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ABSTRACT Robust array beamforming is a challenging task in radar, sonar and communications due to
the influence of direction of arrival (DOA) mismatch and sensor position errors. However, how to enhance
the robustness of beamforming is a key issue in antenna arrays. The current paper focuses on a novel
approach called the improved chicken swarm optimization (ICSO) method to settle the optimization model
of conventional linearly constrained minimum variance (LCMV) based on support vector machine (SVM)
to against the mismatch problems as well as control the sidelobe level (SLL). As far as the ICSO method is
concerned, considering that the particle swarm optimization (PSO) algorithm has outstanding convergence
performance in the early iteration, the dominance of the alpha wolf in the grey wolf optimization (GWO)
algorithm and the innovative mutual attraction mechanism in the firefly algorithm (FA), and we introduce
these three strategies into the solution update method of conventional chicken swarm optimization (CSO)
algorithm for achieving better optimization capability. Moreover, an operation of removing duplicate
solutions is proposed to enhance the utilization of the population. In terms of the SVM-based LCMV
beamforming algorithm, we adopt the so-called linear ε - insensitive loss function to reconstruct the final
cost function of LCMV by penalizing the errors between the actual and ideal array responses. Finally,
we conduct simulations to evaluate the performance of the swarm intelligent optimization algorithms under
an ideal scenario without mismatch and an actual scenario with the mismatch, respectively. And the results
demonstrate that the developed ICSO algorithm obtains excellent robustness for different scenarios compared
to PSO, FA, GWO and CSO optimization algorithms.

INDEX TERMS Robust array beamforming, improved chicken swarm optimization, linearly constrained
minimum variance, support vector machine, sidelobe level, steering vector errors.

I. INTRODUCTION
Robust adaptive beamforming has received considerable
attention in the past years due to its necessity for radar,
sonar, astronomy, wireless communications, medical imag-
ing, audio signal processing and many other areas [1]–[3].
Robust adaptive beamforming techniques have the abil-
ity to adjust the weighted vectors according to complex
environment changes [4], [5]. As we all know, minimum-
variance-distortionless-response (MVDR) beamforming has
attracted wide attention due to its excellent spatial res-
olution and interference suppression capability [6], [7].
Unfortunately, various error sources include the array
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element position disturbance and the arrival angle error
in practical applications [8]–[10]. Because of unsatisfac-
tory behaviors, the steering vector errors can reduce the
array output signal-to-interference-plus-noise-ratio (SINR),
which will result in a severe decline in MVDR performance
[11]. Therefore, the challenge of improving the robustness
of adaptive beamforming is a major direction under the
undesired scenes.

During the past decades, a large number of approaches in
the array signal processing literature have been presented.
Among them, a common method of diagonal loading (DL)
is generally employed due to its relatively acceptable per-
formance [12]. Cox et al. [13] are the first to use the DL
method for robust beamforming. Its core idea is to modify
the covariance matrix in virtue of adding a small loading
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factor to the sampling covariance matrix. This method is
considered an effective beamforming algorithm. However,
the deficiency of the DL approach is that it makes the null of
the adaptive beam pattern shallower, which reduces the inter-
ference suppression capability. In addition, there is no clear
theoretical guidance for the selection of the DL factor based
on the uncertainty of the expected steering vector [14]–[17].
Since then, a great number of solutions have been developed
in order to enhance the robustness of the minimum vari-
ance beamformers. The DL method in [18] has the ability
to constrain the uncertainty set of the steering vector and
obtain the loading factor under the circumstances of the
steering vector estimation error. From another point of view,
if the estimation error for the steering vector is not accu-
rate enough, the performance of beamformers will decline
sharply or even fail totally [19], [20]. There is no doubt that
many other robust beamforming methods have been carried
out, such as the convex optimization-based method [21], the
Bayesian beamformer [22], and the fuzzy-inference-based
beamformer [23].

