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ABSTRACT In order to achieve high-efficiency and high-precision multi-image classification tasks, a
multi-attention ghost residual fusion network (MAGR) is proposed. MAGR is formed by cascading basic
feature extraction network (BFE), ghost residual mapping network (GRM) and image classification network
(IC). The BFE uses spatial and channel attention mechanisms to help the MAGR extract low-level features of
the input image in a targeted manner. The GRM is formed by cascading 4 multi-branch group convolutional
ghost residual blocks (MGR-Blocks). Each MGR-Block is cascaded by a dimension reducer and several
ghost residual sub-networks (GRSs). The GRS integrates ghost convolution and residual connection, and
the use of ghost convolution can significantly reduce parameters and achieve high-efficient classification.
The GRS is a parallel convolution structure with 32 branches, which ensures that GRM has enough width to
extract advanced features and extract as much feature information as possible, so as to obtain high-precision
classification. The IC completes the aggregation of high-dimensional channel feature information, and
then achieves a significant improvement in the classification accuracy of MAGR, by fusing the effective
channel attention mechanism, global average pooling and SoftMax layer. Simulation experiment shows that
MAGR has excellent classification capability while achieving high efficiency and lightweight. Compare with
VGG16, the parameters of MAGR on CIFAR-10 is reduced by 94.8% while the classification accuracy is
increased by 1.18%. Compare with MobileNetV?2, the parameters of MAGR on CIFAR-100 is reduced by
33.9% while the classification accuracy is increased by 15.6%.

INDEX TERMS Image classification, attention mechanism, ghost convolution, multi-branch group convo-
lution, residual connection.

I. INTRODUCTION

Image classification is a technology that uses algorithms to
determine the category of a given image. It is widely used in
security (face recognition, pedestrian detection), traffic (vehi-
cle counting, retrograde detection, license plate recognition),
internet (image retrieval, photo album automatic classifica-
tion) and other fields. Traditional image classification algo-
rithms, such as AlexNet [1] and VggNet [2], perform well for
simple classification tasks, but have low efficiency and poor
precision classification result for images with severe interfer-
ence or subtle differences. Therefore, one of the mainstream
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directions of current scholars is to design neural networks
with high accuracy and fast training.

In order to improve the classification accuracy of the
model, He [3] et al. propose the ResNet residual network,
which solves the gradient dispersion and explosion prob-
lems caused by network deepening through the residual con-
nection structure. On the basis of ResNet, DenseNet [4]
achieves better classification results than ResNet with the
same depth. MobileNetV2 [5] is proposed by introducing
residual structure of the ResNet network to MobileNetV1 to
achieve higher classification accuracy. All the above methods
adopt the idea of residual connection to increase the network
depth, thereby achieving the improvement of classification
effect. However, the increase of network depth will inevitably
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increase computation cost and slow down the training speed.
Therefore, it is necessary to explore methods to improve
the classification accuracy without deepening the network
depth. ResNeXt [6] improves the feature extraction ability by
broadening the network width, and the classification effect is
better than ResNet network under the same layers condition.
Whether the increasing of the network depth or the network
width, it will bring additional calculations. Compare with
increasing the network depth, widening the network width
will bring less computation. Therefore, widening the network
width is more cost-effective to improve the network classi-
fication effect, but the performance of the model will not
continue to increase with the increase of the network width,
and the model can only perform best when the width of the
model is suitable.

For reasons of accelerate the network training speed,
MobileNetV1 [7] utilizes the concept of deep separable con-
volution. SqueezeNet [8] reduces the computational cost
and improves the network speed by squeezing and expand-
ing. ShuffleNet [9] uses point-by-point group convolution
and channel reorganization to construct an extremely effi-
cient CNN architecture. An automatic neural architecture
search method for the mobile terminal model is utilized
in MnasNet [10], its training speed is 1.5 times faster than
MobileNetV1. Howard A [11] combines the advantages
of MobileNetV1 and MnasNet to build MobileNetV3, which
improves the training efficiency further. GhostNet [12] is
a lightweight neural network, which greatly improves the
network efficiency through ghost convolution. The above
methods all effectively reduce model parameters and save cal-
culation cost through the new type of convolution. However,
due to the limitation of network depth or width, there is still
much room for improvement in classification accuracy.

