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ABSTRACT The ground penetrating radar (GPR) data in the complex detection environment is
non-stationary, non-Gaussian, and non-uniform, so the traditional noise attenuation methods are difficult to
meet the requirements of denoising. Therefore, we introduced the K-singular value decomposition (K-SVD)
dictionary learning into the denoising of GPR signals. It uses the orthogonal matching pursuit (OMP)
algorithm to sparse decompose different radar data and trains the overcomplete dictionary with sample
characteristics. K-SVD makes full use of the prior information and can extract features according to the
sample data adaptively, which means it has strong sparse representation competence. Because radar signals
can be sparsely represented in the dictionary, whereas the random noise does not have a sparse representation,
the K-SVD dictionary can be used to distinguish effective signals from noise in the GPR data. We used the
discrete cosine transform (DCT) and K-SVD dictionaries to process the Gaussian noise and stochastic clutter
in the GPR profile. The results show that both K-SVD and DCT can effectively suppress the Gaussian noise.
But for the clutter generated by the random medium, the DCT dictionary also causes damage to the effective
signals while removing the noise; whereas the K-SVD dictionary learning algorithm uses the DCT dictionary
as the initial dictionary and carries out adaptive learning on the noisy data, considering the information in
the block and the global observation to complete the denoising, with good denoising effect and high fidelity.
We finally verified the effectiveness and practicability of the K-SVD method for measured data.

INDEX TERMS Stochastic clutter suppression, dictionary learning, ground penetrating radar, K-singular
value decomposition, noise attenuation.

I. INTRODUCTION
Ground penetrating radar (GPR) is an important shallow
geophysical exploration method, which has the advantages
of high resolution, high efficiency, intuitive results, and non-
destructive detection [1]. It is widely used in many fields
such as sewage investigation, tunnel detection, engineering
exploration, pipeline measurement, etc. [2]–[4]. Affected by
complex geological conditions and the acquisition environ-
ment, GPR data is often accompanied by random noise and
clutter interference, which greatly reduces the quality of radar
data, even leads to signal distortion, and brings difficulties to
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subsequent data processing and interpretation [5], [6]. There-
fore, it is particularly important to study denoising methods
to improve the signal-to-noise ratio (SNR) of GPR data.

At present, different scholars have proposedmanymethods
to suppress the noise and improve the SNR of GPR. The
famous soft-threshold using dyadic wavelets was proposed
to optimally denoise and smooth signals in [7]. The wavelet
transforms with different threshold functions were applied
to GPR data, which effectively suppressed the noise and
improved the SNR [8]. This algorithm is simple to implement,
but it is difficult to select appropriate thresholds when the
SNR is low. Fourier transform and wavelet transform, which
are widely used in images, are also used in GPR noise attenu-
ation and direct wave eliminating [9], [10]. However, it takes
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a large amount of memory, so the computational efficiency
is low [11]. F-K domain filtering is widely used in ringing
noise and random noise removing of GPR profile [12], [13].
Curvelet transform is also used in noise suppression of
GPR data due to its high flexibility and fast computational
speed [14]–[17]. Empirical mode decomposition (EMD) was
applied into many fields in processing geophysics signals
[18]–[20], but it has the problem of mode mixing. In order
to overcome this problem, ensemble EMD (EEMD) was pro-
posed [21], [22]. However, EEMD cannot process raw data
with low SNR [23]. Singular value decomposition (SVD) is a
convenient method to decompose amatrix, which can decom-
pose GPR data into different subspaces, and select compo-
nents containing effective signals to reconstruct GPR signals
[5], [24]. The authors in [25] proposed an SVDmethod based
on the Hankel matrix in the local frequency domain for GPR,
and handled different numerical models and field GPR data
to eliminate the horizontal false signals effectively. On this
basis, [26] provided a solution to optimize the size of the
Hankel matrix, which can obtain the best noise removal per-
formance for both white noise and correlated noise. However,
the SVD method essentially cannot learn from the data
and cannot be changed according to the characteristics of
GPR signals. It can be seen that although these methods
can suppress noise to a certain extent, they all have some
shortcomings. In terms of removing clutter, principal com-
ponent analysis (PCA) [27], independent component analysis
(ICA) [28], morphological component analysis (MCA) [29],
non-negative matrix factorization (NMF) [30], go decompo-
sition (GoDec) [31], robust matrix factorization (RMF) [32],
robust orthonormal subspace learning (ROSL) [33], robust
PCA (RPCA) [34], [35], and tensor RPCA (TRPCA)
[36], [37] are all good methods. They divide GPR data into
two categories through different methods, one corresponding
to the clutter and the other corresponding to the target signal,
thus achieving the purpose of clutter removal. These methods
are very effective for the largest clutter (direct wave), but are
less effective for the removal of stochastic clutter generated
by the underground randommedium. For the removal of noise
and this kind of stochastic clutter, traditional methods can
no longer meet the requirements of interpretation accuracy.
Therefore, this paper intends to adopt the dictionary denois-
ingmethods, train the dictionarywith different radar data, and
then apply it to the attenuation of GPR noise and stochastic
clutter.

