IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 21, 2021, accepted May 13, 2021, date of publication May 17, 2021, date of current version May 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081495

Integrated Scheduling of Tasks and Preventive
Maintenance Periods in a Parallel Machine
Environment With Single Robot Server

LOTFI HIDRI', KHALED ALQAHTANI', ACHRAF GAZDAR “2, AND AHMED BADWELAN !

!Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
2Software Engineering Department, College of Computer and Information Science, King Saud University, Riyadh 11421, Saudi Arabia

Corresponding author: Lotfi Hidri (lhidri@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research at King Saud University through the Research Group under Grant

RG-1439-001.

ABSTRACT In this study, the objective of minimizing makespan has been considered for a scheduling
problem of identical parallel machines with a single server and unavailability constraints. The unavailability
constraints correspond to preventive maintenance periods. In this study, the jobs and the maintenance periods
are scheduled simultaneously. This scheduling problem has a wide range of potential application areas in the
manufacturing environment. In addition, the studied problem is a challenging one from theoretical point
of view, due to its NP-Hardness. To conduct the study, a lower bound (LB) for the problem, and three
metaheuristics namely Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithm (GA) have been
proposed. The best parameters settings of the proposed algorithms were conducted using pilot runs with a
Taguchi design. The algorithms performance has been assessed by using a set of test problems generated
randomly. These test problems are based on a literature benchmark. The size of the instances, or number of
jobs, were up to 500. Along with the performance analysis of the proposed algorithms, the effect of varying
processing times and unavailability periods on the performance of the proposed algorithms is studied. The
present work provides strong evidence of the efficiency and the performance of the proposed algorithms.

INDEX TERMS Scheduling, parallel machines, single server, maintenance, metaheuristic, optimal solution.

I. INTRODUCTION
Customer demands are constantly changing and the need to
deliver better quality products are among the most important
driving factors to improve production system performance.
Production systems must have adaptive ability to meet the
necessary manufacturing requirements in a timely manner.
Manufacturing systems have achieved tremendous growth
over the past three decades by introducing and implement-
ing various management concepts and various tools. These
concepts and tools control the production process related to
different types of production environments, and coordinate
necessary communication between different levels of organi-
zation using a variety of advanced information technology.
Scheduling is the allocation of limited resources over
time to tasks. The resources take the form of machines and

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh

74454

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

activities take the form of workers in a standard production
environment. Machine scheduling is defined as assigning
jobs to machines and specifying the sequence and processing
times of machine jobs in order to optimize a performance
criterion.

Parallel machine scheduling problem is one of the most
challenging types of scheduling problems and a large number
of studies have been conducted on various commercial, indus-
trial and educational fields. Parallel machines can be catego-
rized into three groups; identical parallel machines, uniform
parallel machines and unrelated parallel machines [1]. The
studies associated to minimize makespan in parallel machines
scheduling problems with setup times have attracted a partic-
ular attention in recent years ([2]-[5]).

A common problem in manufacturing is the need to share
a common server, such as a worker, a robot, a tool etc., by a
number of parallel machines to carry out machine setups/
loads. Scheduling problems with a single server have their

VOLUME 9, 2021

https://orcid.org/0000-0001-6868-7353
https://orcid.org/0000-0002-3646-6959
https://orcid.org/0000-0003-2526-0928
https://orcid.org/0000-0003-4746-3179

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

applications in several manufacturing systems such as man-
ufacturing of automobile components, automated material
handling systems, robotic cells, the semiconductor indus-
try, etc. In this problem, each job is first loaded by the
server (robot) on the available machine and then processed
automatically and independently by that machine. In conse-
quence, sharing the server resource results in machine idle
time. Developing a good schedule will lead to reduce or elim-
inate the machine idle time.

However, scheduling on identical parallel machines with
a single server assumes machines are always available,
which is not realistic in practical cases. There will always
be a possibility for machines maintenance, one of the
most used maintenance actions in manufacturing is interval-
based preventive maintenance. The findings in the general
scheduling literature may become insufficient with machine
availability constraints to find optimal solutions for many
cases. Although scheduling with machines maintenance con-
straints has gained some popularity over the last decade,
the related literature still has gaps with respect to numerous
machines arrangements and objective functions.

This study considers identical parallel machine scheduling
problem with a single server and availability constraints on
each machine with an aim in minimizing makespan.

With the increasing uncertainty and complexity of modern
production systems environments, many scheduling prob-
lems have been proven to be NP-Hard [6]. In addition, it is
difficult to understand the solution space for the scheduling
problem in order to develop the appropriate technique to
achieve the optimal or near-optimal solution in the complex
solution space. Therefore, the problem requires an appropri-
ate and considerable amount of research effort to achieve its
objective.

Approximation techniques, which belong to optimization
algorithms, have played a main role in solving complex
scheduling issues. Approximation methods like Iterative
Search ITS, GA, SA, TS and Particle Swarm Optimiza-
tion, and Harmony Search Algorithm, are generally found
to be robust and produce good results. Their performance
is satisfactory as long as the objectives specified in the
Identical Parallel Machine Scheduling environment (IPMS)
and unavailability period of the machines. This encourages
researchers to apply metaheuristic techniques that support in
providing near optimal solutions and reduce computational
burden.

This study considers identical parallel machine scheduling
problem with single server and availability constraints on
each machine with the objectives of minimizing makespan.
To the best of our knowledge, no reported studies have
taken into account the machine unavailability constraints
(i.e., interval-based preventative maintenance) when schedul-
ing identical parallel machines using a common server.

This paper is organized as follows. In Section 2, an exhaus-
tive literature review is presented. In Section 3, the studied
problem is defined. Lower bounds are proposed in Section 4.
The proposed metaheuristics, the initial solution, and the data

VOLUME 9, 2021

generation are discussed in Section 5. Extensive experimental
study, intended to assess the performance of the proposed pro-
cedures, is presented in Section 6. A conclusion summarizing
the main findings and presenting future research directions,
is finally presented.

II. LITERATURE REVIEW

The identical parallel-machine scheduling problem is
denoted as Py, || Cyqx Where jobs (i.e., tasks) are processed on
identical parallel machines in order to minimize makespan.
This problem is shown to be NP-Hard [7]. Many methods
were proposed in the literature to solve this problem. In prac-
tice, setups are a very significant issue and cannot be assumed
as part of the processing times as in the P,,||Cy,q.. Besides,
the common server issue is one of important problems in
parallel machines environments. Moreover, in basic paral-
lel machines environments, machine availability is always
assumed which is not realistic in practical cases. There will
always be a possibility for machines maintenance, one of the
most used maintenance actions in manufacturing is interval-
based preventive maintenance.

Parallel machines scheduling problem is a commonly stud-
ied scheduling problems, and a substantial number of studies
have been conducted on many commercial, industrial and
academic fields [1]. Parallel machines scheduling problems
can be roughly classified into three categories which are
identical parallel machines, uniform parallel machines, and
unrelated parallel machines [8].

Parallel machine scheduling problems have been widely
studied in the literature due to their importance in manu-
facturing and planning [1]. In order to find the solution to
these problems, several polynomial time algorithms have
been suggested. Longest Processing Time (LPT) is one of the
most popular rules [9]. The LPT rule received a lot of attention
for solving single criteria makespan problems.

Gupta and Ho [10] considered the job scheduling prob-
lem on two identical parallel machines with minimization of
total follow time. Liu and Wu [11] proposed a programming
method to minimize the number of tardy jobs in the same
parallel production line scheduling problem. Damodaran and
Vélez-Gallego [12] used a SA algorithm to minimize the
makespan on identical batch processing machines arranged in
parallel where each job had an arbitrary processing time, non-
identical size and non-zero ready time. Xu et al. [13] adopted
an iterated local search (ILS) and a TS to find a near-optimal
solution for two-parallel machine scheduling problem.

Ghalami and Grosu [14] proposed a parallel approxima-
tion algorithm to address the scheduling parallel identical
machines problem with shared-memory systems in order to
reduce makespan. Ozer and Sarac [15] studied an identical
parallel scheduling problem with sequence-dependent initial-
ization times multiple copies of shared resources.

Tanaka and Araki [16] suggested a new branch and
bound algorithm for the scheduling problem class in
order to minimize total tardiness on the identical paral-
lel machines. The Lagrangian relaxation technique is used

74455

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

in proposed algorithm to achieve a narrow lower bound.
Ranjbar et al. [17] developed two branch and bound algo-
rithms to find an optimal solution, with the aim of finding a
robust schedule that maximizes the level of customer service,
which is the likelihood that the makespan will not exceed
the due date. Mensendiek et al. [18] regarded IPP scheduling
to minimize total tardiness where jobs can only be provided
at set delivery dates exogenously provided using the TS
algorithm.

Schaller [19] described several procedures using TS to
schedule identical parallel machines with family setup to
minimize total tardiness. To minimize total weighted tardi-
ness, Yeh et al. [20] applied SAA fuzzy to address parallel
machine scheduling with learning to minimize makespan.
Kimetal [21] used TS to determine the allocation and
sequence of jobs on parallel machines to minimize total
tardiness. Kim and Shin [22] opted to minimize the maximum
lateness of the jobs by using a restricted TS algorithm that
schedules jobs on parallel machines. The jobs have release
times, and between the jobs there are sequence-dependent
setup times. Regarding job processing times, the parallel
machines are either identical or not identical.

Bilge et al. [23] suggested a TS approach for schedul-
ing a set of independent jobs on a set of uniform parallel
machines to minimize total tardiness. Jobs have non-identical
due dates and arrival times. Tavakkoli-Moghaddam et al. [24]
suggested an effective GA to solve bi-objectives, especially
the number of tardy jobs and completion of all unrelated
parallel machine scheduling tasks. Chaudhry and Drake [25]
suggested a GA algorithm to minimize a set of duties for
identical parallel machines and worker assignments.

Xu and Yang [26] addressed IPMS problems with the goal
of minimizing total weighted completion time and makespan.
The problem was formulated as mixed integer programming
based on optimal schedule properties. Rajakumar et al. [27]
used the GA to solve the manufacturing system’s parallel
machine scheduling problem with the workflow balancing
goal. Chen et al. [28] presented a scheduling algorithm based
on GA for the scheduling of workshop problems with paral-
lel machine and the reentrant process. Balin [29] addressed
parallel machine scheduling problems with fuzzy processing
times with a robust GA approach embedded in a solution
model to minimize the maximum completion time. Huo [30]
studied the parallel machine scheduling problems subject to
machine availability and total completion time constraint.
Ma et al. [31] proposed a model based on Liu’s chance theory
for parallel machine scheduling problem with uncertainty and
randomness simultaneously for processing times of jobs. The
model’s goal is to reduce the planned completion time.