Focusing on extracting feature information useful for clas-
sification and eliminating redundant information can improve
classification accuracy and efficiency. Therefore, in recent
years, scholars have begun to explore ways to improve model
performance by adding attention mechanisms to the net-
work. Convolutional block attention module (CBAM) [13]
is a convolution block based attention mechanism, which
significantly improves the accuracy of image classification.
SqueezeNet [8] uses an effective attention mechanism to
learn attention of the channel and achieves good results. The
efficient channel attention (ECA) [14] module focuses on
the channel correlation of high-dimensional information, and
effectively improves the classification accuracy without addi-
tional calculation. It can be seen that the classification effect
can be further improved by adding an appropriate attention
mechanism.

In summary, replacing traditional convolution with a
new type of convolution can effectively reduce parameters
and accelerate training of network. Broadening width can
enhance the feature extraction capability and improve the
classification effect of the network. The addition of attention
mechanism can help the model to focus on the extraction of
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more useful feature information for the final classification,
so as to further improve the classification effect. However,
the three effective methods can only improve the perfor-
mance of a certain aspect respectively, and have not been
integrated. We are committed to integrating the improvement
of various capabilities to design a high-efficiency and high-
precision classification model. Thus, we propose a multi-
attention ghost residual fusion network (MAGR) for image
classification. The main innovations include the following
three aspects.

(1) Introduce ghost convolution into ghost residual
mapping network (GRM). Establish the “ghost” mapping
relationship between similar images by utilizing the linear
operation of ghost module, to realize the full use of redun-
dant feature information between similar images, thereby
greatly reducing the model parameters and speeding network
training.

(2) The residual connection is introduced into the
multi-branch group convolution ghost residual blocks
(MGR-Blocks) to broaden the network width, and enhance
the feature extraction ability, thereby improving the classifi-
cation accuracy.

(3) Integrate CBAM and ECA at different stages of the
network to strengthen the attention to different channels
and spatial feature information of images. CBAM helps to
improve the ability of extracting basic feature information,
while ECA is responsible for the information interaction
between high-dimensional channels and helps the model
obtain feature information that is conducive to improving the
classification accuracy.

The paper is organized as follows. Section 2 introduces
related work. Section 3 describes the proposed MAGR archi-
tecture. Section 4 analyzes the structure of MAGR and
presents experimental results on three public datasets. Con-
clusion and prospect are drawn in Section 5.

Il. RELATED WORK

A. GHOST CONVOLUTIONAL LAYER

Excellent CNN models, such as AlexNet [1], VggNet [2],
ResNet [7], all have high classification accuracy, but there is
redundancy of feature maps, which will inevitably affect the
network speed. Few people consider the problem of redun-
dancy in the model structure design. Kai Han et al. [12]
start from the redundancy problem of feature maps, propose
a structure -- ghost module, which can generate a large
number of feature maps only through a small amount of cheap
operations. Compare with the traditional convolution pro-
cess, ghost convolution has obvious advantages of simplicity
and speed. GhostNet [12] introduces ghost into the residual
network for the first time, and realizes the extraction of
feature information by replacing the traditional convolution
of each layer in the residual block. Achieving rapid feature
information extraction by using ghost convolution to replace
the traditional convolution layer, this idea can be used to build
new CNN classification models.
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B. MULTI-BRANCH GROUP CONVOLUTIONAL RESIDUAL
The model’s fitting ability and expression ability of the com-
plex objective function increase with the deepening of the
network, however, the increase of the depth will bring about
difficulty in model training and substantial increase in calcu-
lations. ResNeXt [6] is a multi-branch group convolutional
network, which proves that widening the network width to
improve the model classification effect is more cost-effective
than deepening the network depth. This is because widen-
ing the network width can effectively enhance the feature
extraction capabilities of the model, that is, the model can
learn richer feature information, such as textures and colors
in different directions and frequencies. If the network width
is not enough, the information that each layer can capture is
limited. In this case, even if the network is deep enough, it is
impossible to extract enough information to transfer to the
next layer. ResNext did not analyze the relationship between
network width and depth. However, incorporating the resid-
ual structure into ResNeXt can help the model quickly imple-
ment feature extraction at each layer, while learning enough
feature information. The residual connection directly con-
nects the input and output of each multi-branch group convo-
lution structure, effectively improves the flow of information
within the network, and finally enables the network to transfer
the basic feature information to the subsequent classifier as
much as possible, which helps the classifier achieves better
classification effect.