With the rapid development of GPR, the decoding of radar
profiles has become more complicated. The method of self-
denoising and stochastic clutter by learning data character-
istics is more and more popular. The authors in [38] used
artificial neural networks (ANN) to develop a regression
model to estimate the signal-to-clutter ratio (SCR) for land-
mine detection using GPR. ANN has very strong independent
learning competence, but it needs a lot of data for training
and a diversity examination for training data [39]. However,
in the actual detection of GPR, it is necessary to denoise and
analyze the profile in real-time and make minor adjustments

to the next exploration plan. Therefore, ANN is not suitable
for this fast denoising process. It has become a research
hotspot nowadays that using the sparsity and separability of
image data to remove the influence of noise [40]. The useful
information in the image generally has sparseness, while the
noise does not have this characteristic, so the noise can be
removed from the image. This method is simple and fast,
which is more in line with the requirements of rapid and
accurate denoising.

Constructing an appropriate dictionary has become an
important part for sparse representation [41]. The methods
of constructing sparse dictionaries can be divided into two
categories. One is to construct fixed structure dictionaries,
the most typical of which is the discrete cosine transform
(DCT) dictionary [42], [43]. The authors in [44] combined
the DCT algorithm with the support vector machine (SVM)
method to identify underground utilities from GPR images,
and evaluated them under severe speckle noise effects, show-
ing that the DCT method has better computational efficiency
and accuracy in a noisy environment. The second category
is to construct an adaptive redundant dictionary [45]. The
authors developed Drop-Off MINi-batch Online Dictionary
Learning (DOMINODL) for GPR, which exploits the fact
that a lot of the training data may be correlated in [41]. This
algorithm is fast, but requires more input parameters. The
K-Singular value decomposition (K-SVD) algorithm in [46]
is the most representative and most widely used adaptive
learning dictionary algorithm. On this basis, an overcomplete
dictionary with adaptive learning ability was constructed to
sparsely decompose the target image, achieving the purpose
of eliminating the image noise [47]. In [48], the authors pro-
posed a new K-SVD method, called Graph K-SVD, to con-
sider the manifold structure of the data. It makes full use of
the intrinsic geometrical information and iterative methods
to solve the optimization problem, which has good robust-
ness to the error threshold. In [49], the authors proposed
an implementation of distributed parallel optimization of the
K-SVD algorithm on Spark, which not only has a good
speed-up ratio, but also retains the image texture and other
details. The overcomplete dictionary was applied to seismic
denoising in [50] and compared with traditional transform
basis function denoising methods. The authors in [51] pro-
posed an adaptive sparse decomposition for GPR signal anal-
ysis and classification to extract salient features. Nowadays,
it is still rare to apply the K-SVD algorithm for GPR noise
removal or clutter suppression.