In terms of sidelobe level control, the approach in [24]
is to incorporate multiple quadratic inequality constraints
outside the main lobe beam pattern on the basis of theMVDR
method. The sidelobe level is able to be under the specified
value, but only in the desired scenario. SVM is a wonder-
ful machine learning method with excellent generalization
ability, which belongs to statistical learning theory [25]. And
it has been widely used in the fields of pattern classifica-
tion [26], function estimation [27] and regression analysis
[28]. In this study, we focus on reformulating the minimum
variance beamforming by incorporating additional inequality
constraints to penalize sidelobe level, which has the same
form as support vector regression. In the meantime, allowing
a certain deviation in the expected signal direction [29]. How-
ever, the SVM solution is usually found through quadratic
programming (QP) techniques. Here, we use the swarm intel-
ligence optimization algorithms, which effectively settle the
conventional analytical methods that produce ill-conditioned
solutions.

In recent years, the emerging swarm intelligence opti-
mization algorithms have increasingly become the focus of
attention due to their rapid convergence rate, excellent global
convergence and strong robustness. For these reasons, they
have been widely used in beamforming technologies. For
example, Todnatee et al. [30] utilize the genetic algorithm
(GA)to synthesize the linear antenna array beam pattern with
a lower SLL, and a maximum SLL of -20 dB can be achieved
by means of this method. Nonetheless, it is not evaluated the
stability of the algorithm. Li et al. [31] introduce the PSO
algorithm to optimize the antenna array, which optimizes the
spacing between the array elements to improve the beam col-
lection efficiency. Nonetheless, the solution is not very good
in terms of accuracy. Sharaqa et al. [32] use the FA to opti-
mize the set of weights and positions for the circular antenna
array. Although FA has better performance in reducing the
SLL of the circular antenna array, the CPU time is longer.

Saxena et al. [33] use the GWO algorithm to obtain the
optimized antenna positions and current amplitudes in order
to achieve the best pattern synthesis. This method provides
a considerable enhancement to the optimization of the linear
antenna array. Nonetheless, no evaluation is made for other
types of antenna optimization. Li et al. [34] adopt improved
biogeography-based optimization (BBO) to optimize the lin-
ear and circular antenna array beam patterns. Nonetheless,
it does not provide the performance of the algorithm for the
high-dimensional optimization problem. Li et al. [35] employ
invasive weed optimization (IWO) to optimize the maximum
SLL of the conical conformal array because this method has
good efficiency and stability. Nonetheless, the convergence
speed has limitations in some aspects. Sun et al. [36] adopt
a cuckoo search (CS) algorithm to suppress the SLL of the
large antenna array in 5G communications, and the maxi-
mum SLL and the total transmission power are collectively
reduced. Nonetheless, there is no mention of the effective-
ness of the introduced improvement factors. Sun et al. [37]
combine the CS algorithm and the CSO algorithm to propose
an algorithm called CSCSO, which is used to optimize the
beam pattern of the virtual node antenna array. Nonetheless,
the performance of CSCSO on the large antenna arrays is
not studied. Among the similar algorithms, the conventional
CSO [38] is a novel algorithm with a superior performance
in recent years, which draws on the diversity of chicken
movement methods to break the balance between randomness
and determinism to find the optimal solution. Therefore, it has
been favored by lots of engineering optimization fields. The
fly in the ointment is that no such kind of algorithm can
perfectly solve all optimization problems. Although the con-
ventional CSO provides a commendable idea, each solution
update method is not effective, which results in a decrease
in the overall search ability of the algorithm [39], [40].
Hence, these circumstances above prompt us to propose an
improved version of the conventional CSO algorithm for
solving the SVM robust beamforming optimization model.
Generally, the approach is deemed satisfactory if it has
the ability to enhance the robustness of the beamformer
significantly.

Generally speaking, our noteworthy technical contribu-
tions are introduced as follows:

1) A robust beamforming fitness function based on SVM
is constructed, which minimizes the array output power
and adopts a linear ε - insensitive loss function.