C. ATTENTION MECHANISM
The attention mechanism is a potential means to enhance
the classification ability of CNN. Adding appropriate atten-
tion mechanisms at different locations of the network can
strengthen the network’s attention to different degrees of
image feature, thereby enabling the model to perform dif-
ferent levels of extraction according to the importance.
SqueezeNet [8] proposes an effective mechanism to learn
channel attention and achieves good results. However, a large
number of attention mechanisms will inevitably lead to an
increase in computation. The development of attention mech-
anism can be divided into two directions: one is to enhance
feature aggregation, the other is to realize the combination
of channel and spatial attention mechanisms, and the latter
has attracted much attention from scholars. CBAM [13] not
only considers the importance of different feature channels,
but also considers the spatial importance of different positions
of the same feature channel. CBAM improves the convo-
lution layer’s attention and main feature extraction ability
by organically combining channel attention mechanism and
spatial attention mechanism, thereby achieves higher classifi-
cation accuracy. ECA [14] is a local cross-channel interaction
mechanism without dimension reduction. It captures local
cross-channel interactions by considering each channel and
its several neighbors.

In summary, ghost convolution can solve the problem of
large computation cost of traditional convolution. The multi-
branch convolution residual can enhance the capability of
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feature extraction and improve the information flow within
the network. CBAM helps to extract useful feature informa-
tion with emphasis in the basic feature extraction stage. ECA
facilitates the interaction of high-dimensional channel infor-
mation, which improves the model classification accuracy
while effectively reducing the complexity of the network.
The above method is very effective for designing a classifi-
cation network with high precision and fast training. It will
inevitably produce adverse effects while a single improve-
ment scheme brings favorable results to the network, so it is
necessary to consider the combination of multiple schemes.

Ill. MULTI-ATTENTION GHOST RESIDUAL FUSION
NETWORK

The structure of MAGR is shown in Fig.1, which uses a
cascading structure, first extracts the basic feature informa-
tion, then extracts the advanced feature information, and
finally outputs the classification results. MAGR consists of
three parts, i.e., basic feature extraction network (BFE), ghost
residual mapping network (GRM) and image classification
network (IC). The BFE extracts basic features of the input
image by using the feature extraction layer and sends them
to GRM. GRM uses a series of multi-branch group con-
volutional ghost residual blocks (MGR-Block) to extract
advanced features. The IC judges the category according to
all the extracted feature information and finally obtains the
corresponding label of the input image.

—
11l.Image classification
network

1 .Basic feature
extraction network

( II.Ghost residual
‘ mapping network
\
\
\

MGR-Block MGR-Block

MGR-Block ECA GAP Softmax

Conv MaxPool CA SA

FIGURE 1. The structure of MAGR network.

A. THE STRUCTURE OF BFE

Traditional convolution extraction image feature will result
in omission of detailed information. CBAM can help the
convolution layer to extract feature information which is
helpful for classification. The input image passes through a
convolution layer and a maximum pooling layer in turn, then,
the obtained feature map x is sent to CBAM. The structure
diagram of CBAM is shown in Fig.2. In channel attention
(CA) module, the height and width of the feature map x are
sent to the shared multilayer perception (MLP) after global
max pooling and global average pooling respectively. The
output features of MLP are added based on element-wise, and
then activated by sigmoid to generate M (x). In the spatial
attention (SA) module, channel-based global max pooling
and global average pooling are carried out on the input x’,
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FIGURE 2. Overall structure diagram of CBAM.

and then, the two results are concatenated based on channel.
After a convolution operation, the dimensions are reduced to
one channel, then activated by sigmoid to generate.

The transfer process of feature map x in CBAM is that, sent
x to CA module to get the weighted processing result M.(x),
which is element-wise multiplied with x to obtain x’. Then,
x' is weighted by SA to obtain M(x’), which is element-wise
multiplied with x’ to get x”, that is the extracted basic feature
information. The calculation process of feature extraction in
CBAM as follows,

X' =M.(x)®x
¥ = M(x)®x (1)

where is x” € RV the basic feature information that

extracted from the input image and will be input to GRM.
¢, h and w are channels number, height and width of the input
image, respectively. ® represents the element wise operation,
that is, multiplying the corresponding elements one by one.

The focus of CA is on how to learn what is more mean-
ingful in the input image. CA extracts information between
different channels with special emphasis by compressing the
spatial dimension of the input feature map. SA is a supple-
ment to CA, which focuses on the spatial information part
of “where”, and helps the network to extract more useful
information in the BFE stage.