In this paper, sparse decomposition theory is applied to
GPR denoising, and an ideal K-SVD dictionary is trained
by given different radar data. By comparing the adaptive
redundant K-SVD dictionary with the DCT dictionary for
radar random noise and clutter suppression, it is shown that
both dictionary algorithms can effectively distinguish use-
ful wave information from random disturbance, and achieve
noise attenuation of GPR data. Besides, the K-SVD dictio-
nary algorithm can make full use of the prior information,
and extract features based on the sample data adaptively.
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It has better sparse representation competence, better effect in
clutter interference suppression, and better data fidelity than
the DCT dictionary.

II. THEORETICAL FRAMEWORK
In the conventional denoising methods of GPR data, a set of
fixed transform basis functions are generally adopted, which
are not adjusted according to the characteristics of data, so the
denoising effect is not ideal. In recent years, dictionary learn-
ing methods that can adaptively change the basis function
according to data have been proposed. Because radar signals
can have a sparse representation in the dictionary, whereas
random noise does not. Thus, the dictionary learning method
can realize the separation of noise and effective signals, and
achieve the purpose of denoising.

To better understand the sparse representation and the
K-SVD algorithm, we put the important symbols and their
meanings in Table 1.

TABLE 1. Symbols and meanings.

A. THE PRINCIPLE FOR SPARSE REPRESENTATION
The image with noise can be modeled as Y = G + C,
where Y is the noisy image, C is the noise, G is the orig-
inal image. The denoising process includes two key steps,
the sparse decomposition of signals and the construction of
overcomplete dictionaries.

Given a matrix D = [d1,d2, · · · ,dK ] ∈ <M×K =
{dk}Kk=1 of sizeM ×K (where K � M ), each column dk can
be regarded as a dictionary atom. For any given vector Y =
{ym}Mm=1, the problem to be studied for sparse representation
is to find a sparse coefficient vector X of size K×1, so that
the signals Y can be regarded as a linear combination of
a series of atoms, i.e., Y = DX. Since K � M , D is a
full-rank matrix, representing an infinite number of solutions
are available for the representational problem. The solution
with the fewest number of nonzero elements is the most
appropriate. It can be expressed as [52]

min ‖X‖0 s.t. Y = DX (1)

For the optimization of the solution, since the l0 norm
has the convexification problem, the usual approach is to
transform the l0 norm constraint problem into the l1 norm to

solve, namely

min ‖X‖1 s.t. Y = DX (2)

When the sparsity of the solution is very high, the two solu-
tions are equivalent. In order to represent the signal sparsely,
the sparse model needs to be estimated first.

B. SPARSE REPRESENTATION
The process of sparse decomposition is mainly to obtain
the optimal sparse representation form of the signal under
dictionary constraints, which can also be regarded as the real-
ization of the sparse representation of the signal. In this paper,
we used the orthogonal matching pursuit (OMP) algorithm
to realize the sparse decomposition of signals [53]. The OMP
algorithm is an improvement of theMP algorithm, which uses
Gram-Schmidt orthogonalization to normalize the projection
direction. Given the dictionary D = {dk}Kk=1 and ‖dk‖

2
2 = 1,

the decomposition process of signal Y using the OMP algo-
rithm is as follows [54]. Set the initial value r0 = Y, an empty
dictionary setS0, and then find the subscript λ1 corresponding
to the largest inner product of the residual r0 and a column dk
in the dictionary D, i.e.,

λ1 = argmaxk=1,··· ,K |〈r0,dk 〉| (3)

Add dλ1 to the dictionary S0, rename it as S1. Then,
the least square method is used to calculate the sparse rep-
resentation X1

X1 = argmin ‖Y− S1X‖ (4)

Calculate the new residual r1,

r1 = Y− S1X1 (5)

In the remaining dictionary D, find dλ2 which has the
largest inner product with the residual r1. Put dλ2 into the
dictionary S1, update it to S2, and also use the least square
method to calculate X2

X2 = argmin ‖Y− S2X‖ (6)

Using X2, we calculate the new residual r2

r2 = Y− S2X2 (7)

After K iterations of the above process, we can get the final
sparse representation XK .