In manufacturing systems, some resources such as a piece
of equipment or a team of setup workers or a single oper-
ator may be required throughout the setup process. Each of
these situations defines a scheduling problem with a common
server. Server type may vary according to the production envi-
ronment. Examples of this problem occur frequently in pro-
duction environments such as manufacturing of automobile

74456

components and printing industries [3], automated material
handling systems, semiconductor industry, or scheduling of
maintenance and setups systems with limited staff number
[32], textile industry [2], or network computing [33], and
SO on.

The scheduling identical parallel machines with single
server problem for setting up/ loading the machines is denoted
as Py, S1||Cpax using standard scheduling notation when
the objective is to minimize the maximum completion time
(makespan). P2, S1||Cyqx Was first presented by [34].

Several studies proposed formulations and algorithms to
solve the general problem (P>, S1||Cyqy) along with other
several special cases of the problem. [35] developed an
integer programming formulation to solve the general case
of small-size problems up to 12 jobs using CPLEX. Two
special cases of the problem were also considered; short
processing times and equal length jobs. In addition, simple
backward/forward O(n log n) heuristics were also proposed to
solve the problem (P3, S1||Cpax)- [36] proposed GA, greedy
heuristic and Gilmore-Gomory algorithm to solve the general
case problem with 50 and 100 job instances. [37] developed
two mixed integer linear programming (MILP) formulations
and two variants of a branch-and-price scheme for instances
up to 100 jobs. [32] developed mixed integer linear pro-
gram formulations and a hybrid heuristic of SA and TS for
instances up to 40 jobs. The runtime was within 3,600s. [38]
proposed MILP formulations based on decomposing a sched-
ule into a set of blocks (for instances up to 250 jobs). [39]
proposed SA and GA algorithms for large-scale instances
up to 1,000 jobs. The run time was limited within 14,400s.
In [40] authors developed a constructed algorithm named
I-L algorithm to solve the general problem with large-scale
instances up to 1,000 jobs. The performance of I-L algorithm
was assessed by comparing its results with SA and GA results.
It was reported that, in general, [-L algorithm outperformed
other algorithms in terms of runtime. In addition, for large
instances the I-L algorithm outperformed SA and GA in terms
of runtime and the objective function. I-L algorithm was also
used for instances of 10,000 jobs (with a runtime of 371.3s).
[41] proposed an ant colony optimization (ACO) algorithm
and assessed the ACO performance with branch and bound
with instances up to 100 jobs. In addition, ACO algorithm
was assessed with instances up to 1,000 jobs and compared
its results with GA and SA algorithms results reported in [39].
It was reported that ACO algorithm outperformed GA and
SA algorithms in large instances. [1] addressed the static m
identical parallel machines scheduling problem with a com-
mon server and sequence dependent setup times. A mixed
integer linear programming (MILP) model, SA and GA are
presented to minimize the makespan for the problem. The
performance of the proposed MILP model, SA and GA based
solution approaches are compared with the performance of
basic dispatching rules such as, shortest processing time first
(SPT) and longest processing time first (LPT) over a set
of randomly generated problem instances. The experimen-
tal results show that the proposed GA is generally more

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

productive and efficient in solving this problem compared to
the proposed MILP model, SA, SPT and LPT. [42] proposed
two algorithms namely TS and particle swarm optimization
(PSO) to solve the general problem with large-scale instances
up to 1,000 jobs. The results were then evaluated with GA, SA
and /-L algorithms and reported in [40].

Scheduling problems usually take into account the static
environment with a job set, deterministic processing times
and no unexpected occurrences during schedule execution
[43]. Allahverdi and Mittenthal [44] found dual-criteria
scheduling on a two-machine flow-shop subject to random
breakdowns with regard to the objective functions of both
makespan and lateness. In a two-machine flow shop, they
established an exclusion criterion when both machines were
exposed to random breakdowns and showed that the longest
processing time and the shortest processing time orders were
optimal for both parameters in a two-machine flow shop when
the first and second machine suffered stochastic breakdowns
respectively. Sun and Xue [45] implemented a flexible adap-
tive production scheduling system to adjust the schedules
that were originally created if these schedules could not be
fulfilled due to changes in the production order include the
deletion of an order that a customer cancels and the addition
of an order that must be fulfilled in a short time, and machine
breakdowns of machines and sudden sickness of worker.

Kaabi et al. [46] examined the problem of single machine
scheduling where machine maintenance had to be carried out
at certain times and therefore the machine was not available
for maintenance. The lateness of the jobs was minimized in
the production portion and the earliness/lateness of main-
tenance was minimized in the case of maintenance part.
Lee and Kim [47] studied the problem of scheduling jobs on
a single machine requiring periodic maintenance to minimize
the number of late jobs.

Mellouli et al. [48] studied the identical parallel machine
scheduling problem with a planned maintenance cycle on
each machine to minimize completion times sum. They
suggested three specific methods for solving the problem: a
branch-and-bound method, a dynamic programming-based
method and mixed integer linear programming methods.
Liao et al. [49] considered two parallel machines problem
where one machine was not available during a period of time.
The available time period has been set and known in advance.
Probably because it required preventive maintenance or
periodic repair, a machine was not available. The objective
was aimed at reducing making time. Saidy and Fard [50]
addressed machine scheduling with availability constraints
for different environments, constraints and performance
measures for both deterministic and stochastic situations.
Berrichi et al. [51] proposed a new bio-objective approach to
the joint production and maintenance scheduling issue. This
method allows decision makers to find acceptable options
between the goals of development and the goals of mainte-
nance. Models of reliability are used to consider the mainte-
nance aspect of the problem. The purpose was to maximize
the two requirements simultaneously: minimizing makespan

VOLUME 9, 2021

for the output and minimizing system unavailability for
maintenance. Berrichi et al. [52], Berrichi and Yalaoui [53]
presented an ant colony optimization approach to solve the
joint production and maintenance scheduling problem. This
approach is developed to deal with the proposed model in [51]
for the parallel machine. Xu and Yang [26] presented a com-
putational programming model for two parallel scheduling
machines where one machine is often unavailable, jobs are
non-preemptive. Yoo and Lee [54] considered a problem of
scheduling on parallel machines where each machine needs
maintenance once over a given time period. The study’s
objective is to find a coordinated schedule for jobs and main-
tenance tasks to reduce the scheduling costs measured by
either one of several objective measures, such as makespan.
Shen and Zhu [55] studied a parallel-machine scheduling
problem with preventive maintenance. Under deterministic
availability constraints, Kaabi and Harrath [56] investigated
the uniform parallel machine scheduling issue.

According to the reviewed literature, the studied problem
was not addressed in previous works (to the best of our
knowledge). The already studied problems represent particu-
lar cases of the current one. Indeed, maintenance constraints
and single server resource were not considered simultane-
ously in these studies. In addition, and based on the pre-
sented literature, the proposed methods to solve the already
addressed problems are of two categories: 1) Exact meth-
ods and 2) approximate methods. The approximate meth-
ods are composed of heuristics and metaheuristics. Since
the already studied problems are NP-Hard, then the exact
methods are used rarely to solve small size instances. This
is because of the large consumed time while solving these
problems. The heuristics are a low time consuming but with
moderate solution quality. The metaheuristics are widely
used due to the good quality of the produced solutions.
Therefore, in this study metaheuristics will be developed
to solve the current problem. Among these metaheuris-
tics the GA, SA, and TS which were shown to be effi-
cient solving the particular cases of the current studied
problem.

llIl. PROBLEM FORMULATION
The studied problem is the identical parallel machines
scheduling problem with common server. The maximum
completion time (makespan) is the objective to be mini-
mized. The machines are subject to periods of unavailability,
which are intended to preventive maintenance. The problem
is denoted as P,,, S1|Maint|C4, using standard scheduling
notation.

This problem can be formulated as follows. A set of n jobs
J =1{Jy,...,Jn} should be processed by a set of m identical
parallel machines M = {m, ma, ..., my}. Each job j € J
requires a single operation and may be processed on any one
of the m parallel machines. In the current study, the number
of machines is restricted to m = 2. Each job should be
processed on exactly one machine and all jobs are available
at time zero. The setup (or equivalently, loading) is carried

74457

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

0t]2 3 Ja s 16]z J& Jo Jw0 i Ji2 J3 Jaa [15 |16 J17 [z Jaio [0 Jor |22 |23 [|
M1 s1 P1 S5 P5 PM sa P4
M2 s3 | P3 | s2 | P2 | s6 | P6 | PM s7 |e7 |

FIGURE 1. Gantt chart for a feasible schedule of example 1.

out by a common server. The loading procedure for a job
J € J, requires both the server and the machine for s; time
units which is known in advance. The server which could
be a robot, cannot perform setup operation for a machine
if the machine is processing a job or under PM operation
(machine unavailability), whereas the machine can process
a job without the server once the setup is completed. The
processing time of job j assigned to any one of the machines m
is p; which is known beforehand. Processing times for all jobs
are deterministic. The machines/server can only process one
job/setup at any given time. Preemption is not allowed in the
system. The availability interval of machines is deterministic
and known in advance. The duration of PM activities on a
specific machine is assumed to be deterministic and known
in advance. The machine after maintenance will be in its best
operational condition (i.e., as good as new). If the planning
horizon is longer than the PM intervals, each machine would
require at least one preventive maintenance (PM) operation.
The PM activities cannot be delayed due to the fact that
failure may occur, but it can be done early. The objective
is to assign jobs to machines and to sequence setups on the
server while considering PM operations in order to minimize
the makespan of the system, i.e., the time of completion time
of the final job in the system. A summary of notations is
presented below.

n Number of jobs.

m: Number of machines.

J Jobindex,j=1,...,n.

i Position index (for the single server),
i=1,...,n

k: Machine index, k =1, ..., m.

pj: Processing time of job j.

s Setup time of job j.

ko The time for a PM action on machine k.

t% M The mean time of performing a PM on machine k.

Ciax @ The maximum completion time (Makespan).

‘We consider that all machines can be in one of two states,
operational or down for maintenance. When any machine is
in the operational state, it means that the machine is capable
of processing jobs. However, when any machine is in the
down for maintenance state, the machine is not working
until PM is finished. The conducted PM maintenance plan
is a time-based plan, meaning it is based on the operational
time (or the age) of the machine. The machine age, which
is the machine’s operational time counter, should be set to
zero after maintenance. For each machine my, we assumed
that the time for PM action tg and the required time to
conduct that PM action on the machine (tf)M) are given.
Then, using the given data, jobs are scheduled according

74458

to the periods of machine availability along with the single
server.

