the SLSTM achieved an accuracy of 99% on the SMS Spam
Collection v.1 dataset.

In [22], Ghourabi et al. proposed the CNN-LSTM model
that consists of a CNN layer and an LSTM layer in order
to identify SMS spam messages in English and Arabic. The
authors evaluated the CNN-LSTM by comparing it with the

CNN, LSTM, and 9 traditional machine learning solutions.
The experimental tests that were conducted by the authors
showed that the CNN-LSTM solution performed better than
other approaches and yield an accuracy of 98.3% and an
F1-Score of 0.914.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. Section II pro-
vides the backgrounds and details of the LSTM and our spam
Transformer approaches. Concretely, Section II-A introduces
the architecture of RNN, followed by one of its most suc-
cessful variant LSTM in Section II-B. We then introduce
Sequence-to-Sequence in Section II-C, attention mechanism
in Section II-D, and the original version of Transformer for
translation tasks in Section II-E. Furthermore, Section III
discusses the modified spam Transformer that we proposed
in detail. Afterward, Section IV demonstrates the experi-
ment designs, results and analysis. Finally, we conclude in
Section VI and describes the future work in Section VII.

II. DEEP LEARNING APPROACHES
While the traditional machine learning techniques do per-
form well in many fields, they are still much interference or
guidance from human specialists required when people try to
apply these technologies to address problems. For instance,
extracting and representing the features from data is always
a challenging but indispensable work for machine learning
scientists. In another word, the inadequate capacity of many
traditional machine learning classifiers is a major limitation
to a more effective and massive application. However, many
deep learning techniques are able to not only learn much
more amount of features but also extract more higher-level
features that are formed by the composition of lower-level
features. With an effective training process, the deep learning
techniques are more capable to consume and make good use
of a large amount of data and thus perform better especially in
copingwith difficult jobs compared to the traditional machine
learning approaches.

A. RECURRENT NEURAL NETWORK
As is known to all, shuffling the order of words in a sentence
can severely influence the meaning of the entire sentence,
which could potentially turn a legitimate message into spam
messages, and vice versa. Therefore, in many Natural Lan-
guage Process (NLP) problems, the order of words is no less
important than the words themselves. To address this prob-
lem,we need a new kind ofmodel that is capable to effectively
learn from prior knowledge to improve the understanding of
the data. Although the classical feed-forward neural network
is a powerful deep learning technique that generally works
well in many areas, it cannot utilize the information from the
past. Derived from the feed-forward neural network, recurrent
neural network (RNN) [23] has the ability to reuse the saving
information at the time of processing input values. Addi-
tionally, unlike the traditional feed-forward neural network

80254 VOLUME 9, 2021



X. Liu et al.: Spam Transformer Model for SMS Spam Detection

FIGURE 1. Structure of a typical Recurrent Neural Network.

supports only the input sequence with a fixed length, RNN is
capable to handle the input sequence with different length.

The Fig. 1 shows the typical structure of RNNmodels, with
the input sequence, output sequence, and the hidden layers at
time t are represented by xt , ot , and ht respectively. At time
t, the current hidden layers state ht is calculated based on
the current input sequence xt and the last hidden layers ht−1.
After the calculation of ht is finished, the output at the current
time step ot is generated and the hidden layers state ht will
get involved in the calculation at the next time step t + 1.
Unlike the normal neural network, where the neurons in the
same layer of the hidden layers are independent of each other,
RNN models usually allow the data flows within the same
layer. In another word, connections between neurons in the
same layers or even self-connections are allowed generally
allowed in RNN based models.

A major advantage of RNN models is that they are able
to utilize the information from previous input and apply it at
the current time, which is significantly useful in NLP prob-
lems since the context can help us understand the sentence
better. However, a major drawback of the vanilla RNN is the
vanishing and exploding gradients [24]. In back-propagation
training process, the vanishing gradients refers to gradients go
exponentially close to 0, while the exploding gradients refers
to the gradients go exponentially increase. The vanishing and
exploding gradients are usually caused by the multiplication
of multiple derivatives in training process. Although there are
several approaches [25] existing to address the vanishing and
exploding gradients problem, in practice, it is still difficult
for vanilla RNN to memorize and learn the features from
long distance, which is described as long-term dependencies
problem. In order to deal with the long-term dependencies
problem, many researchers have proposed multiple variants
of RNN, such as the Long Short-TermMemory (LSTM) [26],
the Gated Recurrent Unit (GRU) [27], and the Clockwork
RNN (CW-RNN) [28].