C. OVERCOMPLETE DICTIONARY CONSTRUCTION
1) DCT OVERCOMPLETE DICTIONARY
The DCT dictionary has a good ability to decompose periodic
signals. For the two-dimensional signal Y of sizeM × N , its
two-dimensional DCT transform can be written as

F (u, v) = c (u) c (v)
M−1∑
i=0

N−1∑
j=0

Y (i, j)

× cos
[
(2i+ 1) π

2M
u
]
cos

[
(2j+ 1) π

2N
v
]

(8)
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FIGURE 1. Schematic diagram of the layered model and denoising results of different methods. (a) is the layered model, (b) is the original forward
profile, (c) is the radar profile with the Gaussian noise, (d) is the DCT dictionary, (e) is the denoising profile with the DCT dictionary, (f) is the residual
between (c) and (e), (g) is the K-SVD dictionary, (h) is the denoising profile with the K-SVD dictionary, (i) is the residual between (c) and (h).

where, u = 0, 1, 2, . . . ,M − 1; v = 0, 1, 2, . . . ,N − 1;
F(u, v) is the DCT coefficient; c(u) and c(v) are the compen-
sation coefficients, and are defined as

c (u) =


√

1
M

u = 0√
2
M

u 6= 0

,

c (v) =


√

1
N

v = 0√
2
N

v 6= 0

(9)

For the complete dictionary obtained after the DCT trans-
formation, the fractional frequency method is adopted to
expand it into an overcomplete dictionary. The specific
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method is to get a new overcomplete dictionary by making
more fine convenience and sampling on the frequency.

2) K-SVD DICTIONARY LEARNING
The K-SVD algorithm is mainly used to find an overcomplete
dictionary D ∈ <M×K and a sparse coefficient matrix X ∈
<
K×N . Assuming that Y ∈ <M×N is a given set of sample

signals, the objective function can be expressed as [55]

min ‖Y− DX‖2F s.t. ∀i, ‖xi‖0 ≤ T0 (10)

T0 is the number of nonzero elements required in advance.
The K-SVD dictionary in this paper takes the DCT dic-
tionary as the initial dictionary, and uses the OMP algo-
rithm to get the sparse representation X corresponding to
the DCT dictionary at this time. Then the K-SVD algorithm
is used to update the overcomplete dictionary D and sparse
representation X.

When carrying out the task of dictionary atomic update,
any atom dk in the dictionary is updated in order. At the same
time, the corresponding sparse coefficient vector, the kth
row in X, xkT are calculated (this is not the vector xk which
is the kth column in X). The objective function can be
expressed as [46]

‖Y− DX‖2F =

∥∥∥∥∥∥Y−
K∑
j=1

djx
j
T

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
Y−

∑
j6=k

djx
j
T

− dkxkT

∥∥∥∥∥∥
2

F

=

∥∥∥Ek − dkxkT
∥∥∥2
F

(11)

The main task of a dictionary update is to perform the SVD
operation on the error matrix Ek generated by the atom in the
kth column of the dictionary, i.e.,

Ek = Y−
∑
j6=k

djx
j
T (12)

The matrix DX will be transformed into the sum of K
matrices of rank-1, and the SVD will find the closest rank-1
matrix that approximates Ek . However, such a step will be a
mistake, because the new vector xkT is very likely to be filled,
causing its nonzero elements to be in a different position.
Define ωk as the group of indices pointing to the positions
those where xkT (i) is nonzero. so there is

ωk =
{
i |1 ≤ i ≤ K , xkT (i) 6= 0

}
(13)