B. THE STRUCTURE OF GRM

Ghost residual mapping network (GRM) is designed by
combining ghost convolution, MGR-Block and residual con-
nection, to realize advanced feature information extraction
through ghost residual mapping.

1) GHOST CONVOLUTION

Ghost convolution layer consists of two parts. The first part
generates feature maps with fewer channels by traditional
convolution. The second part generates more feature maps
by linear operation using the results of the first part. The two
groups of feature maps are concatenated together to get the
final output [12]. Ghost convolution can use fewer filters to
generate more feature maps, and the realization process is
shown in Fig.3. After the output x” of BFE is sent to the ghost
convolution layer, the ghost convolution layer first uses fewer
feature information in x” to generate the intrinsic feature
maps, and then uses linear transformation to generate ghost
feature maps similar to intrinsic feature maps. These ghost
feature maps like the “ghost” of the intrinsic feature maps,
which is also called ghost mapping.
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FIGURE 3. Ghost convolution implementation process.

Suppose x” = x| + x) (x{ < x), x{ and xJ' are useful
basic feature information and redundant basic feature infor-
mation, respectively. x{’ is used to generate m intrinsic feature
maps Y1. For each intrinsic feature map, linear operation ¢; is
used to generate s ghost feature maps. So, m intrinsic feature
maps generates n = m X s ghost feature maps Y. After
ghost convolution operation, m + n output feature maps Y
is obtained. The mathematical model of ghost convolution
operation is shown as follows,

Vi = x xf’
Yo =yi=9¢0), Vi=1l,....m, j=1,...,s
Y="+"mn 2)

where [/ € Rexkxkxm jo the filter, k x k is the size of the
convolution kernel, m is the number of intrinsic feature maps
Y1 € R'WXn pand w' are height and width of the output
feature map, respectively, and n is the number of ghost feature
maps.

The biggest difference between ghost convolution and tra-
ditional convolution is that linear transformation is used by
ghost convolution to replace most traditional convolutions,
which greatly reduces the computation of convolution pro-
cess and speeds up the network training.

2) THE STRUCTURE OF MGR-BLOCK

The GRM is cascaded by P MGR-Blocks. The structure
of MGR-Block is shown in Fig.4, which is cascaded by
a dimension reducer and M ghost residual sub-networks
(GRS). Firstly, the dimension reducer is used to double the
channels number, and reduce the length and width to one
half of original. By setting the convolution parameters in
GRS, the input and output feature maps of residual blocks
are consistent in size, and then concatenating to avoid the
gradient disappearance and degradation of deep network.
GRS utilizes residual connection to transmit information, and
each GRS is cascaded by 1 x 1 convolution, 3 x 3 convolution,
and 1 x 1 convolution in turn. After each convolutional
layer, the batch normalization layer (BN layer) and the ReLU
activation function layer are sequentially added. The BN
layer is usually added before the activation function. The
main function is to normalize the input of the activation
function, so as to prevent the deviation or enlargement. Every
convolution layer is followed by a ReLU activation layer
to increase the nonlinearity of the neural network model.
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FIGURE 4. The structure of MGR-Block.
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Xo BN-ReLU
—_— —_—

BN-ReLU

BN-ReLU y+ReLU

Output 7(X)

BN-ReLU BN-ReLU

GhostModule[ ] 1x1 || GhostModule ] 3x3[]

FIGURE 5. GRS internal convolution structure diagram.

The input of the first 1 x 1 convolution layer is directly
connected with the output of the last 1 x 1 convolution layer,
and input to the next GRS module after activated by ReLU,
thus, circulates to the n-th GRS.

Each convolution layer of the GRS is divided into Q
branches to form a multi-branch group convolution. The
structure is helpful for the convolution layer to extract richer
feature information from input X and improve classification
accuracy of MAGR. The detailed structure of the convolution
layer in GRS is shown in Fig.5. Its mathematical model as
follows,

0
T(X) =) T(X) 3)
i=1

where the input X = x”, the input X is divided into Q, Q > 1
inputs X;,i = 1,...,Q, and T(X;) represents the mapping
result of the i branch.

According to Eq. (3), the mathematical model of the k, k =
1, ..., P MGR-Block can be obtained as follows,

M 0
Ti(X) =YY TX) “)
j=1 i=1

where j = 1, ..., M, M is the number of GRS contained in
the k-th MGR-Block.
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Ghost-BN-ReLU
Ghost-BN-ReLLU

FIGURE 6. Residual connection.