B. LONG SHORT-TERM MEMORY
The Long Short-Term Memory (LSTM) is a famous variant
of RNN. The main idea of the LSTM is the introduction of
gate units, which are the structures that can determine to keep
or discard the current information. A typical LSTM network
consists of multiple memory cells, and each memory cell is
formed by an input gate, a forget gate, and an output gate.

In LSTM, at time t, the state of a memory cell ct is calculated
based on the input xt and the last hidden state ht−1. The
state of input gate, output gate, and forget gate at time t are
represented as it , ot , ft , respectively. Therefore, the LSTM
transition functions are defined as follows [29]:

it = σ (Wi · [ht−1, xt ]+ bi)

ft = σ (Wf · [ht−1, xt ]+ bf )

qt = tanh(Wq · [ht−1, xt ]+ bq)

ot = σ (Wo · [ht−1, xt ]+ bo)

ct = ft � ct−1 + it � qt
ht = ot � tanh(ct ) (1)

The σ denotes the sigmoid function, and the operator �
denotes the element-wise multiplication. The sigmoid func-
tion is a logistic function with the returning value between
0 and 1. The sigmoid function is defined as follow:

σ (x) =
1

1+ e−x
(2)

When the output of a gate unit is close to 1, the information
is more likely to be memorized. On the contrary, a returning
value close to 0 from a gate unit means that the information
should not be kept. The input gate it is the gate unit that con-
trols howmuch information should be stored at this time. The
forget gate ft is responsible to determine to what extent the
memory from the last time ct−1 should be kept at time t.
The output gate ot at time t is designed to be used in the
computation of the output (hidden state) based on thememory
cell state.

In our LSTM approach for SMS spam detection, the input
message embedding is fed into an LSTM network as an
input sequence. Meanwhile, the LSTM network saves the
important features and outputs a sequence with the same
length as the input sequence. The output sequence is then
fed into a feed-forward fully connected layer with a single
neuron since SMS spam detection is a binary classification
problem. Finally, a sigmoid function is applied to the output
of the single neuron to produce a final prediction.

C. SEQUENCE-TO-SEQUENCE MODELS
Sequence-to-sequence (Seq2Seq) [30] was introduced
in 2014 by Sutskever et al. aiming to find a mapping
between two sequences for translation tasks. Seq2Seqmodels
employed the Encoder-Decoder architecture, which consists
of an encoder stack, a hidden state, and a decoder stack.
Fig. 2 presents a typical Encoder-Decoder architecture. The
encoders take the input sequence and produce a hidden
state with critical information, which is consumed by the
decodes to generate the output sequences. One of the crucial
advantages of the Encoder-Decoder architecture is that the
input sequence and output sequence can be different in terms
of size or format, which provides much more flexibility and
possibility. In reality, the Seq2Seq models have been proved
themselves in language translation [30], Speech Recogni-
tion [31], and Video to Text [32]. Undoubtedly, Seq2Seq
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FIGURE 2. Structure of Encoder-Decoder architecture.

architecture is designed to fit translation tasks exception-
ally well, since it can extract the relationship between the
sequences in one language and the sequences in a different
language. The vanilla version of the Seq2Seqmodel proposed
in 2014 choose LSTM as both encoder and decoder, because
LSTM has the ability to successfully learn on data with
long-term dependencies [30].

D. ATTENTION MECHANISM
The main purpose of the attention mechanism is to find out
the most important part from the input sequence. Concretely,
the attention mechanism produces weights that represent the
importance of the elements based on their correlation with the
context. The attention mechanism makes it possible to focus
on the key elements.

