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ABSTRACT Carbon-free energy sources are essential to avoid global warming, and nuclear fusion is
expected to play a major role in achieving clean and sustainable energy. In the development of magnetic
fusion, there exist a lot of issues related with plasma equilibrium to be studied extensively, typical repre-
sentative of which is a problem of equilibrium reconstruction of plasma. In this paper we propose a new
method of equilibrium reconstruction for fusion plasma based on the data assimilation. Aiming at dealing
not only with axisymmetric toroidal plasmas but also with more general toroidal plasmas, we formulate the
problems of equilibrium reconstruction in generalized forms and derive methods to solve them. We also
propose a method for applying the equilibrium reconstruction method to the reversed field pinch (RFP),
and it is applied to a real RFP experimental apparatus for its evaluation. It is shown through numerical
experiments that the proposed equilibrium reconstruction method works well with reasonable accuracy. And
it is also shown through real experiments applying the RFP apparatus that the equilibrium of RFP plasma is
appropriately reconstructed.

INDEX TERMS Data assimilation, equilibrium reconstruction, fusion plasma, inverse problems, sensitivity
equation.

I. INTRODUCTION
Development of carbon-free energy sources with a less load
to the environment is one of the urgent issues in ensuring
human society and maintaining the sustainability of devel-
opment. Nuclear fusion is one of the candidates for the solu-
tion, and development of fusion reactor has been in progress
to realize electric energy production from virtually unlim-
ited fuel sources [1], [2]. The International Thermonuclear
Experimental Reactor, dubbed ITER, is under construction in
France in the framework of international collaboration among
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major countries and organizations over the world [3]. The
initial operation for plasma production in ITER is scheduled
in 2025.

In order to realize fusion plasma, the plasma has to be
maintained in an equilibrium state where electromagnetic
force acting on a plasma element balances with pressure
force. There exist a lot of issues related with plasma equilib-
rium to be studied extensively, typical representative of which
is a problem of equilibrium reconstruction of plasma. The
objective of this paper is to propose a new method for recon-
structing the equilibrium state of magnetic fusion plasma and
to propose a method for applying it to reversed field pinch
(RFP). Some research programs for the RFP configuration
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are in progress because of its potential of a compact fusion
reactor [4]–[8].

Rigorous (accurate) modeling and mathematical formula-
tion of the equilibrium for fusion plasma are difficult prob-
lems. In spite of the difficulties, many efforts have been
made to develop their mathematical models and some non-
linear partial differential equations which are appropriate to
describe the equilibrium are derived; the derived partial dif-
ferential equations contain unknown parts. The equilibrium
reconstruction is an inverse problem to obtain solutions of the
partial differential equations with identifying the unknown
parts, which can appropriately reproduce experimental data.
There have been several studies done on the problem of
equilibrium reconstruction for axisymmetric toroidal plas-
mas [9]–[15]. A brief historical description of the studies is
given in the next section (II. RELATED WORKS).

In this paper we propose a new method of equilibrium
reconstruction for fusion plasma based on the data assim-
ilation. In the last decades, data assimilation has attracted
much attention especially in simulations and estimations of
large scale complex systems with less rigorous modeling.
There have been several methods and algorithms developed,
and a lot of efforts have been made for applying them to
solving inverse problems in various fields from environmen-
tal sciences, atmospheric sciences, geosciences, biology to
human and social sciences [16]–[20]. In equilibrium recon-
struction of fusion plasma, it often happens that we do not
have enough information for characterizing the equilibrium.
Under these circumstances, we have to make use of as much
experimental data as possible for equilibrium reconstruction,
which implies that the introduction of the data assimilation is
very promising.

Aiming at applying not only to axisymmetric toroidal plas-
mas but also to more general toroidal plasmas, we formulate
the problems of equilibrium reconstruction in generalized
forms and derive methods to solve them. The mathemati-
cal model of equilibrium states for axisymmetric toroidal
plasma is reduced to a single partial differential equation,
known as the Grad-Shafranov (GS) equation [21], [22].
In a plasma without toroidal symmetry, if magnetic surfaces
exist, the equilibrium is described by three partial differential
equations for three scalar functions [23]. In the present stage
of mathematical modeling of equilibrium states, no model
consisting of more than three partial differential equations
has been proposed. In our problem formulation, however,
we consider, as the target equations, a model consisting of
more than three partial differential equations taking account
of the possibility of future development of some extended
mathematical model of equilibrium states.

The reconstruction problem is formulated as follows.
We parameterize the uncertainties and unknowns in the tar-
get equations by introducing adjustable parameters. A cost
function is defined as the errors between experimental mea-
surement data and the corresponding ones obtained from
the solutions of the target equations. The reconstruction is
formulated as an optimization problem to determine a set

of unknown adjustable parameters which minimizes the cost
function.

Optimization problem of this kind is usually solved by use
of the gradient method such as the steepest descent method,
the conjugate gradient method, the quasi-Newton method and
so on, and the same is true for data assimilation. It should
be noted that calculation of the gradient vector of the cost
function with respect to the unknown parameters remains one
of the issues to be studied carefully. In the present work, a set
of the sensitivity equations is derived. By parametrization of
the target equations, there appears a specific point where the
solution or its gradient takes a specified value. In deriving the
sensitivity equations we have paid special attention to take it
into account appropriately. Furthermore, we explain how to
solve the target equations and their sensitivity equations with
emphasizing how to deal with the specific point.

We also propose a method for applying the proposed equi-
librium reconstruction method to the RFP. In developing the
method we use the RFP experimental apparatus REversed
Field Pinch of Low Aspect ratio eXperiment (RELAX) [24]
developed at Kyoto Institute of Technology. We have per-
formed numerical experiments in order to evaluate accu-
racy of the proposed method and real experiments by using
RELAX. In deriving sensitivity equations we have paid spe-
cial attention to take account of the specific point (location
of the magnetic axis) as a boundary condition. It is shown
through numerical experiments that the equilibrium of the
plasma is reconstructed with reasonable accuracy. It is also
shown through real experiments that the proposed method
works well for real data and the equilibrium of RELAX is
appropriately reconstructed.

II. RELATED WORKS
In toroidal plasmas, the poloidal magnetic field plays the
role of maintaining the equilibrium and the toroidal magnetic
field plays the role of stabilization. There are two mag-
netic confinement configurations in axisymmetric toroidal
plasmas; one is the tokamak, and the other is the RFP.
In the tokamak the toroidal magnetic field is much stronger
than the poloidal field, and the equilibrium is described
by the GS equation under the assumption of the existence
of magnetic flux surfaces, which assumption is appropriate
under strong toroidal field. Many works have been done on
the equilibrium reconstruction problems based on the GS
equation [9]–[14], [25]–[27].