Define �k as a matrix of size N × |ωk |, with ones on the
(ωk (i) , i) th entries and 0 elsewhere. Multiply Eq. (11) by
the limiting factor �k , then we can get∥∥∥Ek�k − dkxkT�k

∥∥∥2
F
=

∥∥∥ERk − dkxkR
∥∥∥2
F

(14)

Perform SVD decomposition on ERk to obtain ERk =
U1VT . Replace dk with the first column of U, and use

FIGURE 2. A-scan comparison of denoising results. The black solid line
represents the original A-scan, the ocher dotted line represents the noise
data, the blue dashed line represents the denoising result of the DCT
dictionary, and the red chain-dotted line represents the denoising result
of the K-SVD dictionary. (a) is the overall picture; (b) is the partial
enlargement of (a).

the product xRk of the first column of V and 1(1, 1) as the
sparse coefficient matrix. Thus, we can obtain the sparse
representation of signals in the K-SVD dictionary.

III. THE DENOISING OF SYNTHETIC GPR DATA
To analyze the denoising effect of the dictionary learning
algorithms, two typical types of noise data in the GPR signal
are selected: (a) signal interference caused by the instrument
itself or system noise; (b) stochastic clutter generated by
the underground random medium. Two different models are
selected to conduct experiments on these two types of noise.
The synthetic data are generated by using the finite-difference
time-domain (FDTD) method to simulate.

All tests are performed in a 64-bit Ubuntu 20.04.1 LTS
environment. The CPU environment is Inter (R) Core (TM)
i7-6700K CPU @ 4.00GHz × 8, and the codes are run in
anaconda python 3.8.

A. SYSTEM NOISE DENOISING ANALYSIS
First, we considered the signal interference caused by the
instrument itself or system noise, which is similar to Gaus-
sian white noise. We established a layered model as shown
in Fig. 1(a). The simulation area is 1 m×1 m, the relative
permittivity of the model is 4, 10, 4, and 8 from top to
bottom, and the conductivity is 3 mS/m, 8 mS/m, 3 mS/m,
and 5 mS/m in turn. The discrete mesh of the model is
200× 200, the mesh interval is 0.005 m, and 10-layer CPML
was used as the absorption boundary. TheRicker wavelet with
the main frequency of 900 MHz was placed on the ground
as the source pulse. The simulation window is 25 ns and
the sampling interval is 0.01 ns. The FDTD algorithm was
used to forward the model, and a total of 178 channels of
data were received, with the track interval of 0.005 m and
the transceiver interval of 0.01 m. Fig. 1(b) is the original
forward profile. We added the Gaussian noise to the forward
profile, as shown in Fig. 1(c). The comparison between the
two shows that the profile data with the Gaussian noise has a
great influence on the original data, and the reflected waves
are almost annihilated.
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FIGURE 3. The diagram of the water-bearing lining model. (a) The background is a homogeneous medium; (b) The background is
a random medium.

To describe the noise level more clearly, the SNR calcula-
tion formula shown in Eq. (15) is introduced [56]

SNR = 10 log10


Nx∑
x=1

Ny∑
y=1

(f (x, y))2

Nx∑
x=1

Ny∑
y=1

(
f (x, y)− f̂ (x, y)

)2
 (15)

where, Nx and Ny are the size of the image, i.e., the size of the
image is Nx ×Ny; f (x, y) is the original image, f̂ (x, y) is the
noisy image. The smaller the difference between the original
image and the noisy image, the lower the noise level and the
higher the SNR. Therefore, a high SNR indicates a better
denoising effect, and a low SNR indicates a poor denoising
effect. The SNR of the noisy image in Fig. 1(c) is 4.8225,
indicating high noise.