2) In order to overcome the deficiencies as mentioned
above of the conventional CSO algorithm, we propose
an ICSO algorithm to solve the beamforming problem
in the case of steering vector mismatch, that is, under
non-ideal conditions. First of all, ICSO introduces the
solution of the GWO algorithm to improve the random-
ness and blindness caused by the normal distribution of
the solution update method of the roosters in conven-
tional CSO to provide a more effective search method.
Secondly, on account of the solution update method of
hens following roosters oversimplifies, and the position
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of chicks is only determined by their mother hens,
which is prone to fall into local optimum in the later
iteration. Therefore, we introduce the attraction mech-
anism that can enrich the update methods of hens and
chicks. It also plays an indispensable role in the opti-
mization algorithm. Last but not least, a mechanism
to remove duplicate solutions is proposed to improve
the population diversity of the algorithm. By means
of improved mechanism, ICSO can avoid premature
convergence and jump out of the local optimal solution
to the global.

3) We conduct multi-dimensional simulations to further
confirm the robustness of the proposed ICSO algorithm
for steering vector mismatch.

II. BACKGROUND
It is assumed that K narrowband signals come from the far-
field, and the number of M isotropic sensors are distributed in
a uniform linear array. The output of narrowband beamformer
can be expressed as:

y = wHx(k) (1)

where k is the time index, w =
[
w1 ,w2 · · · wM

]
T is the

weighted vector, x(k) =
[
x1 (k), x2 (k), · · · , xM (k)

]
T is the

complex vector of array observations, and (·)H and (·)T denote
conjugate transpose and transpose, respectively. The observa-
tion data vector at time instant k is given by:

x(k) = s(k)+ i(k)+ n(k)

= s(k)a (θs)+
Ki∑
j=1

ij(k)a
(
θij
)
+ n(k) (2)

where Ki is the number of interference signals, and s(k), i(k),
and n(k) represent the signal, interference and noise vectors,
respectively. Here, s(k) and ij(k) are the signal and interfer-
ence symbol samples. The signal and interference DOA are θs
and θij, j = 1, · · · ,K , a (θs) and a

(
θij
)
are the corresponding

steering vectors. The design of the classical LCMV beam-
former can be written as follows:

min
w
wHRxw subject to FHw = g (3)

where Rx =
1
N0

N0∑
k=1

[
x(k)xH(k)

]
is the sample covariance

matrix, N is the number of snapshots, F is a matrix with
the linear constraints, and g is a complex constant that mea-
sures the array response at the expected DOA. In particular,
the value of g is equal to 1, indicating that the response
remains constant in the direction of observation, and the
LCMV beamformer is commonly referred to as MVDR
beamformer. When there is an estimation error in DOA of
the desired signal or imperfect array calibration, the MVDR
beamformer is known to degrade substantially. The reason for
this phenomenon is that the desired signal is considered as
interference. The MVDR beamformer can be expressed as:

min
w

wHRxw subject to wHa (θs) = 1 (4)

We employ additional inequality constraints to modify the
LCMV beamforming problem to ensure that the array only
responds within the angle error range of the steering vector,
thereby improving the robustness against the mismatch of
the steering vector. Let us consider the observational angle
range of the array as [0◦, 180◦], the DOA of signal and
interference can be written as θp, p = 1, · · · ,L. L1 is
the number of samples from the range of (θs − ϑ, θs + ϑ),
and L2 = L − L1 is the number of samples from the
range (0◦, θs − ϑ)∪ (θs + ϑ, 180◦). The desired beamformer
response can be established as:

yp =

{
0, |θi − θs| > ϑ

Re(g)+ j Im(g), |θi − θs| ≤ ϑ
(5)

where ϑ is the maximum angular error range of the steering
vector. Re(·) and Im(·) on behalf of the real and imaginary
parts of a scalar, vector, or matrix, respectively.