In early phase of tokamak researches, equilibrium recon-
struction was performed in order to compare theoretical
(or model) magnetic field profiles with those obtained from
experimental data for detailed studies of equilibrium and
its stability [25]. In such cases, the unknown parts of the
GS equation were represented in various functional forms
of the poloidal flux function; exponential approximation of
the radial profiles was one of the examples [13]. For the
purpose of improving the efficiency in equilibrium studies,
efforts have been devoted to reducing computation time with
keeping sufficient accuracy of the reconstruction results by
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developing appropriate modeling (parametrization, or, func-
tional forms) of the unknown parts of the GS equation and
by developing adequate methods for solving the GS equa-
tion and for solving the optimization problem [9]. Moreover,
as the capability of computers advances, real time control
of the plasma shape or plasma position has been required in
order to improve plasma performance, the need for associated
real time equilibrium reconstruction has also been increased.
In the modeling of the unknown parts of the GS equa-
tion, a representative form of the unknown parts is such
that unknown parameters are assigned to the coefficients of
polynomials of the flux function [9], [13]. This choice of
parametrization of the unknown parts has the advantage that
with the use of Picard iteration scheme [28] the solution to
the GS equation can be expressed as a product of a vec-
tor whose components are the unknown parameters and a
response matrix. The solution of the optimization problem for
the equilibrium reconstruction can be obtained by solving a
matrix equation, for example, by the use of the singular value
decomposition (SVD) method, which reduces computational
time drastically [10], [12]–[14], and equilibrium reconstruc-
tion has become used for real-time plasma control [11], [27].
More recently similar parametrization is widely used in equi-
librium reconstruction for detailed studies of equilibrium and
for real time control of the tokamak plasma [26].

In contrast to the tokamak, magnitude of the toroidal mag-
netic field is comparable to that of the poloidal magnetic field
in the RFP, which allows growth of magnetohydrodynamic
(MHD) instabilities. The traditional concept of the RFP equi-
librium has been that the RFP configuration is a result of
MHD relaxation (relaxation to a near-minimum energy state),
and is sustained by the help of nonlinearly interacting MHD
instabilities. Magnetic surfaces exist in the average sense,
where the magnetic field lines are averaged over the time
period longer than the growth time of the MHD instabilities
in the time domain and over the scale lengths longer than the
characteristic wavelengths of the instabilities in the spatial
domain. The basic model for the relaxed state is the force-free
equilibrium [29], which has been advanced by taking account
of the boundary conditions and by including the effects of
perpendicular (diamagnetic) current [30]. Thus, few studies
have been done on the equilibrium reconstruction of RFP
plasmas based on the GS equation. The traditional concept
of the RFP equilibrium has been changed by the successes of
realizing the improved confinement states brought about by
the inductive current profile control [31], or by either spon-
taneous or controlled transition (relaxation) to the helically
deformed RFP states [32], [33], where suppression of the
MHD instabilities has led to the recovery of instantaneous
magnetic surfaces. In particular, motivated by the success
of the inductive current profile control [31], the first work
on the equilibrium reconstruction based on the GS equa-
tion was done in [15], which is the only major publication
about axisymmetric RFP equilibrium reconstruction to date.
Further progress in the RFP research can be found in a recent
review of the RFP [34].

In the equilibrium reconstruction based on the GS
equation, one of the important problems is how to approx-
imate its unknown parts. The polynomial model is power-
ful in reducing computation time for tokamak plasmas as
described above, it does not provide a good approximation
to describe RFP equilibrium which is based on the MHD
relaxed states [35]. In [15], a method is proposed of RFP
equilibrium reconstruction, in which the unknown parts of
the GS equation are approximated by using spline interpo-
lation through several points including unknown parameters.
In their method, the equilibrium equation can no longer
be represented as a linear matrix equation, and therefore
determination of the parameters is reduced to solving a non-
linear optimization problem. They solve the nonlinear opti-
mization problem by the amoeba method [36] which does
not require calculation of gradients of the cost function.
There remain some problems to be solved in improving the
reconstruction method for the RFP plasma such as modeling
of the unknown parts (of the GS equation) and improve-
ment of the method for solving the nonlinear optimization
problem.

III. PROBLEM FORMULATION OF EQUILIBRIUM
RECONSTRUCTION AS DATA ASSIMILATION
In this section we formulate equilibrium reconstruction prob-
lem for magnetic fusion plasma as a data assimilation.
Aiming at dealing not only with axisymmetric toroidal plas-
mas but also with non-axisymmetric toroidal plasmas and
to plasmas described by some future perspective model,
we formulate the problems of equilibrium reconstruction in
generalized forms.We consider a system described by the fol-
lowing partial differential equation in the three dimensional
space R3.

Lkψk (x) = f ok (x, ψ1(x), ψ2(x), · · · , ψK (x)),

x ∈ D ⊂ R3, k = 1, 2, · · · ,K (1)

where ψk ∈ R is the scalar quantity characterizing the
equilibrium state of the fusion plasma, Lk is a partial differ-
ential operator with respect to the spatial variable x including
high order partial derivatives. D

(
⊂ R3) is an open region in

which the scalar function ψk (x) is defined. f ok is a nonlinear
function (f ok : R

3
×R× · · · × R︸ ︷︷ ︸

K

→ R). For an axisymmetric

toroidal plasma such as standard tokamak or RFP, the equi-
librium is described by a single partial differential equation
(K = 1), the partial differential operator L1 is known as
the Grad-Shafranov operator and equation (1) is known as
the GS equation. For a plasma, if the magnetic surfaces
exist, the plasma equilibrium can be described by a set of
nonlinear partial differential equations with respect to three
scalar functions (K = 3) [23]. In the above formulation,
we consider a model consisting of more than three partial
differential equations taking account of the possibility of
future development of some prospectivemodel of equilibrium
states (K > 3).
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The boundary condition of the partial differential equation
(1) is given as follows.

f Bok (ψ1(x), ψ2(x), · · · , ψK (x),

LB1ψ1(x),LB2ψ2(x), · · · ,LBKψK (x)) = 0,

x ∈ ∂D, k = 1, 2, · · · ,K (2)

where ∂D is the boundary of the region D and f Bok is a
nonlinear function (f Bok : R× · · · × R︸ ︷︷ ︸

2K

→ R). The operator

LBk is the differential operator whose order is lower than
that of Lk .