Example I: The following example demonstrates the prob-
lem’s schedule construction. Consider two identical par-
allel machines (m; and mj) with a set of seven jobs
where the setup and processing times are presented in
Table 1.

TABLE 1. Process and set-up times of an example 1.

J 1 2 3 4 5 6 7
s; 2 2 2 1 2
p; 5 3 5 4 3 2

The plans for PM, include the time at which a PM action
is required, and the required time for conducting a PM action
are provided in Table 2. The provided times are based on the
operational machine times of the machines, i.e., idle times
should not be included in the scheduling decisions for PM
actions.

TABLE 2. The PM plans for machines 1 and 2.

¢ L
mg 10 1
m; 10 1

Then, we can see that machine m; is available for 10 units
of operational time (idle times are not included) before main-
tenance, and then is down for 1 unit of time for PM. Similarly,
my is available for 10 units of operational time, and then down
for 1 unit of time for PM. Let the current job sequence 7 be
{1,3,5,2,4,6,}). According to the given sequence, the jobs are
assigned to the most available machine. The server should
first load the job before operating it on the machine. The
constructed schedule is presented on a Gantt chart as shown
in Figure 1.

From the set 7, job 1 is selected to be operated first and
assigned to either machine m; or mj since both machines
are available on the starting point (¢ 0), here job 1 is
assigned to mj. The server has to load job 1 to machine my,
which takes two unites of time (s71). Once the server complete
loading job 1 to machine m1, job 1 is processed immediately
for five units of time (p). In the meantime, since machine my
is available, the server starts to prepare it to receive the second
selected job i w which is job 3; the preparation of machine m;
takes one unit of time (s3). The server will start loading job
3 after completing the loading process for job 1 (att = 2), and
then complete loading job 1 at point + = 3 on the timeline.
Job 3 will be operated on machine m; for 5 units of time. The
server will wait until one of the two machines is available
to receive the third job in 7 (job 5). At point # = 1 on the

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

timeline, machine m is available. The same procedure will
continue until all jobs in 7 are scheduled.

Since the machines should have a PM after 10-unit of time,
the PM for m; will be performed at ¢ = /4 before loading job
4 despite that m; has been operated for only 8-unit of time.
This is due to the fact that the next scheduled job, job 4, needs
4-units of time, which exceeds the period of availability and
the PM should not be after 10 units of operating times for the
possibility of failure. The PM for m, will be performed at t =
23 after 10 units time of operating. In this way, the constructed
schedule is jobs {1,5,4} on machine m; and jobs {3,2,6,7} on
machine my. The constructed schedule is presented on a Gantt
chart as shown in Figure 1. The makespan value (Cy,qy) is 23.

We should mention here that the machines availability
periods are going to affect the generated schedule, since more
waiting times will occur due to PM activities. For example,
for machine m, the server waits from (14 -15) period to load
m while it is under PM. The same occurred for m» in period
(20 — 21). In addition to waiting times due to PM activities,
from the preceding example, it can also be noticed that two
waiting types of waiting could happen in the schedule, which
could probably be that the server is waiting for one of the
machines to be available (either when the machine is work-
ing or under PM) or that one of the machines is waiting for the
server availability. These two issues (the two types of waiting)
can be encountered in Figure 1. For example, in periods
(3-7, 13-15, and 18-21) the server waits for machine avail-
ability. Machine m; waits for server to be available in periods
(8-11 and 16-17).

Proposition I: The studied Problem P;, S1|Maint|Cypay is
NP-Hard in strong sense.

Proof: Indeed, a particular case P;,S1||Cpax 1
NP-Hard in strong sense [34]. |

IV. LOWER BOUND

A lower bound is proposed based on an existing one in
[37]. The reported lower bound considers the scheduling
problem of identical parallel machines with common server
to minimize Cpyx. The proposed LB takes into account the
periods in which machines are not available due to preventive
maintenance actions. In the proposed LB, the unavailability
periods of each machine have been added to that one from
the literature. The reported lower bound in [37] is described
as follow:

LBy, = max {LB, LB,, LB3}

where:
1 .
LBy = - {Ziel (8i 4 pi) + minicy (Si)}
LBy =) (si)+minicy {pi)
LB3 = minjej {si + pi}
So, adding the unavailability periods for each machine,
a new lower bound LB is obtained and expressed in
Proposition 2.

VOLUME 9, 2021

Proposition 2: If

1
LBy = 5 {Z (si + pi) + miniey (Si)}

ieJ
1
+ Ipm X E (; (I)z) /tO)
LBy =) (s;) + minicy {pi}
ieJ
1
+ Ipm X E (Z (Pz) /tO)
L ieJ .
1
LB3 = Z (i) + minjey {pi} + tpm X \‘5 (Z i) /m)J
ieJ ieJ

Then
LB = max{LB, LB,, LB3}

is a valid lower bound for the problem P,,, S1|Maint|Cqy,
where 1y is the available time (required time before a PM
action is needed) and 1, is the PM required time.

Proof: As maximum completion time can be calcu-
lated as follows:

Cnax =max (C); ie€lJ (D
i€j

where C; is the job completion time i. And, as we have only
single server and both machines are subject to maintenance,
then

Ci=pi+si+wi+tpm ()

where p; is the processing time of job i, s; is the setup time
of job i, w; is the waiting time if the server is busy, and #,,
is time for PM if the machine maintained before job i. Thus,
according to equation 2 and 3, we have:

Cnar 2 05 % Y (pi+51)

and
Conax = 0.5 (Zia (pi + 50) + min {s,-}) 3)

As machines are subject to PM, there is a possibility of at
least one PM action during the scheduling horizon. Consid-
ering that, we have a minimum PM time as follows:

2ics)
]
where 7 is the machine availability time before a PM action is

needed. As per equations 2 and 3, equation 4 can be rewritten
as follows:

tom X {0.5 X “4)

Cinax > 0.5 x Z i+ i)+ mln {s;}
5 i€j
ieJ *
> (i)
Flpm x| 0.5 x &
Io

74459

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

Thus, Cy,qx > LBj.

Similarly, for LB, and LB3, we have Cyux > LB and
Cax > LBs3. |

By applying the proposed LB for this example 1 we get a
lower bound of 20 as follows: LBy = 20, LB, = 3, LB3 = 8,
and LB = max {20, 3, 8} = 20.

V. PROPOSED METAHEURISTICS
In this section, three metaheuristics are proposed. These
metaheuristics are the SA, the TS, and the GA.

A. SIMULATED ANNEALING

SA algorithm, first proposed in 1982 and published
in 1983 by [58] is a local search procedure capable of escap-
ing from local optimum to solve combinatorial optimization
problems. The SA is one of the popular metaheuristics effec-
tively used in various combinatorial optimization problems.
SA is a stochastic algorithm that allows for solution degra-
dation under some conditions. The objective is to escape
from local optima to delay the convergence. SA is a memory-
less algorithm in the sense that the algorithm does not use
any information gathered during the search. From an initial
solution, SA proceeds in several iterations.

The SA improves a solution by iteratively moving the
current solution § to a neighborhood solution S, generated
randomly. If S is better than S , the movement from S to S
is accepted, i.e. S is replaced by S.If S is worse than S,
it is accepted with a probability of e=2£/T | called an uphill
move, where AE represents a difference between the objec-

tive function values of S and S‘, and T is a parameter called the
temperature. As the algorithm advances, the probability that
such moves are accepted decreases. This probability follows,
in general, the Boltzmann distribution:

P(AE,T) = ¢ AE/T

The higher the temperature, the more likely it is for a
worst move to be accepted. At a given temperature, the lower
the objective function increase is, the more significant the
probability of accepting the move. T is initially set to Ty, Tyyax
at the beginning and is decreased after every iteration. The
algorithm is terminated if temperature T reaches to Ty, Tyuin
as given in Algorithm 1. In addition to the current solution,
the best solution found since the beginning of the search is
stored.

Few parameters control the search progress, which are the
temperature and the number of iterations performed at each
temperature. The main elements of SA can be summarized as
follows:

o The acceptance probability function: It is the main ele-
ment of SA that enables non-improving neighbors to be
selected.

o The cooling schedule: The cooling schedule defines
the temperature at each step of the algorithm. It plays
an essential role in algorithm efficiency and the
effectiveness.

74460

Algorithm 1 SA Algorithm Template
Input: Cooling schedule.
S = So; // Generation of the initial solution
T = Tmax; // Starting temperature
Repeat
Repeat // At a fixed temperature
/I Generate a random neighbor S '
AE =1 (S') 1)
If AE <OthenS =S
/lAccept the neighbor solution
Else accept S” with a probability e~
Until Equilibrium condition
/I e.g. a given number of iterations executed at each
temperature T
T = g(T); // Temperature update
Until Stopping criteria satisfied // e.g. T < Tpin
Output: Best solution found

AE/T

Regarding the stopping condition, theory suggests a final
temperature equal to 0. In practice, the search can be stopped
when the probability of accepting a move is negligible. The
following stopping criteria may be used:

o Reaching a final temperature Tr is the most popular
stopping criteria. This temperature must be low (e.g.,
Tmin = 0.01), which is used in our code.

« Achieving a predetermined number of iterations without
best-found solution improvement [61].

o When the objective function reaches a pre-specified
threshold value (e.g. lower bound).

o Predetermined number of evaluations.

B. TABU SEARCH (TS) ALGORITHM

In 1989, [62] proposed a new local search method, called
Tabu Search (7). TS is an adaptive higher-level heuristic
designed to guide other local search approaches to continue
exploration without becoming confounded by the absence of
improving moves, and without falling back into local optima
from which it previously emerged. This is accomplished
using a certain number of memories. It allows the deterio-
ration of the current solution by accepting a worse solution
when moving from one iteration to the subsequent one. Even
if it is not improving the current solution, the new current
solution will be the best solution found in the neighborhood.
Obviously, this procedure can cycle, i.e., visit some solution
more than once. In order to avoid this phenomenon, a tabu
criterion is introduced to identify moves which are expected
to lead to cycles. Such moves are then declared tabu and are
added to the tabu list. As, however, forbidding certain moves
could prohibit visiting "interesting" solutions, an aspiration
criterion differentiates the potentially interesting moves from
the forbidden ones. The basic idea of 7S is to "remember"
which solutions have been visited throughout execution of
the algorithm, as to derive the promising directions for further
search. Thus, the memory and not only the local investigation

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

of the neighborhood of the current solution drives the search
as given in Algorithm 2.