In [33], the attention mechanism was introduced as an
improvement of the RNN Encoder-Decoder model hidden
state in Neural Machine Translation (NMT). The most impor-
tant contribution of the attention mechanism in NMT is that
it computes the weights based on all the hidden states gener-
ated by the encoder, and the decoder consumes the weighted
combination of all the hidden states instead of focusing only
on the latest one. The introduction of the attentionmechanism
greatly boosts the performance of NMT.

There are also other forms of attention mechanism pro-
posed. In [34], the attention mechanism is applied to the field
of computer vision by Xu et al., and they also proposed two
different approaches of attention named ‘‘soft attention’’ and
‘‘hard attention’’. In [35], Luong et al. proposed global atten-
tion and local attention. The global attention is similar to the
model of Bahdanau et al. in [33] with a simpler architecture,
while the local attention is a combination of soft and hard
attention from Xu et al. in [34].

E. THE TRANSFORMER MODEL
The Transformer [3] model is a sequence-to-sequence
(Seq2Seq)model that was proposed in 2017 byVaswani et al.,
as an approach to English-German and English-French trans-
lation tasks. Compared to those previous Seq2Seq models,
the main innovation of Transformer is that it completely relies
on the attention mechanism to efficiently learn from the most
informative elements [36].

Though LSTM and some other RNN variants were proved
to perform well as encoders and decoders in Seq2Seq based
models, the high training consumption of recurrent models

becomes a significant limitation. At time t, the computation of
hidden state ht relies on the previous hidden state ht−1, which
is the sequential computation nature of recurrent models.
This sequential computation nature prevents the computing
of RNNvariants from parallelization, leading to the limitation
on computational efficiency during the training process.

In order to address the computational efficiency limitation
of RNN variants, the Transformer uses only multi-head atten-
tion mechanism instead of RNN variants as encoders and
decoders. This not only greatly reduces the cost of training
through parallelization, but also surprisingly improves the
performance in translation tasks as is mentioned in [3].

In Transformer, the attention function takes a query Q
and a set of key-value pairs (K ,V ) as input, and computes
the weighted sum of values as output, where the weights
are calculated based on the queries and keys. Particularly,
Scaled Dot-Product Attention is used in Transformer as the
attention function. The Scaled Dot-Product Attention is the
dot-product attention [35] with a scaling factor of 1

√
dk
, which

aims to counteract the massive growth of dot-product when
dimensions of queries and keys dk is large.
Another important innovation of Transformer is the

Multi-Head Attention. In the previous practice, the atten-
tion is directly performed on the queries, keys, and values,
where their dimension is dmodel . In this way, there is only
a single attention function calculated at one turn. However,
Transformer finds an effective way to applymultiple attention
functions at once. Specifically, the queries, keys, and values
are sent to some different learned linear layers to be projected
h times to the dimension of dk , dk , and dv, respectively.
In another word, the projection linear layers are individually
learned, and output projections have dimensions of dk , dk ,
and dv, where dk = dv = dmodel/h. After that, a number
of h attention functions are performed in parallel on these
projected queries, keys, and values, resulting in h different
output values. Finally, all these h values are concatenated
together and then projected back to a dimension of dmodel . The
entire process of the attention mechanism in the Transformer
is defined as follows [3]:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh)WO

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (3)

The WQ
i , W

K
i , and WV

i are parameters matrices in linear
projection layers, where they are used to project dmodel-
dimension queries, keys, and values to dk , dk , and dv dimen-
sion, respectively. In both vanilla Transformer and our mod-
ified Transformer for SMS spam detection, dk = dv =
dmodel/h.

In RNN, the computation of the hidden states is based on
the previous states, making it available to learn from the order
of words naturally. However, there is no recurrent or con-
volutional structure in Transformer. Therefore, Transformer
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introduces a positional encoding function based on sine and
cosine functions of different frequencies.
In vanilla Transformer model designed for language trans-

lation tasks, source language texts and shifted right target
language texts are first sent to embedding layers as input
sequence and output sequence. Secondly, positional infor-
mation is injected into the input and output sequence in the
positional encoding layer. After that, the input and output
sequence is fed into encoders and decoders, respectively.
Then, the Multi-Head Attention layers and fully-connected
feed-forward layers, combined as a single encoder or decoder,
produce the output of dimension of dmodel . The results of
decoders are passed to a linear layer. Finally, the softmax
function is performed on the output of the linear layer, pro-
ducing the translation in the target language.