The equilibrium reconstruction problem is to obtain the
solution of the partial differential equation (1) with the bound-
ary condition (2) for given functions f ok and f Bok . However
it is almost impossible to give these functions exactly in
actual magnetic fusion plasma. We introduce the concept of
data assimilation to the equilibrium reconstruction problem.
By using the information obtained from several sensors
attached to the plasma device, the problem is formulated
as follows. Introducing an adjustable vector parameter,
we parameterize uncertainties and unknowns in f ok and f Bok .
Let p = [p1, · · · , pNp ]

t be the adjustable vector parameter
whose number of elements is Np. We call pi(i = 1, · · · ,Np)
the free parameters. By the parametrization, (1) and (2)
become:

Lkψk (x) = fk (x, ψ1(x), ψ2(x), · · · , ψK (x),

ψ1(xex), ψ2(xex), · · · , ψK (xex), p),

x ∈ D ⊂ R3, k = 1, 2, · · · ,K (3)

where xex is a point where the gradient of ψk takes a known
value c as follows,

∂ψk

∂x
(xex) = ck , k = 1, 2, · · · ,K , (4)

and

f Bk (ψ1(x), ψ2(x), · · · , ψK (x),

LB1ψ1(x),LB2ψ2(x), · · · ,LBKψK (x), p) = 0,

x ∈ ∂D, k = 1, 2, · · · ,K . (5)

The condition (4) appears by parametrization of the target
equation. For example, xex is a point where ψk (x) takes an
extremum in the region D if ck = 0. In parameterizations,
in general, the scalar quantity ψk (x) is often normalized by
its maximum or minimum value, which brings the condition
(4). The equilibrium reconstruction problem based on data
assimilation in this paper is to solve the partial differential
equations (3) and (4) under the boundary condition (5) and to
obtain the free parameter p simultaneously.

The free parameter p will be determined by using the data
obtained from sensors as follows. Let Nm be the number of
sensors attached to the plasma device and di, the data from
the i-th sensor (i = 1, 2, · · · ,Nm). Suppose that the sensing

process of the i-th sensor is modeled mathematically by the
following equation

mi = fmi (ψ1(x), ψ2(x), · · · , ψK (x),

Lmi1 ψ1(x),Lmi2 ψ2(x), · · · ,LmiK ψK (x), p),
i = 1, 2, · · · ,Nm (6)

where fmi is a mapping from L(D)× · · · × L(D)︸ ︷︷ ︸
2K

×Np to R,

and L(D) is an appropriate function space defined in the
region D, and mi is the output of the i-th sensing process.
The operator Lmik is the differential operator whose order is
lower than that of Lk . For example, fmi is a weighted integral
equation over the sensing area. If the weighting function is
the delta function, fmi corresponds to one point measurement
process. The problem is now to determine the parameter p
such that the real data di become equal to the outputs mi of
the mathematical model (6). We define the following cost
function

E(p) =
1
2

Nm∑
i=1

wie2i =
1
2

Nm∑
i=1

wi(mi − di)2 (7)

where wi ≥ 0 is a weighting coefficient. The problem of data
assimilation becomes a problem of finding the parameter p
which minimizes the cost function (7) under the constraints
(3), (4), (5) and (6). It is formulated as the following opti-
mization problem with equality constraints.

minimize
p

E(p)

subject to (3), (4), (5) and (6) (8)

If we can solve the above optimization problem, the solu-
tion of (3), (4) and (5) for the optimal parameter p∗ is the
equilibrium state of the target plasma consistent with experi-
mental data.

IV. PROPOSED METHOD
A. METHOD OF EQUILIBRIUM ESTIMATION BASED
ON DATA ASSIMILATION
The constrained optimization problem (8) can be solved by
using a gradient based method such as the steepest descent
method, conjugate gradient method, quasi-Newton method
and so on. In these algorithms, the gradient of the cost func-
tion (7) with respect to p has to be calculated. In order to
obtain the gradient, two methods are conceivable; one is a
method of deriving the sensitivity equations and the other
deriving the adjoint equation. In this paper, the sensitivity
equations are derived. In deriving the sensitivity equations
the fact that the parametrized mathematical model (3) of the
target plasma depends on the point xex satisfying (4) should
be considered. In the following we discuss a method to derive
the sensitivity equations.

Differentiating (7) with respect to the j-th element of p,
denoted by pj, we obtain:

∂E
∂pj
=

Nm∑
i=1

wiei
∂ei
∂pj
=

Nm∑
i=1

wiei
∂mi
∂pj

. (9)
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For calculating ∂mi/∂pj, we derive the sensitivity equa-
tions for the partial differential equations (3) and (4) under
the boundary condition (5) together with the mathematical
model of the sensing process (6). In the following, we will
derive the sensitivity equations for the case k = 1, those for
the case k > 1 can be obtained in the similar manner. In order
to simplify the mathematical expression in the derivation, the
suffix k(= 1) is omitted and the arguments of f , f B and fm are
represented by x, ψ and p, where ψ stands for ψk and their
spatial derivatives LBkψk and Lmik ψk (k = 1). Then, (3), (4),
(5), (6) are expressed as follows:

Lψ(x, p) = f (x, ψ(x, p), ψ(x ex(p), p), p),

x ∈ D ⊂ R3. (10)
∂ψ

∂x
(xex(p), p) = cex. (11)

f B(ψ(x), p) = 0, x ∈ ∂D. (12)

mi = fmi (ψ(x), p), i = 1, 2, · · · ,Nm. (13)

It should be noted that the point xex depends on the param-
eter p. Differentiating both sides of (10) with respect to pj,
we obtain the following equation:

L
∂ψ

∂pj
=
∂f
∂ψ

∂ψ

∂pj
+

∂f
∂ψ(xex)

(
∂ψ(xex)
∂pj

+
∂ψ(xex)
∂x

∂xex
∂pj

)
+
∂f
∂pj

, x ∈ D ⊂ R3. (14)

Differentiation of both sides of the boundary condition (12)
gives

∂f B

∂ψ

∂ψ

∂pj
+
∂f B

∂pj
= 0, x ∈ ∂D. (15)

Equation (14) is a partial differential equation with respect
to the sensitivity ∂ψ/∂pj being unknown variables, and (15)
is its boundary condition. Therefore, the gradient ∂E/∂p is
obtained by solving (14) and (15) for all j (j = 1, 2, · · · ,Np).
All the terms in (14) and (15) except ∂xex/∂pj can be obtained
from the solution of the original partial differential equation
(10), (11) and its boundary condition (12).
∂xex/∂pj is calculated as follows. Differentiating both sides

of (11) and arranging the result, we obtain:

∂xex
∂pj
= −

∂2ψ(xex)
∂x2

−1
∂

∂x
∂ψ(xex)
∂pj

. (16)

Substituting (16) into (14), the following equation is
obtained,

L
∂ψ

∂pj
=
∂f
∂ψ

∂ψ

∂pj
+

∂f
∂ψ(xex)

(
∂ψ(xex)
∂pj

−
∂ψ(xex)
∂x

∂2ψ(xex)
∂x2

−1
∂

∂x
∂ψ(xex)
∂pj

)
+
∂f
∂pj

,

x ∈ D ⊂ R3. (17)

Equation (17) is now the partial differential equation with
respect to ∂ψ/∂pj being unknown variables, in which all the
terms are obtained from the solution of (10), (11) and (12).