Algorithm 2 TS Algorithm Template
Input: S = Sp; // Initial solution
Initialize the tabu list, medium-term and long-term
memories;
Repeat
Generate a set “A” of solutions;
Find best neighbor S of A; // non tabu or
aspiration criterion holds
S=5;
Update tabu list and aspiration conditions;
Iff (S) <f(So) Then Sy := S;
Until Stopping criteria satisfied
Output: Sy is the best-found solution.

The main parameters of 7§ are the neighborhood structure,
number of candidate solutions, the tabu list, the aspiration
criterion and stopping criteria which are described below:

« Initial solution: since the 7S is improvement class algo-
rithms, a starting solution (initial solution) is needed to
start out.

« Neighborhood structure: pairwise interchange and
backward-shifted reinsertion are two classical and useful
operators to construct promising neighborhood struc-
tures for generating new candidate solutions.

« Number of generated candidates.

« Tabu list: a list of forbidden or tabu moves, i.e., moves
which are not allowed to be applied to the current solu-
tion. The goal of using tabus is to avoid cycles (prevent
the search from revisiting previously visited solutions).
The tabu list size may take different forms:

» Static: The size of the tabu list a static value and
determined in advance.

» Dynamic: The size of the tabu list may change
during the search without using any information on
the search memory.

« Adaptive: the size of the tabu list is updated accord-
ing to the search memory. For instance, the size
is updated upon the search performance in the last
iterations [63].

« Aspiration criteria: as mentioned earlier (accept a for-
bidden move if it results in a solution that is better than
the best solution found so far).

o Stopping criteria: in theory, the search could go on
forever, unless the optimal value of the problem at hand
is known beforehand. In practice, the search has to be
stopped at some point. The most commonly used stop-
ping criteria in TS are:

« After afixed number of iterations (or a fixed amount
of CPU time);

» After some number of consecutive iterations with-
out an improvement in the objective function value
(the criterion used in most implementations);

VOLUME 9, 2021

« When the objective function reaches a pre-specified
threshold value.

C. GENETIC ALGORITHMS (GA)

The Genetic Algorithms (GA), were developed by John Hol-
land and his collaborators in the 1960s and 1970s. GA imitates
the mechanics of natural evolution and selection [64]. It imi-
tates the biological reproduction natural selection processes
to solve for the ‘fittest’ solutions. Genetics is a biological
term. Biologically, genes of a good parent produce better
offspring. The same concept underlies the development of
GA. GAs represent one branch of the field of study called
evolutionary computation EAs. They are based on the evo-
lution of a population of individuals. In the 1980s, Golberg
[65] applied to optimization and machine learning. In order
to apply GA to a problem, generally the problem’s solution
space is represented by a population of structures where each
structure is a possible solution to the problem. A fitness value
is associated with each structure. Then a certain number of
structures are chosen to form the initial generation. The struc-
tures of the next generation are generated by applying simple
genetic operators to the parent structures selected from the
existing generation. According to the idea that ‘good parents
produce better offspring’, a structure with higher fitness value
in the current generation will have higher probability of being
selected as a parent (similar to the concept of survival) [66].
This iteration represents a generation [59]. When we repeat
this process, we can observe a continuous improvement in the
structure’s performance from one generation to the next. This
process is iterated until a stopping criterion hold as given in
Algorithm 3.

Algorithm 3 GA Algorithm Template

Generate (p(0)); /* Initial population */.

t=0;

While not Termination Criterion (P (¢)) Do
Evaluate (P (¢));
p, (t) = Selection (P (t));
'3 (t) = Reproduction p (1); Evaluate p'(1);
p(t + 1) = Replace (p (1) .p (1));
t=t+1;

End While

Output: Best individual or best population found

Since GAs are designed to simulate a biological process,
much of the relevant terminology is borrowed from biology.
The following are the terminology used in search components
for designing the GAs.

1. Representation: This is a common search component
for all metaheuristics. In GA, the encoded solution is
referred as chromosome while the decision variables
within a solution (chromosome) are genes. The encod-
ing method of the string is comprised of the jobs’
numbers

74461

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

TABLE 3. Data generation.

Case Processing time setup times Auvailable period PM period
n
p;j~(a,b) 5 to tom

Case 1 (20,50) (a+Db)*n/6
Case 2 (10, 20, 30, 40,50, 100, 200, (20,50) (a+b)*n/4

(0, 0.25 xb) (a+b)/2
Case 3 300, 400, and 500) (20,100) (a+b)*n/6
Case 4 (20,100) (a+b)*n/4

2. Objective Function: This is a common search compo-
nent for all metaheuristics. the term fitness refers to the
objective function.

3. Selection strategy: The selection strategy addresses
the following question: “Which parents for the next
generation are chosen with a bias toward better fit-
ness?”’

4. Reproduction strategy: The reproduction strategy
consists in designing suitable mutation and crossover
operator(s) to generate new individuals (offspring).

5. Replacement strategy: The new offspring compete
with old individuals for their place in the next gener-
ation (survival of the fittest).

D. INITIAL SOLUTION

Since the three proposed algorithms, SA, 7S and GA are
improvement class algorithms, a starting solution or what
so called initial solution is needed to start out the proposed
metaheuristics. These metaheuristics will improve the initial
solution through an iterative improvement approach until
reach a high-quality feasible solution. In this study, the start-
ing solution was generated using the longest processing time
(LPT) dispatching rule, in which the jobs are sequenced in
non-increasing processing time, for all proposed metaheuris-
tics (SA, TS and GA).

E. DATA SET GENERATION

In order to investigate the proposed algorithms’ performance
(TS, GA, and SA), an experimental study is conducted using
a set of benchmark instances. The generated data set for this
study was randomly generated based on the previous studies’
designed data set [49]. As stated in [49], processing times (p;)
were uniformly distributed in the intervals (a = 20, b = 50)
and (@ = 20,b = 100), setup times (s;) were distributed
uniformly in the interval (0,b x L), where L is a factor
called the server’s load value and was set to 0.25 and the b
is corresponding to the generation of p;, b equals to 50 and
100. For maintenance activities, some extensions have been
conducted. The time t,IZM, required to do a PM action on
machine k£ was set to (@ + b)/2. Two cases for machine
k availability period t(])‘ were generated, (a + b) * n/6 and
(a + b) x n/4 where n is the number of jobs. Considering the
machines are identical, 7y and #,,, will be used from now on
instead of tg and tIIEM, respectively.

74462

For every combination of processing time and availability
period (fp), different problem sizes of jobs (n = 10, 20, 30,
40,50, 100, 200, 300, 400, and 500) were generated. A total
of 400 problems have been obtained (40 types). A summary
of the generated data is illustrated in Table 3.

Selecting (p;) randomly and uniformly from (a = 20, b =
50) and (@ = 20, b = 100) is explained by the need to have
a large variety of processing times. Indeed, (@ = 20, b = 50)
represents the small processing time, while the second one
(a = 20,b = 100) represents the large processing times.
Since the processing times are distributed uniformly in (a, b),
then (a + b)/2 represents the average processing time for
each job. This average processing time is selected to be the
duration of the preventive maintenance period. It is worth

noting that { @ } xn is the average total processing time (for

: {42 }on .
the n jobs), and ~———— = (a + b) x n/4 is the average load
for each machine. The period before preventive maintenance
t* is selected according to two scenarios. The first one is
t% = (a+ b) * n/4, which means that the preventive main-
tenance begins when all the jobs are processed (in average).
The second scenario corresponds to t(lj = ((a+b)xn/2)/3 =
(a + b)*n/6, which involves that the preventive maintenance
begins while the processing of jobs is not yet finished.

F. PARAMETERS TUNING

In this section, several design parameters for the proposed
metaheuristics are investigated and adjusted. For each meta-
heuristic algorithm, different parameter combinations return
different results, meaning that the used parameter values in
each algorithm affect its performance.

To classify the appropriate settings of each design param-
eter, a pilot run has been conducted based on screening and
literature. Taguchi design of L25 was used to study the effect
of the proposed algorithms parameters on the C,,,, and CPU
time and the best settings for each proposed metaheuristic
parameters are determined. A summary of the main param-
eters and their levels regarding 75, SA and GA are shown in
Table 4.

VI. RESULTS AND DISCUSSIONS

In this section, performance of the proposed SA, TS and GA
algorithms is evaluated by conducting computational exper-
iments with 40 problem types of which have been randomly

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

TABLE 4. Summary of the main parameters and levels for SA, TS and GA.

Algorithm Parameter Considered Values Selected Values
TS Tabu List size 4,8,10,12,16,20 8
No. candidates 10,20,30,40,50,60 30
Neighborhood structure Swap
Stopping Condition Number of Evaluations (100K, IM or LB
400K,700K,1M,1.3M) or LB
S4 Initial Temperature T, 10, 60, 110, 160, 210 10
Neighborhood Structure Swap [1]
No. of neighbors 10, 50, 90, 130, 170 10
Cooling Function Geometric
Cooling rate a 0.91, 0.93, 0.95, 0.97, 0.99 0.95
Equilibrium Condition Static
Stopping Condition Number of Evaluations (100K, IMor LB
400K,700K,1M,1.3M) or LB
G4 Population Size 20, 60, 100, 140,180 100
Selection Method Roulette Wheel
Crossover Operator Position Based Crossover (PBX)
Crossover Rate (Pc) 0.4, 0.55,0.7,0.85,0.95 0.95
Mutation Operator Swap, Insertion, and Inversion
Mutation Probability (Pm) 0.001, 0.005,0.01,0.05,0.055 0.055
Mutation Rate 0.10.30.50.70.9 0.1
Selection Pressure 2,6,10,14,18 14
Number of Evaluations (100K, IMor LB

Stopping Condition

400K,700K,1M,1.3M) or LB

generated and each problem has been replicated ten times
(400 instances in total). The proposed algorithms have been
coded using MATLAB software and the computational exper-
iments for all instances have been conducted on a Dell com-
puter with the following specifications. Processor: Intel (R)
Core™j7- 4702MQ CPU at 2.2 GHz; RAM: 8 GB.

Based on the proposed lower bound (LB), a gap between
the LB and the obtained C,,,, can be used to measure the
proposed algorithms performance. The gap can be defined as
follows:

Gap = Cyux /LB

The computational results of minimum and average values
of the gap and CPU time of the SA, TS and GA are shown
in Table 5. Results are also presented. The following notations
are used in Table 5:

« n denotes the number of jobs.