Using MGR-Block to extract image features can help
each ghost convolution layer learn enough image features
to enhance the feature extraction capability of the network.
Ensure that more complete image features are passed to the
classification layer, thereby helping the classification layer
complete the classification task more accurately.

3) RESIDUAL CONNECTION STRUCTURE

GRS uses residual connection internally to transfer input
directly to the output layer. A GRS input is divided into Q
inputs. On the one hand, each input is transmitted forward as
shown in Fig.5, and on the other hand, it is directly transmit-
ted to the output layer with the help of the residual connection
shown in Fig. 6. Thus, the final mathematical model of GRS
can be obtained as follows,

0
Trin(X) =Y (T(X;) + X;) )

i=1

Then the final mathematical model of the k-th (k =
1,..., P) MGR-Block is,

M 0
Terin(X) = Y Y (T(X) + X) (6)

j=1 i=1

Thus, we can obtain the output of GRM,

M 0
Tprin(X) = Y Y (Tp-nrn(X) + X0) )

j=1 i=1
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With the help of ghost convolution, GRM uses redundant
information between similar images to generate ghost map-
ping linearly, thus, realizes fast and comprehensive learning
of the same category image’s features. Within each indepen-
dent residual module, convolution kernels of different sizes
are used to extract feature information gradually, and variable
step convolutions are utilized to achieve dimension increase
or decrease of image channel information. The information
flow in the front-back layer is supervised and strengthened
by residual connection.

C. THE STRUCTURE OF IC

Fig.7 is the structure of IC, including ECA attention module,
global average pooling (GAP) and SoftMax layer in turn.
The EAC attention module is responsible for strengthening
the connection between the high-dimensional channel infor-
mation that output by the GRM, which helps the model to
further extract useful feature information without increasing
the calculation cost. GAP is used to replace the pooling
of global feature information in the full connectional layer,
which can not only prevent overfitting, but also reduce the
calculation cost in the classification stage. The classifier Soft-
Max is utilized in the last layer of MAGR to perform the final
classification task.

|
| GAP
|
|

SoftMax

Adaptive Selection of
Kernel Size:
k=y(C)

FIGURE 7. Image classification network.

Input GRM’s output Tppi(X) to the IC, Tprin(X) enters
the ECA module firstly, where global average pooling is per-
formed channel by channel without reducing the dimension.
A1 x 1 x C feature vector is generated at the GAP layer,
and then the cross-channel information interaction is com-
pleted through a one-dimensional convolution layer, to obtain
the second 1 x 1 x C feature vector. The kernel size of one-
dimensional convolution is determined by an adaptive func-
tion, which enables the layer with a large number of channels
to conduct more cross-channel interaction. The calculation
formula of the adaptive convolutional kernel size as follows,

1
k=9(C) =3 [l +log,(C)| ®)

where, C represents the channel dimension, which is used to
determine the size of the convolution kernel. The kernel size k
represents the coverage of network cross-channel interaction,
and the coverage increases proportionately to the channel
dimension.
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For convenience, the mapping process of ECA in Figure 7
is represented by M,, so the output T}, (X) of ECA module
can be expressed as,

TppinX) = Mo(Tprin(X)) ® Tprin(X) 9

where, ® has the same meaning with Eq. (3).

Then T}, (X) is sent to gap layer to pool the global
average value of each input feature map, thus, each feature
map corresponds to a feature point. Finally, the feature vector
composed of all feature points is sent to SoftMax layer to
realize the final classification.

IV. SIMULATION EXPERIMENT ANALYSIS

We conduct experiments in the environment Pytorch 1.2.0 on
the PC with NVIDIA GTX 2060. When training the MAGR
classification model, the number of iterations is set to 120
epochs, the learning rate is initialized to 0.1. Using stochastic
gradient descent and momentum methods training, the learn-
ing rate is attenuated to one-tenth of the original every 30
epochs.

We select three classical datasets, i.e., CIFAR-10 [15],
CIFAR-100 [15] and UC-M [16] for our experiments. The
datasets CIFAR-10 and CIFAR-100 are both 32 x 32 color
images, containing 10 and 100 categories respectively. The
dataset UC-M contains 21 categories, including 2100 remote
sensing images of 256 x 256. Parameters, floating point
calculations (FLOPs) and accuracy are used as evaluation
indicators of the model. The lower of the first two indexes
is better, while the higher of the last index is better.