According to the theoretical characteristics of SVM, it is
necessary to reconstruct the optimizationmodel of the LCMV
beamforming:

min
w

1
2
wHRxw+ C

L∑
p=1

∣∣∣yp − wHa
(
θp
)∣∣∣
ε

(6)

where
∣∣yp − wHa

(
θp
)∣∣
ε
= max

{
0,
∣∣yp − wHa

(
θp
)
− ε

∣∣}
is known as ε - insensitive loss function, which allows errors
of array response for the assumed signal arrival angle θs
smaller than ε, and the parameter ε is a non-negative real
number that is used to define the set of admissible solutions.
C is also a non-negative regularization constant, which sets a
tradeoff between the output power of the array and the punish-
ment for the mismatch between the actual and desired array
response with an absolute difference larger than ε. In order to
apply the principle of SVM, the optimization problem needs
to be rewritten under the circumstances of real variables. For
this purpose, the minimization problem is reconstructed as:

L(w̃) =
1
2
w̃TR̃xw̃+ C

2 L∑
p=1

∣∣∣ỹp − w̃Ta(p)
∣∣∣
ε

(7)

where w̃ ∈ R2 M×1 is:

w̃T
=

[
Re
(
wT
)

Im
(
wT
)]

and R̃x ∈ R2 M×2 M is:

R̃x =
[
Re (Rx) − Im (Rx)
Im (Rx) Re (Rx)

]
For the sake of notational simplicity, we define the steering

vector and array response as:

ā(p) =

{
ã
(
θp
)
, p = 1, · · · ,L

ã′
(
θp
)
, p = L + 1, · · · ,2 L

ỹp =

{
Re
(
yp
)
, p = 1, · · · ,L

Im
(
yp
)
, p = L + 1, · · · 2 L
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where ã
(
θp
)
and ã′

(
θp
)
∈ R2 M×1 can be expressed as:

ãT
(
θp
)
=

[
Re
(
aT
(
θp
))

Im
(
aT
(
θp
))]

ã′T
(
θp
)
=

[
Im
(
aT
(
θp
))
− Re

(
aT
(
θp
))]

III. SVM-BASED SOLUTION
Within the context of the current paper, our objective is to
optimize the performance of the beamformer by determining
a set of optimal weighted vectors to achieve a superior beam
directivity and a lower maximum SLL. For this purpose,
we come up with a novel ICSO method for the above opti-
mization problem (7).

Suppose a set of optimal solutions obtained by the objec-
tive function (7) is:

w = [w1,w2, · · · ,wM ] = Aiejϕi (8)

where the vector A and ϕ represent the modulus and phase of
each element contained in the weighted vector, respectively.
Ai ≤ 1, ϕi = 2πki, i = 1, 2, · · · ,M . Accordingly, the search
space of the weighted vector should satisfy Ai ∈ (0, 1) and
ki ∈ (0, 1), i = 1, 2, · · · ,M .

Regarding w = [w1,w2, · · · ,wM ] as the complex weight
vector corresponding to the i th chicken, and the constraint
condition can be represented as:

M∑
i=1

Re (wi) = 1

M∑
i=1

Im (wi) = 0

(9)

The specific implementation method is as follows:

ai =
Re (wi)+

1
M

M∑
i=1

[
Re (wi)+

1
M

]
bi = Im (wi)−

1
M

M∑
i=1

Im (wi) (10)

Here, a complex weighted vector w = [a1 + jb1 , a2 +
jb2 , · · · , aM + jbM ] with constraints is obtained. Afterwards,
the corresponding transformation with regard to the real and
imaginary parts of the complex weighted vector is conducted
by utilizing w̃T = [Re (wT) Im (wT)]. In the end, the min-
imum value of the objective function (7) is determined by
ICSO algorithm, and w obtained by transforming w̃ cor-
responding to the minimum value is the optimal weighted
vector.

IV. PROPOSED ICSO APPROACH
In this section, we focus on the proposed ICSO method,
which is improved for conventional CSO to settle robust
beamforming based on SVM. ICSO method combines the
advantages of three swarm intelligence algorithms to promote

optimization performance. Furthermore, an operation mech-
anism of removing duplicate solutions is proposed to enhance
the utilization of the population. The specific process of the
ICSO is presented as follows.