« pj denotes the processing time.

« fy denotes the available period.

o Gap,,;, denotes the minimum value of the gap.

» Gap,,, denotes the average value of the gap.

o Tyin denotes the minimum CPU time to reach the spec-
ified number of evaluations or reach LB.

VOLUME 9, 2021

e T, denotes the average CPU time to reach the specified
number of evaluations or reach LB.

It can be seen from Table 5 that there are four
cases based on the processing time and machine available
times.

In case 1, the processing time is p; ~ (20, 50) and
to = (@+b) *n/6 and a = 20 and b = 50. In this
case SA reaches LB in one instance where n = /0 and GA
reaches LB in two instances where n = 10 and 20 while TS
failed to reach LB in any instance. GA outperforms SA for
instances with n less than 200 and outperforms TS for all
instances in the minimum and average gap performances. The
minimum and average gap of GA are very close to each other.
SA outperforms 7' in all instances except when 7 is 20 jobs
and outperforms GA for large instances with n greater than
to 100. In general, GA does better for small instances while
SA has a good performance for large instances. Additionally,
the gap becomes higher with increase in instance size and
it is hard to reach LB for all algorithms as the number of
jobs greater than 20 jobs. Regarding CPU time, TS has the
least CPU time among the three algorithms except with when
n = 10 and 500. SA outperforms 7S and when n = 10 and 20
where GA reaches LB. GA takes much time than that of SA

74463

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

TABLE 5. Computational results of SA, TS and GA.

SA N GA
No. n pj to Gap Time (s) Gap Time (s) Gap Time (s)
GaPmin | GWavg | Tpin | Tavg | Gapyin | GOWavg | Ty | Tavg Gappin | GWavg | Topin | Tavg
1 10 117 §1.0000 | 1.1107 | 0.15 | 49.95 § 1.0043 | 1.2090 | 32.81 | 33.01 J 1.0000 | 1.0000 | 0.11 2.56
2 20 233 §1.0784 | 1.2396 | 66.77 | 67.05 | 1.0412 | 1.1489 | 33.86 | 34.01 | 1.0000 | 1.0014 | 3.44 | 36.13
3 30 350 J1.0749 | 1.2150 | 64.23 | 64.49 | 1.0868 | 1.2698 | 34.94 | 35.08] 1.0015 | 1.0058 | 74.43 | 74.63
4 40 | 5| o [467 J1.0508 | 1.2304 | 65.24 | 65.51 | 1.0745 | 1.2284 | 36.00 | 36.22 | 1.0181 | 1.0271 | 76.58 | 76.69
5 50 |2 E 583] 1.0350 | 1.2020 | 66.50 | 66.67 § 1.1068 | 1.1826 | 36.93 | 37.25] 1.0120 | 1.0451 | 78.52 | 78.73
6 100 || £ | 1167 11811 | 1.2261 | 72.74 | 72.97 | 1.1608 | 1.2704 | 44.14 | 44.33 | 1.1097 | 1.1416 | 88.78 | 88.90
7 200 |~ | S [2333 | 1.1645 | 1.2144 | 83.23 | 83.53 | 1.2146 | 1.2775 | 55.40 | 55.62 | 1.1957 | 1.2143 | 109.09 | 109.24
8 300 3500 § 1.2017 | 1.2306 | 91.82 | 92.03] 1.3029 | 1.3472 | 67.03 | 67.50 § 1.2335| 1.2512 | 129.62 | 129.92
9 400 4667 | 1.1985 | 1.2272 | 101.78 | 102.11 | 1.3145 | 1.3437 | 94.93 | 95.16 | 1.2579 | 1.2683 | 150.31 | 150.58
10 500 5833 J 1.1836 | 1.2147 | 112.15 | 112.64 | 1.3383 | 1.3713 | 124.17 | 124.90 § 1.2858 | 1.2922 | 171.48 | 171.70
11 10 175] 1.0000 | 1.2005 | 0.13 | 55.85 | 1.0199 | 1.2095 | 32.19 | 32.62 | 1.0000 | 1.0030 | 0.69 | 36.38
12 20 350 | 1.0208 | 1.1815 | 59.67 | 60.08 J 1.0833 | 1.2350 | 33.58 | 33.90] 1.0000 | 1.0035 | 17.50 | 64.85
13 30 525 J1.1107 | 1.2392 | 61.10 | 61.34 J 1.0813 | 1.1869 | 34.89 | 35.11 § 1.0013 | 1.0111 | 74.32 | 74.53
14 40 || X [700 §1.1280 | 1.2435 | 61.82 | 62.28 | 1.0723 | 12109 | 35.64 | 3594 | 1.0118 | 1.0291 | 76.37 | 76.58
15 50 |2 15\ 875 | 1.0582 | 1.1969 | 66.12 | 66.37 § 1.1360 | 1.2287 | 37.25 | 37.45] 1.0308 | 1.0556 | 78.50 | 78.67
16 100 || £ [1750 §1.0936 | 1.1913 | 72.41 | 72.77] 1.1554 | 1.2396 | 43.62 | 44.16 | 1.1190 | 1.1445 | 88.73 | 91.28
17 200 |~ | € [3500 [1.1361 | 1.2132 | 83.10 | 83.42 | 1.2218 | 1.2683 | 55.59 | 55.77 | 1.1938 | 1.2154 | 109.12 | 109.32
18 300 5250 §1.1223 | 1.1949 | 91.71 | 92.05 J 1.3154 | 1.3379 | 66.94 | 67.41 § 1.2372 | 1.2539 | 129.47 | 129.80
19 400 7000 § 1.1555]1.2032 | 101.79 | 102.03 | 1.3318 | 1.3605 | 95.07 | 95.23 | 1.2618 | 1.2663 | 150.47 | 150.67
20 500 8750 §1.2029 | 1.2314 | 111.29 | 112.01 § 1.3313 | 1.3607 | 123.85 | 124.53 § 1.2765 | 1.2903 | 171.45 | 171.71
21 10 200 | 1.0024 | 1.0736 | 58.24 | 58.78 | 1.0168 | 1.1618 | 32.75 | 33.08 | 1.0024 | 1.0058 | 69.92 | 70.22
22 20 400 §1.0363 | 1.1783 | 59.80 | 60.43 | 1.0969 | 1.2406 | 33.94 | 34.17 | 1.0000 | 1.0031 | 7.39 | 47.09
23 30 600 J 1.0009 | 1.0484 | 64.11 | 64.31 § 1.0043 | 1.0912 | 34.73 | 34.97] 1.0000 | 1.0037 | 54.97 | 71.89
24 40 || o | 800 J1.0126 | 1.1125| 65.13 | 65.44 § 1.0096 | 1.1554 | 36.09 | 36.24 | 1.0096 | 1.0185 | 76.46 | 76.67
25 50 S 15\ 1000 § 1.0068 | 1.1340 | 66.25 | 66.54 | 1.0506 | 1.1632 | 37.04 | 37.33 § 1.0169 | 1.0400 | 78.61 | 78.80
26 100 a = 12000 J1.0092 | 1.1070 | 72.69 | 72.83] 1.0754 | 1.1612 | 44.16 | 44.31 | 1.1050 | 1.1302 | 88.80 | 89.13
27 200 | =] < [4000 J1.0223]1.1002 | 83.10 | 83.36 | 1.2277 [1.2530 | 55.57 | 55.86 | 1.1826 | 1.2124 | 109.24 | 109.66
28 300 6000 § 1.0495 | 1.1136 | 91.71 | 91.90 J 1.2311 | 1.3027 | 67.36 | 67.65 | 1.2495 | 1.2574 | 129.97 | 130.14
29 400 8000 § 1.0748 | 1.1134 | 101.63 | 102.03 | 1.2699 | 1.3335 | 94.94 | 95.23 | 1.2586 | 1.2827 | 150.68 | 150.97
30 500 10000 § 1.0786 | 1.1241 | 111.91 | 112.74 § 1.3341 | 1.3603 | 124.37 | 124.90] 1.2902 | 1.2959 | 171.88 | 172.10
31 10 300 | 1.0083 | 1.1429 | 61.35 | 61.84 § 1.0000 | 1.1626 | 0.07 | 29.67 | 1.0000 | 1.0017 | 0.38 | 28.81
32 20 600 | 1.0014 | 1.1253 | 62.88 | 63.30 § 1.0122 | 1.1441 | 33.46 | 33.81] 1.0000 | 1.0046 | 56.96 | 70.87
33 30 900 |J 1.0323 | 1.1658 | 63.81 | 65.02 § 1.0704 | 1.1196 | 34.75 | 35.07] 1.0000 | 1.0042 | 63.63 | 73.49
34 40 || X [1200] 1.0205 | 1.1313 | 64.30 | 64.53 J 1.0616 | 1.1443 | 35.98 | 36.20 | 1.0048 | 1.0219 | 76.49 | 76.60
35 50 S 15\ 1500 § 1.0171 | 1.1209 | 65.41 | 65.58 | 1.1662 | 1.1973 | 37.25 | 37.39 J 1.0132 | 1.0427 | 78.50 | 78.69
36 100 a 2 13000 J1.0356 | 1.1621 | 71.61 | 71.77] 1.1006 | 1.1491 | 44.00 | 44.22 J 1.1193 | 1.1347 | 88.81 | 88.93
37 200 | =] < [6000 [1.0795[1.1314 | 81.99 | 82.17 J 1.1786 | 1.2255 | 55.52 | 55.73 | 1.1703 | 1.2066 | 109.38 | 109.60
38 300 9000 § 1.0824 | 1.1255 | 90.38 | 90.62 | 1.2697 | 1.3072 | 67.02 | 67.28 | 1.2355 | 1.2518 | 129.40 | 129.57
39 400 12000 § 1.0576 | 1.1167 | 100.06 | 100.46 | 1.3259 | 1.3394 | 94.53 | 95.17 | 1.2620 | 1.2787 | 150.53 | 150.68
40 500 15000 § 1.0753 | 1.1149 | 109.87 | 110.41 § 1.3304 | 1.3629 | 123.45 | 124.43] 1.2801 | 1.2931 | 171.40 | 171.64
TABLE 6. Effects of the processing times and availability periods on the gap.
SA4 T8 GA
Factor Gapmin Gapavg Gapmin GaPavg Gapmin GaPavg
n Significant Significant Significant Significant Significant
p; Significant Significant Significant Significant Significant
to
n*p; Significant
nxt, Significant
to *pj Significant

and CPU time gap between GA and SA and TS becomes very

high with increasing in the instances size.
In case 2, the processing time is p; ~ (20, 50) and 1y =
(@a+Db) xn/4 and a = 20 and b = 50. In this case SA

74464

reaches LB in one instance where n = /0 and GA reaches
LB in two instances where n = 10 and 20 while TS failed to
reach LB in any instance. GA outperforms SA for instances
with n less than 100 and outperformed 7§ for all instances in

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

TABLE 7. Effects of the processing times and availability periods on the CPU times.