III. PROPOSED MODIFIED TRANSFORMER MODEL FOR
SMS SPAM DETECTION
In Fig. 3, the main architecture of the modified Transformer
model for SMS spam detection is described. In order to

FIGURE 3. Structure of proposed modified Transformer model for SMS
spam detection. The input messages embeddings and memory (trainable
parameters) are positional encoded, respectively. Then, the processed
message vectors are passed to encoder layers, where the self-attention is
performed. The results of encoder layers are passed to decoder layers.
In decoder layers, the Multi-Head Attention is executed based on the
results of encoder layers and the processed memory. Then, the decoded
vectors are sent to some fully-connected linear layers, followed by a final
activation function for classification.

apply the Transformer model to the SMS spam detection task,
two major modifications are done to the vanilla Transformer
model, which is described in Section III-A and Section III-
B, respectively. After that, several implementation details are
discussed.

A. MEMORY
The first modification for the SMS spam detection task is the
introduction of memory. Since there is no output sequence
(target sequence) in the SMS spam detection task, we used
a list of trainable parameters named ‘‘memory’’ to be the
substitute for output sequence embedding. The length of the
memory is a configurable hyper-parameter. Each element of
the memory is a vector of dimension dmodel so that it can be
adapted to the Transformer model without any extra projec-
tion. In other words, the memory is a matrix of dimension
lenmemory×dmodel . The output embedding layer in the original
Transformer model is also removed since there are no target
sequence texts anymore to be mapped to numeric vectors.
Similar to the output sequence in the vanilla Transformer
model, the positional information is injected into the mem-
ory at the positional encoding layer before being fed into
decoders.

During the training process, the parameters of memory
are trained, and the memory matrix is expected to contain
the important information that can help to predict whether
or not a message is a spam. Therefore, in the decoders of
the modified spam Transformer model, with the help of the
attention mechanism, the memory can contribute to locate the
significant part of the output sequence of the encoder stack
that summarized the message, and eventually help to classify
the spam SMS messages.

B. LINEAR LAYERS AND FINAL ACTIVATION FUNCTION
The secondmodification is the final activation function. In the
vanilla Transformer, the dimension of outputs of decoder
layers is T × dmodel , where T is the target sequence length
and dmodel is the model size (number of features). Therefore,
intuitively, it is a promising approach to use the linear layers
to map the output to a vector that has the same dimension
as the number of words in the dictionary and apply a softmax
function on the vector to find the closest candidate word from
the dictionary.

However, the SMS spam detection task is a binary classi-
fication problem. Therefore, to convert the output from the
decoder stacks with dimension dmodel into a single proba-
bility of the message being spam, the linear layers after the
decoders are also modified. Instead of mapping the output of
the decoder stack to a vector, the linear layer in the modified
Transformer model for SMS spam detection has only one sin-
gle neuron in the last layer. Thus, the outputs of the decoder
stack are converted into a single numeric probability value.

Additionally, the final activation function needs to be
replaced with a function that can map the result to a
binary outcome. Thus, in the modified Transformer for SMS
spam detection, a sigmoid function, which is defined in
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Equation (2), as the final activation function, is applied to the
output of the linear layers after decoders, generating a binary
result that predicts whether or not the message is spam.

C. DROPOUT
Dropout [37] is a powerful technique published by Hinton
et al. in 2012 in order to prevent over-fitting in a large
feed-forward neural network. Concretely, the Dropout refers
to randomly omit some nodes in those large feed-forward
layers on each specific training case. The modified spam
Transformer model that we proposed employs multiple
feed-forward layers. Thus, the Dropout technique is also
implemented in the feed-forward layers of our spam Trans-
former model. Besides, the Dropout technique is also used in
positional encoding and calculation of attention function.

D. BATCHES AND PADDING
During each epoch of training on our proposed models,
the whole training set is divided into multiple batches. As the
length of themessagewith the same batch should be the same,
some padding words (empty words) should be added into
the shorter message vectors, interfering with the detection to
some extent. Therefore, the algorithm of dividing the training
set into batches is designed to minimize the padding words.
Specifically, the training data is sorted by the message length
first, and the batches are created to minimize the padding
words based on the sorted messages.