A. CHICKEN SWARM OPTIMIZATION
CSO is a new swarm intelligence optimization algorithm
proposed in 2014, which effectively deals with the objective
optimization problem by means of imitating the hierarchy
order and the behavior of chickens. The primary regulations
of conventional CSO are as follows:

1) A special hierarchy order exists within the chicken
swarm, in which the roosters have the highest status
and often play the role of the decision-maker, while
the hens and chicks belong to the vulnerable groups,
therefore, the hens live with their subordinate roosters
and the chicks live with their mother hens.

2) The entire chicken swarm is divided into different
groups. Each group contains a leading rooster, many
hens dominated by rooster, and a number of chicks
following mother hens. In spite of the departure or
intrusion of any individual will temporarily disrupt the
social order of the group, a new hierarchy will be estab-
lished as soon as possible. In addition, competitions
exist within and between different groups, principally
manifested in the tendency of hens to forage as close
as possible to the rooster in the same group. when
the chickens from other groups invade their territory,
the rooster will also act to protect their territory from
invasion.

3) The objective function value is closely related to the
internal hierarchical order, which is the basis for divid-
ing the three roles in the chicken swarm. Specifically,
the chickens with the optimum fitness value will be
classified as roosters, the chickens with the worst fit-
ness value will serve as chicks, and the rest will act as
hens.

4) The partition cycle G is introduced to simulate the
influence of the variation in the number of individuals
in each group on its hierarchy order, which means that
after each iteration G, the three roles will be peri-
odically redistributed, and the hierarchy order of the
chicken swarm will also be redefined.

5) In the iterative process, for achieving the target of get-
ting close to the forage, the individuals move according
to their respective roles and the corresponding position
update formula. A new solution accompanies themove-
ment of an individual, and the global optimal solution
depends on chicken with the strongest foraging ability
in the chicken swarm.

The CSO algorithm updates the solution in different ways
depending on the role of the chickens. The specific imple-
mentation method is that the objective function values corre-
sponding to the candidate solutions are arranged in ascending
order. At this point, let us say that the smaller value of the
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objective function is, the better the solution will be. Then the
update method of roosters is as follows:

x t+1i,j = x ti,j ×
(
1+ Randn

(
0, σ 2

))
(11)

σ 2
=

 1 fi ≤ fk

exp
fk − fi
|fi| + ξ

otherwise
(12)

where Rand
(
0, σ 2

)
is a normal distribution function with

the mean of 0 and variance of σ 2, fi and fk are the objective
function values of i and k , k ∈ [1,R N ], and k 6= imeans that
another rooster k different from ith, and RN is the number of
roosters. ξ represents the smallest constant in the computer,
and its function is to prevent the denominator from being 0.

In general, the foraging behavior of hens is led and
constrained by the roosters within the same group. In the
meantime, there is still a competitive relationship with other
chickens, so the solution update method of hens can be
designed as follows:

x t+1i,j = x ti,j + exp
(
fi − fr1
|fi| + ξ

)
× Rand ×

(
x tr1,j − x

t
i,j

)
+ exp

(
fr2 − fi

)
× Rand ×

(
x tr2,j − x

t
i,j

)
(13)

where Rand is a random number in the interval [0, 1], r1
represents the rooster in the group with ith hen, r2 represents
another rooster or hen other than the group with ith hen, that
is to say, r1 6= r2.
Chicks as the most vulnerable group in the chicken swarm.

They can only forage just around their mother hens. There-
fore, the solution update method of chicks can be described
as follows:

x t+1i,j = x ti,j + FL ×
(
x tm,j − x

t
i,j

)
(14)

where m is the mother hen followed by the ith chick, FL
represents the foraging coefficient.

B. IMPROVED CHICKEN SWARM OPTIMIZATION
It is widely known that the conventional CSO method is a
new algorithm proposed in recent years, which has many
merits compared with other swarm intelligence algorithms.
Nevertheless, due to the difficulty and complexity of the
beamforming optimization issue, we find that the conven-
tional CSOmethod has enormous limitations in deal with this
matter [41]. As we all know, the conventional CSO algorithm
makes full use of the hierarchical mechanism to improve the
overall optimization performance of the algorithm. However,
the efficiency of the update method of each solution in the
chicken society is not excellent, which leads to the lack of
exploration of the algorithm. Therefore, the PSO algorithm
with fast convergence speed in the early stage of iteration,
FA with novel attraction mechanism and GWO algorithm
with similar internal hierarchical order to the chicken swarm
are fully integrated into the conventional CSO algorithm.
In addition, it is considered that the continuously updated
candidate solutions may appear two identical solutions in the

same iteration, which will generate a less diverse population
and a lower utilization. Hence, the operation mechanism of
removing duplicate solutions is introduced to increase the
diversity of the population, thereby improving the optimiza-
tion performance of the algorithm. The details of the major
improvements to ICSO are presented in Algorithm 1.