VOLUME 9, 2021

SA

TS

GA

Factor

Time,in

Timegyq

Timeny,in

Timeg,qy

Timenyin

Timeg,qy

n

Significant

Significant

Significant

Significant

Significant

Significant

pj

Significant

to

Significant

Significant

n*p;

Significant

nxt,

Significant

to * pj

Significant

15

14

13

1.2

Gap

11

1.0

0.9

0.8

15

1.4

13

1.2

Gap

11

1.0

0.9

0.8

15

14

1.3

1.2

Gap

11

1.0

0.9

0.8

15
14
1.3
1.2
1.1
1.0
0.9
0.8

Gap

—=2—SA Gap_min—*— SA Gap_ Avg.

a) p;~(20,50), t, = (a+b) xn/6

TS Gap_min —#—TS Gap_ Avg —*— GA Gap_min —#—GA_Gap_Avg.

10 20

30 40

—&—SA Gap_min —*—SA_Gap_Avg.
b) p;~ (20,50), t, = (a + b) *n/4

10 20

/.".\

30 40

=8-—SA_Gap_min =*=—=SA_Gap_Avg.

¢) pj~ (20,100),t, = (@ + b) *n/6

10 20

30 40

—=#—SA_Gap_min =—*—SA_Gap_Avg.

d) p;~ (20,100), t, = (a + b) x n/4

10 20

30 40

50 100

200

300 400

500

TS Gap_min =—#=TS Gap_Avg. =—®=—GA_Gap_min == GA_Gap_Avg.

50 100

200

300 400

500

TS Gap_min =#=TS Gap_Avg. =*=—GA_Gap_min —*=— GA_Gap_Avg.

50 100

200

300 400

500

TS Gap_min =#=TS Gap_Avg. —*—GA_Gap_min == GA_Gap_Avg.

50 100
No. jobs, n

FIGURE 2. Minimum and average gap results of SA, TS and GA.

200

300 400

500

74465

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

200 —8—SA min SA Avg.

160 a) p;~(20,50), t, = (a +b) *n/6

TS_min

10 20 30 40

200
180
160

—o— SA_min

b) p;~ (20,50), t, = (a + b) *n/4

B
N B
o o

CPU time (s)
=
® O
o o

P
o o

SA Avg. TS_min

w
[

=
o

20 30 40

~N
[=]
o

—8—SA_min

B
[
o o

¢) pj~ (20,100, t, = (a + b) *n/6

CPU time (s)
=R e

5 WO N B
o O O O o o

SA_Avg. TS_min

o

1
<
[

10 20 30 40

200 —— SA min
180
160
140
120
100

80 ° 7S

SA Avg.

d) p;~ (20,100), t, = (a + b) * n/4

CPU time (s)

TS_min

20 /
0

10 20 30 40

—e—TS Avg.

—8—GA min —@—GA Avg.

100 200 300 400 500

—e—TS_Avg. —e—GA_min —e—GA_Avg.

100 200 300 400 500

—8—TS_Avg. —@—GA_min —@—GA_Avg.

100 200 300 400 500

—0—TS_Avg. —@—GA min ——GA Avg.

100 200 300 400 500

No. jobs, n

FIGURE 3. Minimum and average CPU time results of SA, TS and GA.

the minimum and average gap performances. The minimum
and average gap of GA are very close to each other. SA
outperforms 7 in all instances except when n equals to 20
and 30 jobs and outperforms GA for large instances with n
greater than to 50 in terms of minimum gap and with n greater
than to 100 in terms of average gap. In general, GA does better
for small instances while SA has a good performance for large
instances, and it was hard to reach LB for all algorithms as the
number of jobs was greater than 20 jobs. In addition, the gap
becomes high with increase in instance size. Regarding CPU
time, 7S has the least CPU time among the three algorithms
except with when n = 10 and 500. SA outperforms TS and
when n = 10 and 20 where GA reaches LB. GA takes much
time than that of SA and CPU time gap between GA, SA,

74466

and TS becomes very high with increasing in the instances
size.

In case 3, the processing time is p; ~ (20, 100) and
to = (@+b)*n/6 and a = 20 and b = 100. In this
case SA and TS failed to reach LB while GA reach the LB
in two instances where n = 20 and 30. GA outperforms SA
for instances with n less than 100 and outperformed 7'S for all
instances in the minimum and average gap performances. The
minimum and average gap of GA are very close to each other.
SA outperforms 7S in all instances and outperforms GA for
large instances with n greater than to 50 in terms of minimum
gap and with n greater than to 100 in terms of average gap.
In general, GA does better for small instances while SA shows
good performance for all instances, and it was hard to reach

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

TABLE 8. Computational results of ABC.

ABC
No. n pj to Gap Time (s)
Gapmin Gapav.g Tmin Tm’g
1 10 117 [1.0000 | 1.0017 | 0.13 | 2626
2 20 233 [1.0247 | 1.0485 | 35.11 | 51.59
3 30 350 [1.0599 | 1.0837 | 69.33 | 69.56
4 40 | 5| o | 467 [1.098 | 1.1210 | 7091 | 71.10
5 50 |2 E 583 [1.1280 | 1.1539 | 72.51 | 72.70
6 100 || £ | 1167 | 1.2000 | 1.2168 | 80.76 | 80.94
7 200 |~ | S [2333 [12545 | 12733 | 96.16 | 9639
8 300 3500 | 1.2788 | 1.2979 | 110.72 | 110.98
9 400 4667 | 1.2966 | 1.3139 | 126.05 | 126.35
10 | 500 5833 | 1.3119 | 1.3253 | 141.82 | 142.17
11 10 175 [1.0000 | 1.0075 | 0.41 | 46.12
12 20 350 [1.0370 | 1.0662 | 38.59 | 62.47
13 30 525 [1.0760 | 1.0901 | 67.71 | 67.94
14 40 | 5| x [700 | 1.0841 | 1.1230 | 69.10 | 69.43
15 50 |2 § 875 | 1.1249 | 1.1468 | 72.31 | 72.52
16 100 || 9§ [1750 | 1.1951 | 1.2244 | 80.57 | 82.03
17 | 200 |=| < [3500 [12628 | 1.2774 | 96.11 | 9637
18 | 300 5250 | 1.2997 | 1.3076 | 110.59 | 110.93
19 | 400 7000 [1.3030 | 1.3130 | 126.13 | 126.35
20 | 500 8750 [1.3220 | 1.3300 | 141.37 | 141.86
21 10 200 [1.0024 | 1.0070 | 64.08 | 64.50
22 20 400 [1.0169 | 1.0429 | 33.60 | 53.76
23 30 600 [1.0803 | 1.0932 | 59.54 | 68.10
24 40 || < [800 J1.1053] 1.1331 | 70.80 | 71.06
25 50 | = ﬁ 1000 | 1.1220 | 1.1459 | 72.43 | 72.67
26 | 100 |&| ¥ [2000 f1.2101 [1.2287 | 80.75 | 80.98
27 | 200 |=| = | 4000 f 1.2807 | 1.2896 | 96.17 | 96.51
28 | 300 6000 | 1.2915 | 1.3107 | 110.84 | 111.02
29 | 400 8000 f 1.3164 | 1.3275 | 126.16 | 126.50
30 | 500 10000 [1.3325 | 1.3402 | 141.90 | 142.42
31 10 300 [1.0000 | 1.0053 | 30.87 | 4533
32 20 600 [1.0271 | 1.0537 | 59.92 | 67.09
33 30 900 [1.0530 | 1.0802 | 63.72 | 69.26
34 40 |=| > | 1200 | 1.0900 | 1.1292 | 70.40 | 70.57
35 [50 || & [1500 J'1.1285 [1.1505 | 71.96 [72.14
36 100 | S| F [3000 [1.2075 | 1.2235 [80.21 | 80.35
37 | 200 [=] 2 | 6000 [1.2651 | 1.2793 | 95.69 | 95.89
38 | 300 9000 [1.2971 | 1.3124 | 109.89 | 110.10
39 | 400 12000 [1.3217 | 1.3320 | 125.30 | 125.57
40 | 500 15000 [1.3293 | 1.3386 | 140.64 | 141.03

LB for all algorithms as the number of jobs is greater than
20 jobs. In addition, the gap becomes high with increase in
instance size. Regarding CPU time, 7§ has the least CPU time
among the three algorithms except when n = 20 where GA
had less CPU time. GA takes much time than that of SA and
CPU time gap between GA, SA, and TS becomes very high
with increasing in the instances size.

In case 4, the processing time is p; ~ (20, 100) and #p =
(a+ b)xn/4 and a = 20 and b = 100. In this case SA fails to
reach LB while GA reaches LB in three instances where n =
10, 20 and 30. TS reaches LB when n =10. GA outperforms
SA for instances with n less than 100 and outperforms 7'S for

VOLUME 9, 2021

all instances in the minimum and average gap performances.
The minimum and average gap of GA are very close to each
other. SA outperforms 7 in all instances except when n =
10 in regards to minimum gap and outperforms GA for large
instances with n greater than 50 jobs in terms of minimum
gap and with n greater than to 100 in terms of average gap.
In general, GA does better for small instances while SA has a
good performance for all instances in terms of minimum gap
and it was hard to reach LB for all algorithms as the number
of jobs was greater than 30 jobs. In addition, the gap becomes
high with increase in instance size. Regarding CPU time, T'S
has the least CPU time among the three algorithms except

74467

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

with when n = 10 and 500. SA outperforms 7S and when n =
10 and 20 GA outperforms 7S. GA takes much time than that
of SA and CPU time gap between GA, SA, and TS becomes
very high with increasing in the instances size.

According to Figures 2-3, and among the four cases, GA
minimum and average gap were very close to each other
because of selection strategy. 7S minimum and average gap
were far away from each other because it accepts non-
improving solutions. With the increase in the process time
interval, case 2 and 3, SA gap becomes smaller and close to 1.