A. MODEL ANALYSIS

MAGR integrates the ghost module, MGR-Block and atten-
tion mechanism. It is necessary to determine the replacement
scheme of ghost module, the number of MGR-Block cas-
cades, the number of GRS branches and the addition scheme

of attention mechanism. During the experiment, the batch size
of MAGR is set to 128.

1) REPLACEMENT SCHEME OF GHOST MODULE

The MAGR model includes three parts, that is, BFE, GRM
and IC. Among them, BFE contains one convolution and
one maximum pooling, GRM contains multiple convolutions.
There are two replacement strategies. One is to replace the
convolution and maximum pooling in BFE with ghost con-
volution, the other is to replace all convolutions in GRM
with ghost convolution. According to the combination of BFE
and GRM, carry out four experiments, i.e., (a) Replace only
BFE, (b) Replace only GRM, (c) Replace BFE and GRM,
(d) Replace neither BFE nor GRM, the experiment results are
shown in Table 1. The results show that on datasets CIFAR-
10 and CIFAR-100, compared with (d), the classification
accuracy of (a) is improved, but the amount of parameters
and FLOPs are not changed. The parameters and FLOPs of
(b) and (c) are equal and the lowest, but (b) obtain the highest
classification accuracy. Therefore, the (b) scheme is selected
for convolution layer replacement.
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FIGURE 8. Comparison experiment of the number of MGR-Block cascades on dataset CIFAR10.
Params(M) FLOPs (G)
0.9 012
Acc(%)
08
0.7 0.1 11 77.50%
v 77.00% 76.79%  76.71% 76.73%  76.69%
06 0.08 '
76.50%
o 0.06 76.00%
o 75.50%
03 0.04 || 75.00%
0.2 74.50%
01 00211 74.00%
0 0 73.50%
0 1 2 3 4 5 6 7 8 73.00%
The Number of MGR-Block (P) 72.50%
0 1 2 3 4 5 6 7 8
—e—Params/M —@— FLOPs/G The Number of MGR-Block (P)

€)) (b)
FIGURE 9. Comparison experiment of the number of MGR-Block cascades on dataset CIFAR100.
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FIGURE 10. Comparison experiment of the number of GRS branches on dataset CIFAR10.

2) THE NUMBER OF MGR-BLOCK CASCADES AND GRS
BRANCHES

GRM is formed by cascading P MGR-Blocks, and each GRS
contains Q branches. P and Q represent the depth and width of
MAGR network respectively. If the model is too deep or too
wide, it will lead to training difficulties, which goes against
the design intention of lightweight and efficient. Therefore,
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we set the value range of P as [1], [7], and set the value range
of Q as [1], [64].

First set Q as the default value 1, and P change from
1 to 7, test the values of parameters, FLOP and classification
accuracy on datasets CIFAR-10 and CIFAR-100. The exper-
imental results are shown in Figure 8 and Figure 9, where
the abscissa is the cascade number P of the MGR-blocks.
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FIGURE 11. Comparison experiment of the number of GRS branches on dataset CIFAR100.
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FIGURE 12. The final MAGR network.

The left and right ordinates in Figure 8 (a) and Figure 9 (a)
represent parameters and FLOPs, respectively. The ordinates
in Figure 8 (b) and Figure 9 (b) represent the classifica-
tion accuracy. It can be seen that the number of parame-
ters and FLOPs increase linearly with P from 1 to 7, the
classification accuracy increases nonlinearly with P from
1 to 4, and decreases nonlinearly with P from 5 to 7. The
overall performance of MAGR is the best when the num-
ber of MGR-Blocks is 4, therefore, we set P = 4 in the
subsequent experiments. The number of GRS contained in
each MGR-Block is not exactly the same. Motivating by
the number of residual sub-blocks in ResNet50, we take 3,
4, 6, and 3 GRSs in turn in the 4 MGR-Blocks, where the
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TABLE 1. MAGR performance of ghost convolution replacing convolution
at different positions.