Note that xex is obtained by finding a point which satisfies
(11) for the solution. Equation (17) under the boundary con-
dition (15) provides the sensitivity ∂ψ/∂pj, and it is called
the sensitivity equation. The gradient ∂E/∂p is calculated by
using the sensitivity ∂ψ/∂pj as follows.
The differentiation of (13) with respect to pj leads to the

following equation,

∂mi
∂pj
=
∂fmi
∂ψ

∂ψ

∂pj
+
∂fmi
∂pj

, i = 1, 2, · · · ,Nm. (18)

Since ∂fmi/∂ψ and ∂fmi/∂pj in the right hand side of (18)
are calculated by using the solution ψ of (10), (11) and (12),
∂mi/∂pj is calculated by using the sensitivity ∂ψ/∂pj and the
solutionψ . The gradient of the cost function can be calculated
from (9).

The optimization problem (8) can be solved by using the
gradient ∂E/∂p thus obtained. Its procedure is summarized
as the following algorithm.

[Algorithm for Equilibrium Reconstruction]
Step1 Set an initial guess p0 for the free parameter p.
Step2 Solve the partial differential equation (10), (11) and

(12). Obtain mi by calculating (13).
Step3 Solve the sensitivity equations (17) under the

boundary conditions (15) for j = 1, 2, · · · ,Np.
Obtain ∂mi/∂pj by calculating (18) for i =
1, 2, · · · ,Nm and j = 1, 2, · · · ,Np.

Step4 Obtain the gradient ∂E/∂p by calculating (7) and
(9), and by using the results of Steps 2 and 3.

Step5 If |∂E/∂p| is small enough, stop. If not, update
p(ko) to p(ko+1) according to an appropriate gradient
based method such as the steepest descent method,
conjugate gradient method, quasi-Newton method,
and go to Step 2. The superscript ko is the iteration
number for optimization.

The algorithm for k > 1 can be described in the same form.

B. METHOD FOR SOLVING THE TARGET EQUATION
AND ITS SENSITIVITY EQUATIONS
In this section, we describe how to solve the partial differen-
tial equation (10) with (11) and (12) in Step 2 for the target
plasma and its sensitivity equations (17) and (15) in Step 3.

Since the partial differential equation (10) with (11) and
(12) is nonlinear, we use the Green’s function method and
Picard’s iteration method [28]. Note that in solving them it
is necessary to find the point xex which satisfies (11). The
Green’s function is defined as the solution of the following
equation

LG(x) = δ(x− x′) (19)

with the boundary condition (12), and denoted by G(x′; x).
Using the Green’s function, the original partial differential
equation is transformed to the following integral equation.

ψ(x) =
∫
D
G(x′; x)f (x′, ψ(x′), ψ(xex), p)dx′. (20)
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In the above equation, ψ(xex) should be expressed using
the delta function as follows

ψ(x) =
∫
D
G(x′; x)f (x′, ψ(x′), ψ(x′)× δ(x′ − xex), p)dx′.

(21)

Discretizing the region D into grid points, the number of
which is denoted by N and i-th grid point by xi, the above
integral equation becomes the following equation

Eψ = G · f ( Eψ,ψ(xex)). (22)

For simplicity, we assume that the point xex is equal to
one of the grid points, which is denoted by xex . In (22), Eψ
is the N dimensional vector whose i-th element is ψ(xi),
G is the N × N matrix whose (i, j)-th element is G(xj; xi),
and f is the N dimensional vector whose j-th element
is f (xj, Eψ(xj), ψ(xex), p). Because f is a nonlinear func-
tion of Eψ , in order to solve (22) it is necessary to use
an appropriate iterative method. We use the Picard’s iter-
ation method [28] which gives the following recurrence
formula:

EψkP+1 = G · f ( EψkP , ψ(xex)kP ) (23)

where the superscript kP is the iteration number. Note that,
since f is a function of the point xex , at each iteration it is
necessary to find xex from EψkP by using the condition (11) in
order to calculate the right hand side of (23).

Next, we explain how to solve the sensitivity equations (17)
under (15). Similar to (21) of the original partial differential
equation, the solution of the sensitivity equations can be
expressed by using the same Green’s function defined by (19)
as follows

∂ψ(x)
∂pj

=

∫
D
G(x′; x)

× h
(
x′,
∂ψ(x′)
∂pj

,
∂ψ(xex)
∂pj

,
∂

∂x′
∂ψ(xex)
∂pj

, p
)
dx′

(24)

where h comes from the right hand side of the sensitivity
equation (17), and is described by

h
(
x,
∂ψ(x)
∂pj

,
∂ψ(xex)
∂pj

,
∂

∂x
∂ψ(xex)
∂pj

, p
)

=
∂f
∂ψ

∂ψ

∂pj
+

∂f
∂ψ(xex)

(
∂ψ(x)
∂pj

−
∂ψ(xex)
∂x

∂2ψ(xex)
∂x2

−1
∂

∂x
∂ψ(x)
∂pj

)

× δ(x− xex)+
∂f
∂pj

. (25)

Note that, similar to (21), the second and third terms
including xex in h should be expressed using the delta func-
tion. As a result, the right hand side of (24) is calculated

as follows

∂ψ(x)
∂pj

=

∫
D
G(x′; x)

(
∂f
∂ψ

∂ψ

∂pj
+
∂f
∂pj

)
dx′

+G(xex; x)
∂

∂ψ(xex)
f (xex , ψ(xex), ψ(xex), p)

×

(
∂ψ(xex)
∂pj

−
∂ψ(xex)
∂x

∂2ψ(xex)
∂x2

−1
∂

∂x
∂ψ(xex)
∂pj

)
.