Admittedly, adding padding words may pose a negative
influence on the model. However, using batch has been
proved to be a good idea for model training as it increases
the training speed extraordinarily. In fact, a larger batch size
accelerates a ton for the training speed. Additionally, the neg-
ative influence of padding words is addressed by minimizing
the use of paddingwords. Besides, the paddingmasks are also
passed into the model along with the training batches so that
the Transformer model can ignore the padding words during
training.

E. OPTIMIZATION AND LEARNING RATE
The gradient descent is employed to optimize our modified
spam Transformer model. The main idea of the gradient
descent algorithm is to minimize the loss function of the
model by updating the parameters along the opposite way
of the gradient to the loss function, where the gradient is
the partial derivatives of the loss function of the parameter.
There are plenty of variant optimizers of gradient descent.
We use the AdamW [38] optimizer for our proposed mod-
ified spam Transformer with β1 = 0.9, β2 = 0.98, and
ε = 10−9. Learning rate is a critical hyper-parameter in
machine learning. It is defined as the step size of updating
parameters, which basically represents the speed of learning
of the model. Having the learning rate set too high will lead to
the situation that the model fails to locate the best parameters
(weights and biases), while a learning rate that is too small
sticks the model around the local optimal point rather than
finding a better parameter solution. For the modified spam

Transformermodel, the sameway of determining the learning
as mentioned in [3] is utilized. The learning rate lr first
increases linearly until reaching the warmup_steps steps and
then decreases proportionally to the square root of the step
numbers. Concretely, we used warmup_steps = 8000.

F. DATAFLOW OF MODIFIED TRANSFORMER
As is shown in Figure 3, the input messages are first converted
into word embeddings using the Glove model. Following
this, the memory (trainable parameters) and the embeddings
of the input sequence are positionally encoded, respectively.
Then, the processed message vectors are passed to encoder
layers, where the multi-head self-attention is performed and
the important parts of the input sequence are given larger
weights. The results of encoder layers are passed to decoder
layers. In decoder layers, the multi-head self-attention is
computed on the memory. After that, the multi-head attention
is executed based on the results of encoder layers and the pro-
cessed memory. Finally, the decoded vectors are sent to some
fully-connected linear layers, followed by a final activation
function for classification.

IV. EXPERIMENT
A. DATASETS
In the experiments, two different datasets are utilized. The
first dataset is SMS Spam Collection v.1 [13] dataset, which
is labeled SMS messages dataset collected for mobile phone
message research. The second one is UtkMl’s Twitter Spam
Detection Competition (UtkMl’s Twitter) [39] from Kaggle.
Table 1 shows the overview statistics of the two datasets.

TABLE 1. The statistics of two datasets.

Although the Twitter posts are not precisely the same as
the SMS messages, they are still in some ways common. For
instance, they both have approximately less than 100 words.
People tend to use more casual language and abbreviations
in both Twitter posts and SMS messages. Therefore, UtkMl’s
Twitter dataset can also be used to test our model. Besides,
we can also analyze the extensibility of our model by com-
paring the performance of our model on these two datasets.

In comparison with SMS Spam Collection v.1 [13] dataset,
UtkMl’s Twitter dataset contains more data in both spam and
ham classes. Besides, UtkMl’s Twitter dataset is balanced
since the number of spam messages and ham messages are
approximately equal. In terms of the language, although they
are a lot of casual language and abbreviation used in both
datasets, casual language and abbreviation appear more fre-
quently in UtkMl’s Twitter dataset. The reason for this obser-
vation may be the feature of the Twitter posts. Alternatively,
it could also because of the date that the dataset was collected,
as SMS Spam Collection v.1 was published in 2011.
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TABLE 2. The confusion matrix.