Data
Result CIFAR-10 CIFAR-100
Params/  FLOPs Acc Params ~ FLOPs Acc
M /G /% M /G %
(a) 25.55 0.083 91.47 25.55 0.083 61.68
(b) 0.50 0.067 92.73 0.50 0.067 62.37
(c) 0.50 0.067 91.78 0.50 0.067 62.13
(d) 25.59 0.083 91.44 25.59 0.083 61.19
TABLE 2. Attention feasibility comparison experiment.
Result ataset CIFAR-10
Experiment Params/M FLOPs/G Acc
(a) 0.7842 0.1104 93.47%
(b) 0.7851 0.1105 93.61%
(c) 0.7848 0.1104 93.97%
(d) 0.7853 0.1106 94.73%

dimension reducer is regarded as a special GRS, to realize
the establishment of GRM network.

To determine the value of Q, we set P as 4, the number of
branch Q in GRS ranges from 1 to 64, and test the values of
parameters, FLOP and accuracy on datasets CIFAR-10 and
CIFAR-100. The experimental results are shown in Figure
10 and Figure 11, where the abscissa is the number of
branches Q. The ordinate of Figure 10 and Figure 11 has
the same meaning as that of Figure 8 and Figure 9. It can
be seen that parameters and FLOPs increase linearly with
Q from 1 to 64. Figure 10 (b) show that the classification
accuracy decreases first and then increases and then decreases
with the increase of Q. We can find from Figure 11 (b), the
classification accuracy of MAGR decreases first and then
increases. On datasets CIFAR-10 and CIFAR-100, MAGR
achieves the highest classification accuracy when Q is 32.
Therefore, Q set 32 in the following experiments.

Figure 8~11 show that with the increase of P and Q,
the depth and width of the network increases gradually.
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TABLE 3. Performance comparison with other models on CIFAR-10.

Model Params(M) FLOPs(M) Acc(%)
VGG-1612 15.0 313 93.6
MnasNet!!%] 12.7 - 80.8
Ghost-VGG-16!'?] 7.7 158 93.7
Ghost-ResNet-56!1?] 0.43 63 92.7
R-MnasNet!!”] 3.0 - 91.3
Dagger(VggNet)[!$] 2.7 119 93.9
L1-VGG-16['" 54 206 93.4
L1-ResNet-56['1 0.73 91 92.5
SBP-VGG-162% - 136 92.5
DenseNet(k=24)12!] 27.2 - 94.2
VGG16+SDP2 - - 89.0
ResNet-56(CRA)Z3 0.92 126 94.3
ResNet-20(t=3)124 - - 93.3
DNN-VGG16/2] - - 93.1
MAGR (our 0.78 110 94.7

TABLE 4. Performance comparison with other models on CIFAR-100.

Model Params(M) FLOPs(M) Acc(%)
ResNeXt-164 [©] 1.70 260 75.0
ShuffleNet!! 0.91 161 69.0
SqueezeNet (RMAF) [20] - - 68.7
MobileNetV2(27] 1.18 158 68.1
VGG16-half 28] 5.40 225 63.8
SSC-Net-6-912%1 1.15 - 75.9
DWConvXSepConv 3% 1.59 16.8 74.0
MFR-DenseNet-100 (k=8)3! 6.29 31.7 76.3
VGG19-S-GDB 3.20 161 73.6
ResNet-164-S-GDPP? 0.66 92 77.4
FR-ResNets (135) (331 1.70 - 75.1
MAGR (our 0.78 110 78.7

The increase of depth and width not only improve the classifi-
cation accuracy, but also bring a larger number of parameters
and FLOPs cost, thus increasing the time of model training.
Considering the performance and calculation cost of MAGR,
P =4 and Q = 32 are determined.

3) THE EFFECT OF ATTENTION MECHANISM

One of the characteristics of MAGR networks is lightweight.
Therefore, when adding attention, it is necessary to ensure
that the performance of the model improves while avoiding
the additional computational cost. There are two strategies for
adding attention mechanism, namely adding CBAM attention
in BFE module and adding ECA attention in IC module.
According to the addition situation, four experiments are
carried out, i.e., (a) No attention is added, (b) Add only

VOLUME 9, 2021

CBAM attention, (c) Add only ECA attention, and (d) Add
CBAM and ECA attention.

The experimental results are listed in Table 2. It can be seen
that the addition of attention mechanism has a weak influence
on parameters and FIOPs, but has a great influence on the
classification accuracy. Among the four tests, (d) obtains
the highest classification accuracy, while (a) gets the low-
est. Adding CBAM and ECA improves the classification
accuracy by 1.33% compared with not adding them. This
experiment proves the feasibility and effectiveness of adding
CBAM and ECA attention mechanism to the model.