(26)

Discretizing the region D into grid points, the above inte-
gral equation becomes the following matrix equation.

Eψ s
j = Gdiag

(
∂f (xi)
∂ψ

)
Eψ s
j +GEf sj +GFex( Eψ s

j −H Eψ s
j )

(27)

where

Eψ s
j (x) = [ψ s

j (x1), ψ
s
j (x2), · · · , ψ

s
j (xN )]

t
:=

∂ Eψ(x)
∂pj

, (28)

Ef sj :=
∂f
∂pj

(29)

and diag (∂f (xi)/∂ψ) is the N × N matrix whose diagonal
i-th element is ∂f (xi)/∂ψ . Fex is the N ×N matrix where the
(ex, ex)-th element equals ∂f (xex)/∂ψ(xex) and all other array
elements are equal to 0, i.e.,

Fex =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 0

0 · · · 0
∂f (xex)
∂ψ(xex)

0 · · · 0

...
. . . 0 0

...
...

. . .

0 · · · 0 · · · 0


. (30)

The last term of (27) comes from the last term of (26).
Noting that by a difference approximation of the differentia-
tion ∂/∂x of the term (∂/∂x)(∂ψ(xex)/∂pj), it is expressed as
H Eψ s

j with appropriately defining the matrixH. Equation (27)
can be arranged as follows,

Aj Eψ
s
j = Bj, j = 1, 2, · · · ,Np (31)

where Aj = E − Gdiag
(
∂f (xi)
∂ψ

)
− GFex(E − H),Bj =

GEf sj and E is the identity matrix of N × N . The matrix
equation (31) can be solved by using some numericalmethods
such as the Gauss-Seidel method, and so on. This procedure
is repeated Np times, which gives us gradient of all the
parameters ∂E/∂p.

V. APPLICATION TO THE REVERSED FIELD
PINCH PLASMA
In this section, we propose a method for applying to the
RFP the equilibrium reconstruction method developed in the
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FIGURE 1. Toroidal plasma and the cylindrical coordinate system.

previous Section. We apply it to artificial numerical data
generated by simulations in order to evaluate its accuracy
and convergence performance. Then, it is applied to real RFP
experimental data in order to evaluate its validity. The target
plasma is the RFP generated in REversed Field Pinch of Low
Aspect ratio eXperiment (RELAX) device [24] developed at
Kyoto Institute of Technology.

In Secs.V-A and V-B, the mathematical model and
parametrization of general RFP will be described. From
Sec.V-C, we will concentrate our argument on RELAX
plasma.

A. MATHEMATICAL MODEL OF TARGET PLASMA
Figure 1 shows the schematic drawing of a toroidal plasma
and its cylindrical coordinate system (R, φ,Z ). Let R0 (major
radius) be the distance from the Z axis to the geometric center
of the torus small circle and the radius of the small circle be a
(minor radius, same as the radius of the plasma). The plasma
is confined by a magnetic field Bφ (toroidal magnetic field)
in the φ direction and a magnetic field Bp (poloidal magnetic
field) in the (R,Z ) plane. Bφ is applied externally and also
produced by the internal poloidal plasma current, while Bp is
formed by the toroidal plasma current Iφ , the current density
of which is denoted by Jφ .
In axisymmetric toroidal plasmas, the model (10) describ-

ing the equilibrium is represented as follows [21], [22].

1∗ψ(R,Z ) = −µ0RJφ(ψ(R,Z ),R,Z ),

Jφ(ψ(R,Z ),R,Z ) =
2πF(ψ(R,Z ))F ′(ψ(R,Z ))

µ0R
+ 2πRP′(ψ(R,Z )), (R,Z )∈� (32)

where � is the plasma domain corresponding to the whole
area in the vacuum vessel, as described previously. ψ is
the poloidal magnetic flux which characterizes the behavior
of the confined plasma. F is the poloidal current function
F(ψ(R,Z )) = RBφ(R,Z ) and P is the pressure function.
In the above equation, F ′and P′ are F ′ = dF/dψ and P′ =
dP/dψ . The differential operator 1∗ is given by

1∗ =
∂2

∂R2
−

1
R
∂

∂R
+

∂2

∂Z2 . (33)

The Green function of the operator (33) is given as follows

G =
µ0

πk

√
RR′

((
1−

1
2
k2
)
K (k)− E(k)

)
, (34)

where E(k) andK (k) are elliptic integrals of the first kind and
k2 = 4RR′/((R+R′)2+Z2). The boundary condition for (32)
is a fixed boundary given as

ψ(R,Z ) = c (constant) (R,Z ) ∈ ∂� (35)

where ∂� is the inner wall surface. The constant c in (35) is
chosen to be 0. The partial differential equation (32) is called
the Grad-Shafranov (GS) equation.

In the present modeling, the functional forms F(ψ) and
P(ψ) are assumed based on prior knowledge and parameter-
ized using free parameters. Then, using the data assimilation
method described in the previous section, we obtain the equi-
librium which is the solution of the (32) and (35), and the free
parameters simultaneously.

B. PARAMETRIZATION
Several methods of parametrizing F(ψ) and P(ψ) in the
model of the RFP plasma of the (32) are conceivable. In [15],
the first work on the equilibrium reconstruction based on the
GS equation, they use spline interpolation through several
points which include unknown parameters. In the present
parametrization, our strategy is to adopt a model which
provides an appropriate current profile for the RFP with
smaller number of unknown parameters compared with the
polynomial models [9] or the spline interpolation model [15].
Consequently, we adopt a model which describes field-
aligned current (force-free current) profile by two param-
eters and provides good approximation of experimental
profiles [35], [37], [38]. Since the parametrized current pro-
file is based on the MHD relaxation, we could advance
the models for parametrization for detailed studies of the
local effects of current profile on the RFP equilibrium.
As for parametrization of the pressure, the plasma density and
temperature profiles are parametrized separately, which could
provide more physical insight in comparing the experimental
results with reconstructed ones.

According to the model describing the field-aligned cur-
rent by two parameters, F ′ = dF/dψ is expressed as

F ′ =
Bφ0R0

ψmax − ψmin
(1+

1
α
)(1− ψ00

α) (36)

where ψ00 are defined as

ψ00 =
ψ − ψmin

ψmax − ψmin
.