The DCT overcomplete dictionary does not need to learn
from data, only needs to use the fractional frequency method
to expand, as shown in Fig. 1(d). All the K-SVD dictionaries
in this paper are first selected the DCT dictionary as an initial
dictionary, and then given experimental data samples, training
and learning according to the sparse constraint conditions,
so as to update the dictionary with the noisy data atomically.
It can extract features from sample data adaptively, realize the
maximum sparsity of the original signal, and finally obtain
a redundant K-SVD overcomplete dictionary. Therefore, the
K-SVD dictionary can be adaptive to update the dictionary
according to the characteristics of noise data, and has strong
adaptability. The K-SVD dictionary trained in this example
is shown in Fig. 1(g).

Fig. 1(e) is the denoising profile of the DCT dictionary,
and its residual is shown in Fig. 1(f). The running time of the
DCT denoising algorithm is 4.85 s. By comparing Fig. 1(c)
and Fig. 1(e), the denoising process using the DCT overcom-
plete dictionary can effectively suppress the Gaussian noise,
and the reflected wave information can be clearer. The SNR
calculated by Eq. (15) is 23.3727, which is greatly improved
compared with the noisy data. The residual results shown
in Fig. 1(f) show that the DCT overcomplete dictionary can
remove the Gaussian noise well, and the reflected wave does
not appear in the residual profile, indicating that the algorithm

has less damage to the reflected waves. Fig. 1(g) shows the
overcomplete dictionary of the K-SVD algorithm, which is
learned from the noisy data (Fig. 1(c)). The denoising profile
of K-SVD is shown in Fig. 1(h), and the residual is shown
in Fig. 1(i). The running time of the K-SVD denoising algo-
rithm is 26.85 s. The time is slightly longer thanDCT, because
the K-SVD algorithm needs to learn from the data to update
the dictionary. By comparing Fig. 1(c) and Fig. 1(h), it can
beseen that the K-SVD dictionary has a good effect on the
data denoising, and the reflected waves can be distinguished
in the profile. The SNR calculated by Eq. (15) is 23.4133,
which is approximately consistent with the DCT method.
By observing the residual results shown in Fig. 1(i), it can
also be found that the K-SVD overcomplete dictionary has a
good denoising effect, and the residuals are all random and
irregular Gaussian noise.

In order to observe the denoising results more intuitively,
the denoising results of the 112th A-scan data (white dashed
line) are selected for analysis, and the results are shown
in Fig. 2(a). The black solid line represents the original
A-scan data, and the ocher dotted line represents the noise
data. The denoised reflection waveform of the DCT dictio-
nary indicated by the blue dashed line corresponds well to
the original data and does not interfere with the effective
information. The overall denoising effect of the K-SVD dic-
tionary represented by the red chain-dotted line is not much
different from that of the DCT overcomplete dictionary. The
amplitude of A-scan data after denoising by the two methods
are approximately the same as the original A-scan, which
indicates that they both can effectively suppress the Gaussian
noise and realize the denoising of noisy radar data. From
Fig 2(b), K-SVD is closer to the original data in amplitude
than DCT, and both of them appear oscillation phenomenon.
Therefore, any kind of denoising method can be used to
remove the Gaussian noise.

B. RANDOM MEDIUM CLUTTER ANALYSIS
In the exploration with GPR, clutter will be generated due
to the underground random medium. In order to explain
the effect of the dictionary learning algorithm on remov-
ing clutter in detail, a water-bearing lining model with
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FIGURE 4. Forward GPR profiles and denoising results by different methods. (a) is the forward profile of the water-bearing lining model with the
uniform background medium, (b) is the forward profile of the model with the random background medium, (c) is the denoising profile with the DCT
dictionary, (d) is the residual between (b) and (c), (e) is the denoising profile with the K-SVD dictionary, (f) is the residual between (b) and (e).

a homogeneous background as shown in Fig. 3(a) was estab-
lished, and the random medium was constructed by an expo-
nential elliptic autocorrelation function as shown in Fig. 3(b).
Its function expression is [57], [58]