General linear model was used to study the effect of num-
ber of jobs n, processing time p; and machine available period
to on the SA, TS, and GA performance. A statistical analysis
results summary of the n, p; and #g effects on gap and CPU
time are presented in Table 6 and Table 7, respectively.

A. COMPARISON OF TS, SA, AND GA WITH A RECENT
METAHEURISTIC

In order to have a general picture of the performance of the
proposed algorithms (SA, TS and GA), a comparison study
with a recent metaheuristic is performed. Among the most
recent metaheuristic algorithms, the Artificial Bees Colony
algorithm (ABC) [68]. In the sequel a brief description of the
ABC is presented.

In ABC, afood source location is considered as a solution.
The nectar quantity of a food source is the fitness of the
corresponding solution. The bees are subdivided into three
categories, which are the employed bees, the onlooker bees,
and the scout bees. The employed bees are charged with
searching food sources. The onlooker bees are waiting in
hive, where they are making a decision in order to choose
a food source. The scout bees are performing a random
exploration for new source of food. For each type of bees,
a phase is assigned.

During the employed bee phase, for each solution s € P,
a new solution ms is created using the expression ns =
s+ 0@ — s’) with P the population, # a random generated
number in [—1, 1], and s # s a random selected solution
from P. If ns is better than s in terms of nectar amount,
then ns replaces s. In this case, the bee forgets s and mem-
orizes ns. In the opposite case, the bee keeps in memory s.
In onlooker bee phase, a roulette selection is used to allow to
each onlooker bee to select a food source. An adapted ABC
for the studied problem [68] is coded in MATLAB software
and the same set of the instances is used in the experimental
study. The detailed numerical results are presented in Table 8.

A comparison study of ABC with the already proposed
metaheuristics (SA, TS, and GA) is carried out. This study
is using two performance measurements: 1) The average gap
GAP, and 2) the average time TIME. The results of this study
are displayed in Table 9. According to Table 9, the recent
metaheuristic (ABC) is ranked third by a Gap = 1.1886
behind GA and SA. In addition, in terms of average time,
ABC is once again ranked third with Time = 87.22s. This
means that the proposed metaheuristics (SA, TS, and GA)

74468

TABLE 9. Comparison of SA, TS, and GA to ABC.

GAP | TIME
SA 1.1662 77.48
TS 1.2415 56.20
GA | 1.1252 96.96

ABC | 1.1886 | 87.22

still useful and could provide performant results compared to
the recent proposed metaheuristics (ABC).

VIi. CONCLUSION

The current study considered a scheduling problem of two
identical parallel machines with single server and availability
constraints with the objectives of minimizing makespan. This
problem has many wide range potential application areas in
the manufacturing environment. A lower bound (LB) for the
problem has been proposed. Three metaheuristics namely
SA, TS and GA have been proposed. The best parameters
settings of the proposed algorithms were conducted using
pilot runs with a Taguchi design. The algorithms performance
has been evaluated using 400 instances generated randomly
based on the literature. Four cases of instances were studied
in which the processing times and availability periods of the
machines were different. The size of the instances, number
of jobs, were up to 500 jobs. Along with the performance
analysis of the proposed algorithms, the effect of varying
processing times and availability periods on the performance
of the developed algorithms was studied. An intensive exper-
imental study shows the effectiveness and performance of the
proposed metaheuristics. In addition, there is no dominance
of a particular metaheuristic on the others. Each one of these
algorithms is doing well in a certain subset of instances.

For future studies, more objective functions could be inves-
tigated such as total tardiness and total completion time.
In addition, an arbitrary number of machines could be consid-
ered instead of two machines. Furthermore, new metaheuris-
tics and exact methods will be proposed and tested.

REFERENCES

[1] A. Hamzadayi and G. Yildiz, “Modeling and solving static m identical
parallel machines scheduling problem with a common server and sequence
dependent setup times,” Comput. Ind. Eng., vol. 106, pp.287-298,
Apr. 2017.

[2] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, “A survey of
scheduling problems with setup times or costs,” Eur. J. Oper. Res., vol. 187,
no. 3, pp. 985-1032, Jun. 2008.

[3] S. Huang, L. Cai, and X. Zhang, ‘‘Parallel dedicated machine scheduling
problem with sequence-dependent setups and a single server,” Comput.
Ind. Eng., vol. 58, no. 1, pp. 165-174, Feb. 2010.

[4] C. M. Joo and B. S. Kim, “Parallel machine scheduling problem
with ready times, due times and sequence-dependent setup times using
meta-heuristic algorithms,” Eng. Optim., vol. 44, no. 9, pp. 1021-1034,
Sep. 2012.

[5] J.Behnamian, M. Zandieh, and S. M. T. Fatemi Ghomi, ‘‘Parallel-machine
scheduling problems with sequence-dependent setup times using an ACO,
SA and VNS hybrid algorithm,” Expert Syst. Appl., vol. 36, no. 6,
pp. 9637-9644, Aug. 2009.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W.H. Freeman,
1979.

VOLUME 9, 2021

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

IEEE Access

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “An application of
bin-packing to multiprocessor scheduling,” STAM J. Comput., vol. 7, no. 1,
pp. 1-17, Feb. 1978.

T. C. E. Cheng and C. C. S. Sin, “A state-of-the-art review of parallel-
machine scheduling research,” Eur. J. Oper. Res., vol. 47, no. 3,
pp. 271-292, Aug. 1990.

R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM

J. Appl. Math., vol. 17, no. 2, pp. 416429, Mar. 1969.

J.N. D. Gupta and J. C. Ho, ‘““Minimizing makespan subject to minimum
flowtime on two identical parallel machines,” Comput. Oper. Res., vol. 28,
no. 7, pp. 705-717, Jun. 2001.

M. Liu and C. Wu, “Scheduling algorithm based on evolutionary comput-
ing in identical parallel machine production line,” Robot. Comput.-Integr.
Manuf., vol. 19, no. 5, pp. 401-407, Oct. 2003.

P. Damodaran and M. C. Vélez-Gallego, ““A simulated annealing algo-
rithm to minimize makespan of parallel batch processing machines with
unequal job ready times,” Expert Syst. Appl., vol. 39, no. 1, pp. 1451-1458,
Jan. 2012.

J.Xu, S.-C. Liu, C. Zhao, J. Wu, W.-C. Lin, and P.-W. Yu, “An iterated local
search and tabu search for two-parallel machine scheduling problem to
minimize the maximum total completion time,” J. Inf. Optim. Sci., vol. 40,
no. 3, pp. 751-766, Apr. 2019.

L. Ghalami and D. Grosu, ““Scheduling parallel identical machines to min-
imize makespan:A parallel approximation algorithm,” J. Parallel Distrib.
Comput., vol. 133, pp. 221-231, Nov. 2019.

E. Akyol Ozer and T. Sarac, ““MIP models and a matheuristic algorithm for
an identical parallel machine scheduling problem under multiple copies of
shared resources constraints,” TOP, vol. 27, no. 1, pp. 94-124, Apr. 2019.
S. Tanaka and M. Araki, ‘A branch-and-bound algorithm with lagrangian
relaxation to minimize total tardiness on identical parallel machines,” Int.
J. Prod. Econ., vol. 113, no. 1, pp. 446458, May 2008.

M. Ranjbar, M. Khalilzadeh, F. Kianfar, and K. Etminani, “An optimal
procedure for minimizing total weighted resource tardiness penalty costs in
the resource-constrained project scheduling problem,” Comput. Ind. Eng.,
vol. 62, no. 1, pp. 264-270, Feb. 2012.

A. Mensendiek, J. N. D. Gupta, and J. Herrmann, “Scheduling identical
parallel machines with fixed delivery dates to minimize total tardiness,”
Eur. J. Oper. Res., vol. 243, no. 2, pp. 514-522, Jun. 2015.

J. E. Schaller, “Minimizing total tardiness for scheduling identical parallel
machines with family setups,” Comput. Ind. Eng., vol. 72, pp. 274-281,
Jun. 2014.

W.-C. Yeh, P.-J. Lai, W.-C. Lee, and M.-C. Chuang, ‘‘Parallel-machine
scheduling to minimize makespan with fuzzy processing times and learn-
ing effects,” Inf. Sci., vol. 269, pp. 142-158, Jun. 2014.

S.-I. Kim, H.-S. Choi, and D.-H. Lee, ““Scheduling algorithms for parallel
machines with sequence-dependent set-up and distinct ready times: Min-
imizing total tardiness,” Proc. Inst. Mech. Engineers, B, J. Eng. Manuf.,
vol. 221, no. 6, pp. 1087-1096, Jun. 2007.

C. O. Kim and H. J. Shin, “Scheduling jobs on parallel machines:
A restricted tabu search approach,” Int. J. Adv. Manuf. Technol., vol. 22,
nos. 3—4, pp. 278-287, Sep. 2003.

U. Bilge, F. Krag, M. Kurtulan, and P. Pekgan, “A tabu search algorithm
for parallel machine total tardiness problem,” Comput. Oper. Res., vol. 31,
no. 3, pp. 397-414, Mar. 2004.

R. Tavakkoli-Moghaddam, F. Taheri, M. Bazzazi, M. 1zadi, and F. Sassani,
“Design of a genetic algorithm for bi-objective unrelated parallel machines
scheduling with sequence-dependent setup times and precedence con-
straints,” Comput. Oper. Res., vol. 36, no. 12, pp. 3224-3230, Dec. 2009.
I. A. Chaudhry and P. R. Drake, “Minimizing total tardiness for the
machine scheduling and worker assignment problems in identical parallel
machines using genetic algorithms,” Int. J. Adv. Manuf. Technol., vol. 42,
nos. 5-6, pp. 581-594, May 2009.

D. Xu and D.-L. Yang, “Makespan minimization for two parallel machines
scheduling with a periodic availability constraint: Mathematical program-
ming model, average-case analysis, and anomalies,” Appl. Math. Model.,
vol. 37, nos. 14-15, pp. 7561-7567, Aug. 2013.

S. Rajakumar, V. P. Arunachalam, and V. Selladurai, ‘“Workflow balanc-
ing in parallel machines through genetic algorithm,” Int. J. Adv. Manuf.
Technol., vol. 33, nos. 11-12, pp. 1212-1221, Aug. 2007.

J. C. Chen, C.-C. Wu, C.-W. Chen, and K.-H. Chen, “Flexible job shop
scheduling with parallel machines using genetic algorithm and grouping
genetic algorithm,” Expert Syst. Appl., vol. 39, no. 11, pp. 10016-10021,
Sep. 2012.