According to the results of model analysis, the final archi-
tecture of MAGR is shown in Figure 12. It is cascaded by
BFE, GRM and IC. CBAM and ECA are added to BFE
and IC, respectively. GRM is composed of 4 cascading
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TABLE 5. Performance comparison with other models on UC-M.

Model Acc(%)
VGG-1612 95.7
MobileNet!”] 89.5
SqueezeNet!®! 76.1
AlexNet (Fine-tuning) [1¢] 95.7
GoogleNet (Fine-tuning) (16 96.0
Impoved CNN-SVMPB4 96.4
ResNet (FeatureRCG-SVM) 133 93.8
VGG-VD-1689 94.4
Inception_ResNet7] 94.4
MAGR (ou) 96.7

MGR-blocks, each of which contains a dimension reducer.
In addition, 2, 3, 5, and 2 GRSs in turn in the 4 MGR-Blocks
are utilized. Each GRS contains 32 branches.

B. COMPARED WITH OTHER METHODS

After determining the model structure of MAGR, compar-
ative experiments are carried out on three classic datasets
to verify the classification effect of MAGR. Test MAGR
on dataset CIFAR-10, and compares with the methods in
literatures [2], [10], [12], [17]-[25], the results are shown
in Table 3, where boldface indicates the best results, blue
indicates the second-best results. It can be seen that the
parameters and FLOPs of Ghost-ResNet-56 [12] are both
the lowest, but the classification accuracy is not high. Both
parameters and FLOPs of L1-ResNet-56 [19] rank second,
but the classification accuracy is only 92.5%. MAGR’s
parameters and FLOPs indicators both rank third, but
the classification accuracy is the highest, reaching 94.7%,
which is 2.2% and 2.4% higher than Ghost-ResNet-56 and
L1-ResNet-56, respectively.

Test MAGR on dataset CIFAR-100 and compares with the
methods in literatures [6], [9] and [26~33], the results are
shown in Table 4. Table 5 is the test results on dataset UC-M
of MAGR and methods in literatures [2], [7], [8], [16] and
[34~37]. Bold in Table 4~5 indicate the best results, and
blue indicate the second-best results. As can be seen from
Table 4, DWConvxSepconv [30] obtains the best FLOPs,
and RESNET-164-S-GD [32] gets the lowest parameters.
MAGR achieves the second least parameters and the high-
est classification accuracy of 78.4%, which is 6.4% and
1.7% higher than DWConvXSEPCONV and RESNET-164-
S-GD, respectively. It can be seen from Table 5 that MAGR
achieves the best effect and the classification accuracy
reaches 96.7%.

According to Table 3~5, on datasets CIFAR10, CIFAR100
and UC-M, although the parameters and FLOPs of MAGR
are not the best, they are in the middle and upper class among
the comparative methods, but the classification accuracy of
MAGR is the highest. Therefore, the training efficiency of the
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MAGR network is superior, and the classification accuracy is
significantly more competitive than other CNN models.

V. SUMMARY AND PROSPECT

This paper proposes a multi-attention ghost residual
fusion network, which can achieve high-efficiency and
high-precision multi-image classification tasks. The intro-
duction of ghost convolution can effectively degrade the
computational complexity. Using the multi-branch group
convolution residual mapping structure to broaden width
can enhance feature extraction ability and generalization
ability of the network. Residual connection can broaden the
network width and reduce gradient dispersion and explosion
problems without significantly increasing the computational
cost. Adding CBAM in the BFE stage helps MAGR to
effective extract basic features. Adding ECA in the IC stage
helps the classifier analyzes the relationship between the
high-dimensional feature channels more effectively, so as
to achieve better classification effect. The simulation results
show that MAGR can effectively improve the classification
effect while achieving network efficiency and lightweight.

There are some shortcomings in the content of this article,
which are mainly divided into the following two points.

(1) In order to lighten the model, ghost convolution is used
to replace all convolution layers in the GRM structure. There
is also the possibility of retaining a part of the convolutional
layer without replacing to achieve higher classification accu-
racy, which is not discussed in this paper.

(2) In the aspect of adding attention mechanism, MAGR
only inserts the corresponding attention module at the key
position of feature extraction. It is also possible that adding
all positions will bring about the possibility of better perfor-
mance improvement, but using the attention mechanism on
large-scale will inevitably bring considerable computational
costs, which is not discussed in detail.
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