φ (x, z) = exp
[
−

√(
x2/a2 + z2/b2

)]
(16)

where, a and b represent the autocorrelation length of the
medium in the x and z directions respectively. In Fig. 3(b),
a = b = 0.025 m, the variance is 0.2, and the mean value is
the background medium value. The other model parameters
are consistent with those in Fig. 3(a). The simulation area is
5 m × 2.5 m. The discrete mesh of the model is 200 × 100,
the mesh interval is 0.025 m, and 10-layer CPML was used
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FIGURE 5. Overcomplete dictionary based on the K-SVD learning.

as the absorption boundary. The Ricker wavelet with the main
frequency of 400MHzwas placed on the ground as the source
pulse. The simulation window is 70 ns and the sampling
interval is 0.01 ns. The FDTD algorithm was used to forward
the model, and a total of 176 channels of data were received,
with the track interval of 0.025 m and the transceiver interval
of 0.1 m. Fig. 4 (a) and Fig. 4(b) show the forward profile
of water-bearing lining model with a uniform background
medium and a random background medium, respectively.

The overcomplete DCT dictionary shown in Fig. 1(d) was
also used for denoising in this example. The denoising profile
is shown in Fig. 4(c) and the residual is shown in Fig. 4(d).
The running time of the DCT denoising algorithm is 5.92 s.
By comparing Fig. 4(c) and Fig. 4(b), it can be found that the
DCT dictionary can suppress random interference and reduce
clutter to a certain extent. However, by observing Fig. 4(d),
it can be seen that the profile processed by the DCT over-
complete dictionary has a serious loss of effective informa-
tion while removing the clutter. The K-SVD dictionary also
selects the DCT dictionary as the initial dictionary, and then
performs the update of the dictionary through the random
medium radar forward data (Fig. 4(b)), and finally obtains an
overcomplete dictionary as shown in Fig. 5. The denoising
profile of the K-SVD dictionary is shown in Fig. 4(e), and
the residual of it is shown in Fig. 4(f). The running time of
the K-SVD denoising algorithm is 31.85 s. By comparing
Fig. 4(b) with Fig. 4(e), the K-SVD dictionary can sup-
press random noise to a large extent, and the reflected wave
information is clearer. Besides, by analyzing the residual
results in Fig. 4(f), compared with the denoising of the DCT
dictionary, the K-SVD dictionary is less destructive to the
effective wave information relatively, and the denoising effect
is significantly improved.

In order to observe the denoising results more intuitively,
we selected the A-scan at the white dashed line in Fig. 4 for
analysis, and the results are shown in Fig. 6(a). It can be
seen from the figure that the K-SVD dictionary and the DCT
dictionary denoising algorithms are approximately consis-
tent with the original data. From the partial enlargements
Fig. 6(b), we can see that the noise is oscillating compared

FIGURE 6. A-scan comparison of denoising results. The black solid line
represents the original A-scan, the pink dotted line represents the noise
data, the blue dashed line represents the denoising result of the DCT
dictionary, and the red chain-dotted line represents the denoising result
of the K-SVD dictionary. (a) is the overall picture; (b) and (c) are the
partial enlargements of (a).

with the original data, and both the A-scan of K-SVD and
DCT show a good denoising effect. However, it can be seen
from Fig. 6(c) that the K-SVD dictionary method algorithm
is closer to the original data in amplitude than DCT, indicat-
ing that it retains effective information better and does less
damage to the original profile.

IV. THE DENOISING OF MEASURED GPR DATA
Themeasured data is located in the access tunnel of the Heim-
ifeng Pumped-storage Power Station in Hunan Province,
China. The total length is 996 m, and the excavated section
is about 7.8 m high and 8.4 m wide. During the operation
of the traffic tunnel, there have been many times when the
top arch has fallen off. Effective measures must be taken to
identify the weak parts of the surrounding rock to strengthen
the support and ensure the safety of the traffic tunnel. In this
paper, we select the unlined pile number J0 + 330 m −
J0 + 350 m shown in Fig. 7(a) as the denoising experiment
data. The data is noisy data interfered by telecom base sta-
tions. GSSI-3000 GPR was used for data acquisition. The
main frequency of the antenna is 900 MHz, the length of the
survey line is 200m, the interval of measuring points is 0.4 m,
and the recording time is 40 ns.