ψmin is the minimum value of ψ , i.e., ψmin = min
R,Z

ψ(R,Z )

and ψmax is the value of ψ at boundary, i.e., ψmax = ψ(R,Z )
at (R,Z ) ∈ ∂�. In the target plasma, ψ is generally a
monotonic function and becomes maximum at the boundary.
Bφ0 is the toroidal magnetic field at the position where ψ
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takes its minimum value, that is, Bφ0 = Bφ(Rmin,Zmin) where
(Rmin,Zmin) is so called the magnetic axis defined by

(Rmin,Zmin) = arg min
R,Z

ψ(R,Z ). (37)

The function F in (32) is determined by integrating F ′ with
value of F at the boundary F = F(ψmax) = RBφ(R,Z ),
(R,Z ) ∈ ∂�. Note that Bφ(R,Z ) at (R, Z ) ∈ ∂� is the
toroidal magnetic field at the boundary. It is given by a
magnetic sensor attached to the plasma boundary in the
experiment.

The pressure P(ψ) is expressed by the product of the
density n(ψ(R,Z )) and the temperature kBT (ψ(R,Z )),

P(ψ) = n(ψ)kBT (ψ) (38)

where kB is the Boltzmann constant. In the above equation,
we parameterize the density n and the temperature T as
follows

n = n0(1− ψ00
β ), (39)

T = T0(1− ψ00
γ ) (40)

where n0 and T0 are the density and temperature on the mag-
netic axis, respectively. The separate parametrization of the
density and temperature could make it easier to distinguish
their effects on the equilibrium profile, which is an advantage
of the proposed method over the methods used in previous
works [9], [15].

The right hands side of (32) is determined. Note that
the point (R,Z ) = (Rmin,Zmin) in (37) satisfies following
equations

∂ψ

∂R
(Rmin,Zmin) = 0,

∂ψ

∂Z
(Rmin,Zmin) = 0. (41)

This equation corresponds to the (4) with ck = 0 (k = 1).
In the RFP, it is commonly observed that the ion temper-
ature is almost as high as or even slightly higher than the
electron temperature [39]–[41]. It is a clear evidence of non-
collisional ion heating or acceleration mechanisms working
in the RFP. In the present work we assume that radial profiles
of ion temperature and density are equal to those of electrons.
We define

p = [Bφ0, α, n0, β,T0, γ ]t (42)

as the free parameters.

C. MATHEMATICAL MODEL OF SENSING PROCESSES
Figure 2 shows a poloidal cross section of the plasma and
geometric arrangement of the sensors and sensing processes
in RELAX. R and Z are the radial and axial coordinates
shown in Fig. 1. In the following we describe the mathemat-
ical models (13) for those sensing processes.
Magnetic Sensor 1: By this sensor total toroidal plasma

current Iφ is obtained. The process can be modeled by the
integration of the toroidal current density Jφ over the poloidal
cross section, i.e.,

m1 = fm1 (ψ) =
∫
�

Jφ(ψ(R,Z ),R,Z )dS. (43)

FIGURE 2. Poloidal cross section of the plasma and geometric
arrangement of the sensors for plasma data in RELAX.

Magnetic Sensor 2: By this sensor the toroidal magnetic
flux inside the boundary is obtained. This is modeled as

m2 = fm2 (ψ) =
1
πa2

∫
�

F(ψ(R,Z ))
R

dS. (44)

Density Sensor 1: This sensor is the interferometer which
measures line-averaged electron density [42]. It is modeled
as the line integral of the density in the Z direction at
R = Rc, i.e,

m3 = fm3 (ψ) = (1/2a)
∫ Zc+a

Zc−a
n(Rc,Z )dZ (45)

where (Rc,Zc) is the geometrical center of poloidal cross
section as shown in Fig. 2.
Density Sensor 2: This sensor is the Thomson scattering

system which measures the electron density at the geometric
center of poloidal cross section [43]. It is modeled as follows

m4 = fm4 (ψ) =
∫
�

δ(R− Rc)δ(Z − Zc)n(R,Z )dS. (46)

Temperature Sensor 1: By this sensor the line averaged
electron temperature is obtained based on the soft X-ray
double filter method [44]. It is modeled as the line integration
in the R direction at Z = Zc as follows

m5 = fm5 (ψ) = (1/2a)
∫ Rc+a

Rc−a
T (R,Zc)dR. (47)

Temperature Sensor 2: This sensor is the Thomson scat-
tering system which measures the electron temperature at the
geometric center of poloidal cross section [43]. It is modeled
as follows

m6 = fm6 (ψ) =
∫
�

δ(R− Rc)δ(Z − Zc)T (R,Z )dS. (48)

D. METHOD OF EQUILIBRIUM RECONSTRUCTION
FOR RFP
In applying the proposed method in Sec. IV to the real
RFP device, equations described in Sec. III are related
to equations in Sec. V. The GS equation (32) with the
parametrization (36), (38), (39), (40) and (42) corresponds
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TABLE 1. Comparison of the reconstructed free parameter preconst with their true value ptrue.

to the target equation (10). The boundary condition (35) cor-
responds to (12). The point xex satisfying (11) in Sec. III
corresponds to (Rmin,Zmin) satisfying (41) in Sec. V. The
sensing processes from (43) to (48) (Nm = 6) correspond
to (13). The cost function is defined by (7) where Nm = 6.
The Algorithm for Equilibrium Reconstruction described in
Sec. IV-A can be performed in the following manner for
the RFP. Following the procedure for deriving the sensitivity
equations described in Sec. IV, the sensitivity equations for
(32) can be derived. The sensitivities ∂ψ/∂pj are obtained
by solving the GS equation (32) and its sensitivity equations
thus derived. The set of ∂mi/∂pj is obtained by calculating
(18) for i = 1, 2, · · · , 6 and j = 1, 2, · · · , 6 by using the
sensitivities ∂ψ/∂pj and the solution ψ , and the gradient of
the cost function (7) is calculating (9). By using the gradient
thus obtained, the free parameter p is updated according to an
appropriate gradient based optimization method.

E. PERFORMANCE EVALUATION BY
NUMERICAL EXPERIMENT
In order to evaluate the performance of the proposed method,
we perform the numerical experiment, which is carried out
as follows. We apply the proposed method to artificial data
m1,m2, · · · ,m6. They are obtained by solving the mathe-
matical model (32), (36), (38), (35) and (41) of the target
plasma with the parameters p being given a certain value,
denoted by ptrue, and by calculating the sensing processes
from (43) to (48) with the solution. We set the conditions
of numerical experiment as follows. In order to mimic the
real plasma experiment device RELAX, assuming that the
plasma is surrounded by a perfectly conducting wall with
circular cross section whose minor radius a = 0.25 m,
in boundary condition (35) we let ψ(R,Z ) = 0 at (R,Z ) ∈
∂�, and let ∂� be the circle at the center (Rc,Zc) =
(0.51 m, 0 m) with the minor radius a = 0.25 m, as shown
in Fig. 2.