B. EVALUATION MEASURES
In order to evaluate the performance of the proposedmodified
spam Transformer model, some metrics such as accuracy,
precision, recall, and F1-Score are used in the experiments.
All these metrics are calculated based on the confusion
matrix. As is mentioned in the previous section, the spam
messages in the SMS Spam Collection v.1 dataset are sig-
nificantly less than the ham messages, which means that
the dataset is unbalanced. Therefore, the accuracy is not
sufficient as a measurement to evaluate the performance of
the proposed model, and the F1-Score is employed in the
experiments. The accuracy, precision, recall, and F1-Score is
defined as follows:

Accuracy =
TP+ TN

TP+ FP+ FP+ FN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1− Score = 2×
Precision× Recall
Precision+ Recall

(7)

The precision, also known as the positive predictive value,
represents the percentage of the predicted positive cases that
are actually positive, meaning the possibility that the classi-
fier is correct given that it predicts positive. The recall, also
known as sensitivity, denotes the number of true positives
instances divided by the number of actual positive instances,
which can also be described as the percentage of the positive
cases that are identified successfully. The F1-Score is the
harmonic mean of precision and recall, which measures the
performance of a classifier in terms of precision and recall in
a balanced way.

C. DATA SPLITTING
For the traditional machine learning approaches, the data is
divided into training set (70%), and test set (30%). For the
LSTM and our proposed modified spam Transformer model,
the data is split into training set (50%), validation set (20%),
and test set (30%), where the validation set is used after each
epoch of training to help us select the best model and perform
early stopping to avoid over-fitting.

D. DATA PRE-PROCESSING
The textual messages in the dataset are first tokenized.
Tokenization refers to the task of splitting textual into mean-
ingful words. Specifically, the SpaCy [40] library is employed
for data pre-processing in order to tokenize the data.

After that, the numeric representation vectors (word
embeddings) are calculated based on the textual messages.

There are two major methods of calculating representation
vectors are employed in our experiments.
• TF-IDF Representation: The TF-IDF (Term
Frequency–Inverse Document Frequency) is a widely-
used numerical statistic in NLP. It is designed to reflect
the importance of a word to a document in the given
text corpus. The Term Frequency (TF) is defined as
the number of times that a term occurs in a document.
A larger TF means the term is referred for more times
in the given document, showing that the term is more
relevant to the document. There are multiple different
means to weigh the TF in order to adapt it in different
applications. In our experiment, we use the raw count
of the term in the document as the TF. The Inverse
Document Frequency (IDF) is a value to qualify the
specificity of a term, which is normally defined as the
logarithmically scaled inverse fraction of the number
of documents that contain the term. In another word,
when a term occurs in a great number of documents,
the IDF is numerically low, leading to a low TF-IDF. For
instance, the term ‘‘the’’ occurs in almost every English
document, leading to a document frequency of almost 1
(100% of the documents in the corpus contain the term
‘‘the’’). Thus, the IDF of ‘‘the’’ is close to 0, which
means that its importance to any documents in the corpus
is low.

• GloVe Representation: GloVe [41] is an unsupervised
learning algorithm for obtaining vector representations
for words. The main idea is to map words into a mean-
ingful space where the distance between words is related
to semantic similarity. GloVe produces a vector space
with a meaningful substructure, and it can also find the
relations like synonyms between words.

In our experiments, for the deep learning approaches
such as LSTM and our proposed spam Transformer model,
the GloVe model is employed to create representation vec-
tors for them. Specifically, in our experiments, we used the
‘‘glove.840B.300d’’, a pre-trained model with 2.2 million
words in the dictionary that converts textual data into
300-dimensional vectors. For benchmark machine learn-
ing algorithms, although the vectors generated by GloVe
model have more dimensions and theoretically contain more
information, presumably due to the limitation of traditional
machine learning classifiers, the TF-IDF representation per-
forms better in practice. Therefore, TF-IDF representation
is used for calculating representation vectors in benchmark
machine learning algorithms.

E. LOSS FUNCTION
The loss function we used for deep learning approaches
including LSTM and modified spam Transformer is Binary
Cross Entropy function, which is defined as follow:

l(xi, yi) = −wi[yi · logxi + (1− yi) · log(1− xi)] (8)

The weight wi is the rescaling factor for loss. Since
the SMS Spam Collection v.1 is unbalanced, where spam
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messages are severely less than ham (legitimate) messages,
a larger weight is given to the actual spam messages to
counteract the negative effect of the unbalanced dataset. The
rescaling weight is calculated based on the ratio between the
number of ham messages and spam messages.