Fig. 8 is the K-SVD overcomplete dictionary obtained
after learning the original profile in Fig. 7(a). The denoising
result is shown in Fig. 7(b) and Fig. 7(c) is the residual.
The running time of the K-SVD denoising algorithm for
measured data is 497.70 s. It can be seen from Fig. 7(b) that
the GPR profile denoised by the K-SVD dictionary learning
algorithm not only removes the Gaussian noise well, but
also loses less effective information. Most of the noise is
suppressed, the anomaly is more obvious, and the SNR is sig-
nificantly improved. The location enclosed by the red circle is
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FIGURE 7. The measured data profile and denoising results. (a) is the original profile of the measured data, (b) is the denoising
profile with the K-SVD dictionary, (c) is the residual between (a) and (b).

preliminarily estimated to be the partial fracture and fissure of
rocks in the tunnel. In the analysis of Fig. 7(c), it is also found
that the K-SVD dictionary learning algorithm eliminates the
noise and does not weaken the effective information too
much, most of which is random noise.

In order to further illustrate the denoising effect of the
K-SVD algorithm on the measured data, the A-scan of the

data denoising results at the red track were compared with
the original data. By analyzing the A-scan radar data shown
in Fig. 9, it can be found that before 25 ns, the denoising
profile approximately coincides with the original profile, and
the curve trend is the same, but after 25 ns, the original
profile is full of noise, whereas the amplitude of the K-SVD
denoising A-scan data decreases, indicating that the K-SVD
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FIGURE 8. K-SVD learning dictionary for measured data.

FIGURE 9. The denoising result of measured data. The red dashed line is
the measured data, and the black solid line is the denoising result of
K-SVD.

dictionary learning denoising algorithm can better identify
effective information and noise data, and most of the noise
that oscillates up and down can be well suppressed.

V. CONCLUSION
In the conventional GPR data denoising processing, a fixed
transform basis is used to process the radar data, and the
denoising effect is not ideal. The effective information of
radar data can be represented in the dictionary sparsely,
whereas the random noise is tiled in the entire sparse domain
and cannot be sparsely represented in the dictionary. Accord-
ing to this characteristic, we proposed to apply the K-SVD
dictionary learning algorithm to radar data processing, effec-
tively separating the effective information and noise.

The K-SVD dictionary learning denoising method, with
the DCT dictionary as the initial dictionary, can be adap-
tively updated according to the characteristics of the radar
data itself. According to the sparse constraint conditions,
it continuously updates the dictionary and sparse coeffi-
cients alternately through the SVD of the difference between
the reconstructed signal and the original signal. Therefore,
an overcomplete dictionary that meets the characteristics of
the data can be trained to realize the sparse representation of

the radar data, so as to maximize the separation of noise and
effective signals and achieve the purpose of denoising.

For the Gaussian noise and clutter interference added to
the synthetic radar data, two learning denoising algorithms,
the DCT dictionary and the K-SVD dictionary, were respec-
tively used for denoising comparison experiments, indicating
that both algorithms can effectively remove the Gaussian
noise. For the clutter interference generated by random
media, compared with the DCT dictionary, the K-SVD dic-
tionary learning denoising algorithm can significantly reduce
the damage to the effective signal while removing the clutter.
It is a very potential adaptive GPR interference removal
algorithm, and the denoising results of the measured radar
data also verify this conclusion.

In our future work, we intend to further study the K-SVD
algorithm, improve its denoising effect, and compare it with
other algorithms to promote the development of GPR data
processing and interpretation.
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