We normalize the free parameter p as follows

p = [p1, p2, p3, p4, p5, p6]t

=

[
Bφ0
B̂φ0

, α,
n0
n̂0
, β,

T0
T̂0
, γ

]t
(49)

where B̂φ0, n̂0, T̂0 are given as B̂φ0 = 0.1 T, n̂0 = 1019 m−3

and T̂0 = 106 K, respectively. In the present numerical
experiment, the artificial data m1,m2, · · · ,m6 are obtained
by giving the value of ptrue as [4, 3, 3, 5, 4, 3]

t .
We apply the reconstruction algorithm with starting from

some different initial guesses. The weights wi of cost
function (7) are chosen as (w1,w2,w3,w4,w5,w6) =
(1/d21 , 1/d

2
2 , 1/d

2
3 , 1/d

2
4 , 1/d

2
5 , 1/d

2
6 ) in order to normalize

the contribution from each sensor to the cost function.

FIGURE 3. Convergence behavior of the free parameters p1 = Bφ0
(normalized) and p2 = α in which the trajectories in the parameter
space (p1,p2, · · · ,p6) three initial guesses are projected onto
the plane (p1,p2,3,5,4,3).

FIGURE 4. Convergence behavior of the cost function E(p) versus
iteration number. It corresponds to the case of initial guess 1 in Fig. 3.

Figure 3 shows typical three examples of convergence behav-
ior of the proposed method, in which the trajectories in
the parameter space (p1, p2, · · · , p6) starting from three ini-
tial guesses are projected onto the plane (p1, p2, 3, 5, 4, 3).
We use the conjugate gradient method. In the figure, the val-
ues of the cost function E(p) are shown in color and they are
calculated on that projected plane. Color bar shows the index
value n defined by n = 10

√
E . Note the contour lines in the

figure are drawn at each 0.5 of n. The symbol F indicates
the target optimum position ptrue on (p1, p2) plane. It is seen
from the figure that at each step, the free parameters are
updated properly and converged to its true value ptrue denoted
by the star symbol. Figure 4 shows the convergence behavior
of E(p), in which horizontal axis is the number of iterations
and vertical axis is the value of E(p) in the case of initial
guess 1 in Fig. 3. It is found that the value of E(p) decreases
rapidly and settles down to less than 10−8 after 50 iterations.
In Table 1, we compare ptrue and reconstructed value of p,
denoted by preconst , obtained by proposed algorithm. Table 2
shows the values of the measurement data m1,m2, · · · ,m6
calculated by using ptrue and the reconstructed measurement
data, which are calculated by using preconst . For reference,
the relative errors in the reconstructed measurement data are
also shown. From this table, it is found that the relative errors
are all in the order of 10−2 or less.
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TABLE 2. Comparison of the obtained reconstruction data with their true value.

TABLE 3. Comparison of the obtained reconstruction data with experimental data.

FIGURE 5. R − Z distribution of residual error between target ψtrue and
reconstructed ψreconst .

In order to confirm the validity of the reconstruction,
we calculate the internal structure of error distribution of
reconstructedψ denoted byψreconst obtained by the proposed
method. Figure 5 shows an example of two dimensional
distribution in the R − Z plane of the residual error between
the target ψ denoted by ψtrue and the reconstructed ψreconst ;
the residual error is defined by δres = (ψreconst−ψtrue)/ψtrue.
It is found from the figure that the value of the error on
each mesh is in the order of 10−5 and internal structure is
well reconstructed by the proposed method. From the results
described above it can be concluded that the proposedmethod
properly works.

F. PERFORMANCE EVALUATION BY REAL EXPERIMENT
We apply the proposed method to the data from the RFP
experimental apparatus RELAX developed at Kyoto Institute
of Technology. In real experiments on RELAX, a pulsed RFP
discharge with a duration of∼3 ms is produced using capaci-
tor bank power supplies. In each discharge, a steady state dur-
ing which the plasma is regarded in equilibrium is sustained
for∼2/3 of the discharge duration. A pulsed high-power laser

is injected into the plasma discharge at a preset time when the
central electron temperature data is obtained. An equilibrium
data set at this preset time, obtained from a single discharge,
is referred to as a shot and characterized by a specific number
assigned to identify the discharge conditions.

Since we have no shot for which both the line-averaged
density and central density are available in the data sets
for the discharges with sufficient number of measurements,
we have chosen those two shots as shown in Table 3: Shot 1
with the central density data but without the line averaged
density data, and Shot 2, vice versa. In the experiment or anal-
yses we set the weights wi as (w1,w2,w3,w4,w5,w6) =
(1/d21 , 1/d

2
2 , 1/d

2
3 , 1/d

2
4 , 1/d

2
5 , 1/d

2
6 ). Optimization experi-

ments were carried out by changing several times the initial
guess of the free parameters appropriately. It is confirmed
that in all the experiments the free parameters converge to
the same location in the parameter space. Examples of con-
vergence behavior of E(p) in these two cases are as follows;
after about 200 iterations, E(p) converges and settles down to
1.1× 10−5 for Shot 1 and to 3.7 × 10−5 for Shot 2, respec-
tively. Table 3 shows the experimental data (m1,m2, · · · ,m6)
from RELAX RFP machine, reconstructed data by the pro-
posed method and their relative errors for the two shots. From
this table, it is found that the relative errors are all in the
order of 10−2 or less. Accuracy of the reconstructed equilibria
is acceptable because the errors are smaller than uncertain-
ties in the experimental data in a single shot, ranging from
∼1 % to ∼10 % depending upon the diagnostics or sensors.
Table 3 also shows the values of the toroidal field reversal

parameter (TFRP) defined by the ratio of the edge toroidal
field to the cross-sectional averaged toroidal field, and char-
acterizes the approximate equilibrium properties near the
plasma edge. The value of TFRP is around −0.9 in these
two shots, indicating that the magnetic field profiles near the
edge are similar to each other for these shots, and therefore,
we will concentrate on the core properties in evaluating the
reconstructed results. Based on these facts, we study the
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FIGURE 6. Radial profiles of the reconstructed toroidal and poloidal
magnetic field.

validity of the reconstructed equilibrium. Figure 6 shows
the toroidal and poloidal magnetic field profiles calculated
from the reconstructed poloidal flux function ψreconst for the
case of Shot 1 in Table 3. The horizontal axis starts from
the location of the magnetic axis which is shifted outward by
∼5 cm from the geometrical center of the wall surrounding
the plasma. This outward shift is known to be brought about
by the plasma pressure effect [22]. The toroidal magnetic
field indicated by the green line reverses around R = 71 cm,
which shows production of typical RFP plasma.