F. MODEL TRAINING
We trained our experiment models on NVIDIAGeForce RTX
3090 GPU. For the machine learning classifiers, the experi-
ments are performed on the Scikit-learn 0.24.0 [42] environ-
ment. For deep learning approaches like LSTM and spam
Transformer model, the experiments are conducted on the
Ubuntu 20.04 LTS, CUDA 11.1, and PyTorch 1.7.1 [43]
environment. The early stopping technique is implemented
to fight against the over-fitting. Besides, we also trained and
tested the CNN-LSTM SMS spam detection model proposed
in [22] on both datasets as a benchmark to evaluate our
modified spam Transformer model.

G. HYPER-PARAMETERS TUNING
In order to tune themodels and find the best hyper-parameters
set, the Ray Tune [44] library is employed. The Ray Tune
is a hyper-parameter tuning extension tool that supports
multiple machine learning frameworks. Given a candidate
hyper-parameters set, the Ray Tune can find the opti-
mized hyper-parameters set by training multiple models
with different settings and comparing the results automat-
ically. In our experiments, with the help of the Ray Tune,
we first explored optimal settings for the overall architectural
hyper-parameters such as Encoder layers, Decoder layers,
andModel size. After that, other hyper-parameters such as the
rate of dropout and Feed-forward layer size are tuned under
the candidate optimal model settings.

For the LSTM model, the optimized parameters on both
datasets are shown in Table 3. For our modified spam Trans-
former model on SMS Spam Collection v.1, Table 4 presents
the initial hyper-parameters that we started from and the opti-
mized values when the better result was achieved after tuning.
Table 5 demonstrates the initial as well as the optimized
hyper-parameters of modified spam Transformer on UtkMl’s
Twitter dataset.

TABLE 3. Optimized hyper-parameters for LSTM.

V. RESULTS AND ANALYSIS
A. EVALUATION
Wedemonstrate the performance of themodified spamTrans-
former model by comparing it on two datasets with some
other typical spam detection classifiers, including Logistic
Regression, Naïve Bayes, Random Forests, Support Vector

TABLE 4. Initial and optimized hyper-parameters for modified spam
Transformer on SMS Spam Collection v.1.

TABLE 5. Initial and optimized hyper-parameters for modified spam
Transformer on UtkMl’s Twitter.

TABLE 6. Results obtained on SMS Spam Collection v.1.

TABLE 7. Results obtained on UtkMl’s Twitter.

Machine (classifier), and Long Short-TermMemory. Besides,
for the SMS Spam Collection v.1 dataset, we also compare
our models with the CNN-LSTM approaches in [22], since
they aim to solve the same problem on the same dataset with
us.

Table 6 summarizes the results on SMS Spam Collection
v.1 dataset. For accuracy, our modified spam Transformer
model achieved the best value of 98.92%. Concerning pre-
cision, the best score was from the Random Forests classifier
with a value of 1.0, and our proposed spam Transformer
got a value of 0.9781. When it comes to recall, the opti-
mal result came from the spam Transformer model with a
value of 0.9451, and the same value came from the Naïve
Bayes classifier as well. Finally, in terms of F1-Score, our
spam Transformer also achieved the best value of 0.9613.
The experiment of CNN-LSTM [22] that was conducted
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TABLE 8. The confusion matrices on SMS Spam Collection v.1.

TABLE 9. The confusion matrices on UtkMl’s Twitter.

by Ghourabi et al. on the same dataset, are also included
in Table 6. In Table 8, we demonstrate the confusionmatrix of
all the approaches that we tested in the experiments on SMS
Spam Collection v.1 dataset.

Table 7 summarizes the results on UtkMl’s Twitter dataset.
The modified spam Transformer model outperformed all
other candidates in all four aspects that we tested with the val-
ues of 87.06%, 0.8746, 0.8576, and 0.8660 on the accuracy,
precision, recall, and F1-Score, respectively. The confusion
matrix of the modified spam Transformer model on UtkMl’s
Twitter is presented in Table 9.