VOLUME 9, 2021

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

S. Balin, “Parallel machine scheduling with fuzzy processing times using
a robust genetic algorithm and simulation,” Inf. Sci., vol. 181, no. 17,
pp. 3551-3569, Sep. 2011.

Y. Huo, “Parallel machine makespan minimization subject to machine
availability and total completion time constraints,” J. Scheduling, vol. 22,
no. 4, pp. 433-447, Aug. 2019.

W. Ma, Y. Liu, and X. Zhang, “A new model and algorithm for uncertain
random parallel machine scheduling problem,” Soft Comput., vol. 23,
no. 15, pp. 6555-6566, Aug. 2019.

M.-Y. Kim and Y. H. Lee, ““MIP models and hybrid algorithm for minimiz-
ing the makespan of parallel machines scheduling problem with a single
server,” Comput. Oper. Res., vol. 39, no. 11, pp. 2457-2468, Nov. 2012.
C. A. Glass, Y. M. Shafransky, and V. A. Strusevich, “Scheduling for
parallel dedicated machines with a single server,” Nav. Res. Logistics,
vol. 47, no. 4, pp. 304-328, Jun. 2000.

S. A. Kravchenko and F. Werner, “‘Parallel machine scheduling problems
with a single server,” Math. Comput. Model., vol. 26, no. 12, pp. 1-11,
Dec. 1997.

A. H. Abdekhodaee and A. Wirth, “Scheduling parallel machines with a
single server: Some solvable cases and heuristics,” Comput. Oper. Res.,
vol. 29, no. 3, pp. 295-315, Mar. 2002.

A. H. Abdekhodaee, A. Wirth, and H.-S. Gan, “Scheduling two parallel
machines with a single server: The general case,” Comput. Oper. Res.,
vol. 33, no. 4, pp. 994-1009, Apr. 2006.

H.-S. Gan, A. Wirth, and A. Abdekhodaee, ““A branch-and-price algorithm
for the general case of scheduling parallel machines with a single server,”
Comput. Oper. Res., vol. 39, no. 9, pp. 2242-2247, Sep. 2012.

K. Hasani, S. A. Kravchenko, and F. Werner, ““Block models for scheduling
jobs on two parallel machines with a single server,” Comput. Oper. Res.,
vol. 41, pp. 94-97, Jan. 2014.

K. Hasani, S. A. Kravchenko, and F. Werner, ““Simulated annealing and
genetic algorithms for the two-machine scheduling problem with a single
server,” Int. J. Prod. Res., vol. 52, no. 13, pp. 3778-3792, Jul. 2014.

K. Hasani, S. A. Kravchenko, and F. Werner, “Minimizing the makespan
for the two-machine scheduling problem with a single server: Two algo-
rithms for very large instances,” Eng. Optim., vol. 48, no. 1, pp. 173-183,
Jan. 2016.

J.-P. Arnaout, “Heuristics for the two-machine scheduling problem with
a single server,” Int. Trans. Oper. Res., vol. 24, no. 6, pp. 1347-1355,
Nov. 2017.

1. Alharkan, M. Saleh, M. A. Ghaleb, H. Kaid, A. Farhan, and A. Almar-
fadi, “Tabu search and particle swarm optimization algorithms for two
identical parallel machines scheduling problem with a single server,”
J. King Saud Univ.-Eng. Sci., vol. 35, pp. 330-338, Mar. 2019.

M. Gholami, M. Zandieh, and A. Alem-Tabriz, “Scheduling hybrid flow
shop with sequence-dependent setup times and machines with random
breakdowns,” Int. J. Adv. Manuf. Technol., vol. 42, nos. 1-2, pp. 189-201,
May 2009.

A. Allahverdi, “Dual criteria scheduling on a two-machine flowshop
subject to random breakdowns,” Int. Trans. Oper. Res., vol. 5, no. 4,
pp. 317-324, Jul. 1998.

J. Sun and D. Xue, “A dynamic reactive scheduling mechanism for
responding to changes of production orders and manufacturing resources,”
Comput. Ind., vol. 46, no. 2, pp. 189-207, Sep. 2001.

J. Kaabi, C. Varnier, and N. Zerhouni, “Genetic algorithm for scheduling
production and maintenance in a flow-shop,” (in French), Lab. Autom.
Besancon, Paris, France, 2003.

J.-Y. Lee and Y.-D. Kim, “Minimizing the number of tardy jobs in a single-
machine scheduling problem with periodic maintenance,” Comput. Oper:
Res., vol. 39, no. 9, pp. 2196-2205, Sep. 2012.

R. Mellouli, C. Sadfi, C. Chu, and I. Kacem, “Identical parallel-machine
scheduling under availability constraints to minimize the sum of comple-
tion times,” Eur. J. Oper. Res., vol. 197, no. 3, pp. 1150-1165, Sep. 2009.
C.-J. Liao, D.-L. Shyur, and C.-H. Lin, “Makespan minimization for
two parallel machines with an availability constraint,” Eur. J. Oper. Res.,
vol. 160, no. 2, pp. 445-456, Jan. 2005.

H. R. D. Saidy and M. T. Taghavi-Fard, “Study of scheduling prob-
lems with machine availability constraint,” Ind. Syst. Eng., vol. 1, no. 4,
pp. 360-368, Jan. 2008.

A. Berrichi, L. Amodeo, F. Yalaoui, E. Chitelet, and M. Mezghiche, “Bi-
objective optimization algorithms for joint production and maintenance
scheduling: Application to the parallel machine problem,” J. Intell. Manuf.,
vol. 20, no. 4, pp. 389—400, Aug. 2009.

74469

IEEE Access

L. Hidri et al.: Integrated Scheduling of Tasks and Preventive Maintenance Periods

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

A. Berrichi, F. Yalaoui, L. Amodeo, and M. Mezghiche, “Bi-objective
ant colony optimization approach to optimize production and maintenance
scheduling,” Comput. Oper. Res., vol. 37,n0. 9, pp. 1584-1596, Sep. 2010.
A. Berrichi and F. Yalaoui, ‘““Efficient bi-objective ant colony approach to
minimize total tardiness and system unavailability for a parallel machine
scheduling problem,” Int. J. Adv. Manuf. Technol., vol. 68, nos. 9-12,
pp. 2295-2310, Oct. 2013.

J. Yoo and I. S. Lee, “Parallel machine scheduling with maintenance
activities,” Comput. Ind. Eng., vol. 101, pp. 361-371, Nov. 2016.

J. Shen and Y. Zhu, “A parallel-machine scheduling problem with periodic
maintenance under uncertainty,” J. Ambient Intell. Humanized Comput.,
vol. 10, no. 8, pp. 3171-3179, Aug. 2019.

J. Kaabi and Y. Harrath, “Scheduling on uniform parallel machines with
periodic unavailability constraints,” Int. J. Prod. Res., vol. 57, no. 1,
pp. 216227, Jan. 2019.

N. G. Hall, C. N. Potts, and C. Sriskandarajah, ‘‘Parallel machine schedul-
ing with a common server,” Discrete Appl. Math., vol. 102, no. 3,
pp. 223-243, Jun. 2000.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

M. L. Pinedo, “Complexity theory,” in Scheduling. Boston, MA, USA:
Springer, 2012, pp. 589-602.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
J. Chem. Phys., vol. 21, no. 6, pp. 1087-1092, Jun. 1953.

E. G. Talbi, Metaheuristics: From Design to Implementation. Hoboken, NJ,
USA: Wiley, May 2009.

F. Glover, “Tabu search—Part 1,” ORSA J. Comput., vol. 1, no. 3,
pp. 190-206, Aug. 1989.

K. Nonobe and T. Ibaraki, “A tabu search approach to the constraint
satisfaction problem as a general problem solver,” Eur J. Oper. Res.,
vol. 106, nos. 2-3, pp. 599-623, Apr. 1998.

N. Kundakcd and O. Kulak, “Hybrid genetic algorithms for minimizing
makespan in dynamic job shop scheduling problem,” Comput. Ind. Eng.,
vol. 96, pp. 31-51, Jun. 2016.

D. Golberg, Algorithms in Search, Optimization and Machine Learning.
Reading, MA, USA: Addison-Wesley, 1989.

O. Etiler, B. Toklu, M. Atak, and J. Wilson, “A genetic algorithm for flow
shop scheduling problems,” J. Oper: Res. Soc., vol. 55, no. 8, pp. 830-835,
2004.

L.R. Abreu, J. O. Cunha, B. A. Prata, and J. M. Framinan, “A genetic algo-
rithm for scheduling open shops with sequence-dependent setup times,”
Comput. Oper. Res., vol. 113, Jan. 2020, Art. no. 104793.

D. Lei, Y. Yuan, and J. Cai, “An improved artificial bee colony for multi-
objective distributed unrelated parallel machine scheduling,” Int. J. Prod.
Res., vol. 13, pp. 1-13, Jun. 2020.

74470

LOTFI HIDRI received the B.S. degree in mathematics from the Tunisian
College of Science, in 1993, the M.S. degree in energetic engineering from
the National Engineering School, in 1999, and the Ph.D. degree in operations
research from the Tunisian High Institute of Management, in 2007. Since
2012, he has been a Faculty Member with the Industrial Engineering Depart-
ment, King Saud University. His main research interests include scheduling
and transportation.

KHALED ALQAHTANI received the B.Sc. degree in industrial engineering
from King Khaled University, Abha, in 2013, and the M.S. degree in indus-
trial engineering from King Saud University, Saudi Arabia, in 2020, where
he is currently pursuing the Ph.D. degree with the Industrial Engineering
Department, College of Engineering. His area of expertise is scheduling.

ACHRAF GAZDAR received the Ph.D. degree in computer science from
Manouba University, Tunisia, in 2007. He is currently a Faculty Member
with the Software Engineering Department, College of Computer and Infor-
mation Systems, King Saud University. His research interests include the
networking, video on demand systems, streaming architectures, peer to peer,
and recommender systems.

AHMED BADWELAN received the B.Sc. degree in mechanical engineering
from the Faculty of Engineering, University of Aden, in 2012, and the
M.S. degree in industrial engineering from King Saud University, Saudi
Arabia, where he is currently pursuing the Ph.D. degree with the Industrial
Engineering Department, College of Engineering.

He is a Researcher with the Industrial Engineering Department, College
of Engineering, King Saud University. His area of expertise is manufacturing
systems. His main research interests include manufacturing, production, and
quality.

VOLUME 9, 2021