In real experiment, it is impossible to evaluate the recon-
structed magnetic field profiles by comparing them with their
real profiles. Therefore, the safety factor profile is calculated
from the reconstructed magnetic field profiles. Since the
MHD behavior of the plasma is sensitive to the safety factor
profile, we compare the MHD behavior in the experiment
with the reconstructed safety factor profile to evaluate the
validity of the reconstruction.

FIGURE 7. Radial profiles of the safety factor calculated from the
reconstructed magnetic field.

From the internal magnetic field profiles, the safety factor
q = <(rBφ)/(RBp)> can be plotted as shown in Fig. 7,
where < · · ·> denotes the average over the flux surface.
Here, the safety factor is the ratio of the average number of
toroidal circulation to one poloidal circulation of the mag-
netic field lines. In MHD equilibrium, magnetic field lines
lie on nested closed surfaces known asmagnetic surfaces. The
safety factor is therefore a surface quantity and a measure of
twistedness of magnetic field line, which characterizes the
equilibrium. On a mode rational surface where q = m/n
(m and n are the integers), the magnetic field line closes
after n turns in poloidal and m turns in toroidal direction.

Some classes of MHD instabilities tend to grow when the
wave number vector becomes perpendicular to the magnetic
field line on the mode rational surface.

Next, by comparing the position of the mode rational
surface predicted from the reconstructed distribution of the
safety factor with the wavenumber spectrum of the mag-
netic field fluctuation power measured in the edge plasma,
the consistency between them is examined. The wavenumber
is known to be closely related to the profile of the safety
factor. It is not input experimental data for reconstruction.
Therefore, the wavenumber can be used as a measure for
consistency of the reconstructed magnetic field profile.

Figure 7 shows the radial profile of the safety factor q
for the normalized poloidal magnetic flux calculated from
the magnetic field distribution and is the result of ‘‘Shot 1’’
in Table 3. The safety factor on the magnetic axis q(0) is
about 0.2 to 0.25, and the mode rational surface closest to the
magnetic axis is q = 1/5. In RFP experiments and nonlinear
MHD simulation studies so far, it has been shown that in
the RFP configuration, MHD instability with a resonance
surface inside the plasma grows and nonlinearly saturates, its
amplitude reaching a (quasi) steady state. It is known that the
amplitude of the instability having the resonant surface close
to the magnetic axis is the largest and amplitudes decrease for
higher modes. In RELAX, the properties of magnetic field
fluctuation in the discharge region of the plasma (−0.8 <
TFRP < −0.6) have been studied in detail [45], discharge
region of which is almost the same as the RFP targeted
for the present equilibrium reconstruction. We should note
again that toroidal field reversal parameter is usually denoted
by ‘‘F’’, however, we use TFRP instead, in order to avoid
confusion with the poloidal current function F in GS equa-
tion. The mode number of fluctuation where it is maximized
(instability saturated nonlinearly) is m = 1, n = 5. This
suggests that the mode rational surface close to the magnetic
axis is q = 1/5, which is consistent with the distributions
of the safety factor (Fig. 7) obtained from the reconstructed
poloidal flux. From the above, the equilibrium obtained by
the proposed method is proved to be reasonable. Therefore it
can be concluded that the proposed method properly works
for real experimental data.

G. REMARKS ON EXPERIMENTAL RESULTS
The pressure and the current density profiles are properly
reconstructed with the proposed method. It is also possible to
evaluate the stability margin of the plasma from the results
of reconstruction. One of the important figures of merit
for fusion plasma is the normalized pressure, the ratio of
the plasma kinetic pressure (density × temperature) to the
pressure of the magnetic field for plasma confinement. The
proposed method for equilibrium reconstruction could play
an important role in achieving high performance plasmas,
by providing appropriate targets for precise plasma control.
In the present equilibrium reconstruction of the real RFP
experiment, it is found that normalized plasma pressure is
estimated approximately to be 1.72% for the case of Shot 1,
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which suggests that both the density and the temperaturemust
be improved in achieving high performance RFP plasma.
In order to achieve higher density, fuel particles must be
introduced while controlling the wall conditions. In order
to achieve higher temperature, in addition to improving the
plasma confinement, higher Ohmic heating power is neces-
sary while keeping the current density profile to be stable to
MHD instabilities.

VI. CONCLUSION
Determination of the magnetohydrodynamic (MHD) equi-
librium is of fundamental importance in the study of equi-
librium related issues in magnetic fusion plasmas. In this
paper, we propose a method of reconstructing equilibrium of
magnetic fusion plasma based on data assimilation. Aiming
to apply not only to axisymmetric plasmas but also to plas-
mas which do not have toroidal symmetry, we formulate the
problems of equilibrium reconstruction in generalized forms
and derive methods to solve them. We also propose a method
for applying it to the reversed field pinch (RFP) plasma.

The validity and performance of the proposed method
are demonstrated through numerical experiments and also
real experiments using RELAX device developed at Kyoto
Institute of Technology. It is shown through numerical exper-
iments that the proposed method possesses enough accuracy
and convergence, and through real experiments that the recon-
structed profile is consistent with observed MHD phenom-
ena of the target plasma. It is therefore concluded that the
equilibrium of plasma can be appropriately reconstructed by
the proposed method, which could play important roles in the
study of equilibrium of fusion plasmas.

For future works the followings are considered. In the pro-
posed method, the optimization is performed by deriving the
sensitivity equations in which computation time increases in
proportion to the number of unknown parameters. In order to
solve this problem it is considered to utilize the optimization
by deriving the adjoint equations, which is under progress.
Furthermore, in the present proposed method, we formu-
late the equilibrium reconstruction problems in generalized
forms and derive methods to solve them, aiming to apply
it to plasmas without toroidal symmetry. In axisymmet-
ric toroidal plasmas such as tokamak and RFP, helically
deformed equilibrium states have attracted much attention in
the last decades because of the following reasons. In the RFP,
the equilibrium with helical magnetic axis has a potential of
confinement with perfect magnetic surfaces [46]–[48]. In the
tokamak, the equilibrium with helically deformed hot core
was first recognized as the snake, and such configurations
are expected to play important roles in the advanced toka-
mak operation scenarios [49]. Extension of application of the
proposed method to the reconstruction problem of general
toroidal plasmas is one of the future works.
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