B. ANALYSIS
Although the experimental results show an improved perfor-
mance of the proposed spam Transformer model compared
to other candidates, the false predictions also indicate the
drawback of the proposed model. We analyzed the content
of the false prediction samples including false positive and
false negative samples and found that there were a great
number of the UNK marks in the data passed to the model,
which is produced because the words are never seen in the
training data. In other words, the unknown words obstruct the
model from understanding the messages. Besides, the SMS
messages are usually short, which increases the influence
of every single word and makes the unknown words more
influential. Actually, due to the unknown words, the model
did not have enough information to detect spams in many
false prediction cases.

Though our proposed model performs better than other
candidate algorithms on UtkMl’s Twitter dataset, the results
are still not as good as that in case of SMS Spam Collection
v.1 dataset. From our observation, the major cause is also
the unknown words. Compared to SMS Spam Collection
v.1 dataset, there are more casual language and abbreviations
in UtkMl’s Twitter dataset, which may be caused by the
feature of Twitter posts or the date of collection of the dataset,
as is discussed in Section IV-A. Therefore, the negative influ-
ence from casual language and abbreviation is more severe on
UtkMl’s Twitter dataset, and that is the major cause of more
unknown words and eventually worse performance from our
perspective.

In addition, Table 8 and Table 9 show the excellent robust-
ness of our model to classify both the spams and hams effec-
tively on no matter balanced (UtkMl’s Twitter) or unbalanced
(SMS Spam Collection v.1) datasets.

VI. CONCLUSION
In this paper, we proposed amodified Transformer model that
aims to identify SMS spam. We evaluated our spam Trans-
former model by comparing it with several other SMS spam
detection approaches on the SMSSpamCollection v.1 dataset
and UtkMl’s Twitter dataset. The experimental results show
that, compared to Logistic Regression, Naïve Bayes, Random
Forests, Support Vector Machine, Long Short-TermMemory,
andCNN-LSTM [22], our proposed spamTransformermodel
performs better on both datasets.

On the SMS Spam Collection v.1 dataset, our spam Trans-
former has a better performance in terms of accuracy, recall,
and F1-Score compared to other classifiers. Specifically,
our modified spam Transformer approach accomplished an
exceeding result on F1-Score.

Additionally, on the UtkMl’s Twitter dataset, the results
from our modified spam Transformer model demonstrate its
improved performance on all four aspects in comparison to
other alternative approaches mentioned in this paper. Con-
cretely, our spam Transformer does exceptionally well on
recall, which contributes to a distinct F1-Score.

VII. FUTURE WORK
Although the experimental results in this paper have shown
an improvement of our proposed spam Transformer model
in comparison with some previous approaches on SMS spam
detection, we still believe that there is great potential in the
model we proposed.

Firstly, since our current two datasets contain only thou-
sands of messages, in the future, we plan to extend our spam
Transformer model to a larger dataset with more messages
or even other types of content, for the purpose of better
performance.

Besides, in our proposed model, we flattened the out-
puts from decoders and applied linear fully-connected lay-
ers before applying the final activation function and getting
the prediction. We believe that some dedicated designs or
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implementations instead of simple flattening and linear layers
could absolutely boost the performance, which would be one
of the most important future works.

Additionally, although the experimental results show that
our modified model based on the vanilla Transformer per-
forms well on SMS spam detection and confirms the avail-
ability of the Transformer on this problem, the model is still
far from optimal. There are some improved models based
on the Transformer with more complex architecture such as
GPT-3 [4] and BERT [5] that could be explored in the future.
Specifically, the BERT seems to be a promising starting point
of future work as it has fewer features and is easier to be
fine-tuned.

Finally, as is discussed in Section V-B, the proposed
model is severely influenced by the unknown words in many
cases of false prediction. To address this problem, more data
pre-processing techniques could be applied. For instance,
a larger vocabulary with more words could be a good option,
and some semantic operations such as replacing unknown
words with their synonyms could also be explored. Besides,
there are some other data-preprocessing and feature extrac-
tion techniques that could be done, such as the extraction and
analysis of the abbreviation, URLs, tags, or emoji in data.
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