Algorithm 1 ICSO
1: Parameter initialization;
2: Determine fitness function f (x);
3: Evaluate the fitness value of f (x);
4: while t < tmax do
5: if t%G == 0 then
6: sort the solutions according to f (x)
7: Define the hierarchal order and relationship
8: else
9: for i = 1 to N do
10: if ith solution is a rooster then
11: Update xi using Eq. (15);
12: end if
13: if ith solution is a hen then
14: Update xi using Eq. (19);
15: end if
16: if ith solution is a chick then
17: Update xi using Eq. (22);
18: end if
19: Evaluate the new solution;
20: If the fitness value of new solution better than
21: original, accept it, otherwise, reject it, accept
22: the original solution.
23: end for
24: Remove the duplicate solution using Algorithm2;
25: end if
26: end while

1) IMPROVED UPDATE METHOD OF ROOSTERS
In essence, the roosters are nearer to the optimal solution due
to their dominant position in the population. Nevertheless,
the solution update method of roosters in conventional CSO
obeys the normal distribution, which has great randomness
and blindness, thereby resulting in the lack of exploitation
ability. For overcoming the defect, we introduce the solution
update approach of the alpha wolf of GWO as the globe
search mechanism to improve the search performance. More-
over, we also introduce the solution update approach of PSO
to speed up the convergence rate.

By introducing the solution update approach of GWO
and PSO, the improved update approach of roosters can be
designed as follows:

x t+1i,j = gbest − H × Q+ Xv (15)

Q = | T × gbest − x ti,j |, T = 2 r3 (16)

H = 2 br4 − b (17)
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Xv = wr × vti,j + r5 × Rand ×
(
pbest − x ti,j

)
+ r6 × Rand ×

(
gbest − x ti,j

)
(18)

where H and T are coefficient factors, and b is the conver-
gence factor that linearly decreases from 2 to 0 as the number
of iterations increases. Q is used to represent the distance
between the current and the global optimal solution, r3 and
r4 are both random numbers in the interval [0, 1],V t

i,j is the
speed of ith rooster in the tth generation, pbest and gbest rep-
resent the local and the global optimal solution respectively,
and r5 and r6 are learning factors. wr = (0.5+Rand)/2, that
is, the value is in the interval [0.25,0.75], which is the inertia
weight to improve the optimization performance.

2) IMPROVED UPDATE METHOD OF HENS
As a matter of fact, the hens can be regarded as vulnerable
groups in the population. In other words, the hens are rel-
atively far from the optimal position. In conventional CSO,
the solution update approach of the hens is divided into two
parts. The first part is that the hens follow the rooster in
their own group, and the second part is that they also follow
other roosters or hens in other groups. However, the operation
of the following rooster in their own group oversimplifies,
so that their exploration ability is insignificant. In terms of
this issue, we introduce the FA with attraction mechanism
into the update approach of hens, which is exactly similar to
the principle of rooster attracting hens. This idea improves
the optimization efficiency of the algorithm on the basis of
enriching the original solution update approach.

By adopting the attraction mechanism of FA, the improved
the update method of hens can be described as follows:

x t+1i,j = x ti,j + β ×
(
x tr1,j − x

t
i,j

)
+α × ζ + S2 × Rand ×

(
x tr2,j − x

t
i,j

)
(19)

β = eγ×r
2

(20)

r =
∥∥xr1 − xi∥∥ =

√√√√√ d∑
j=1

(
xr1,j − xi,j

)2 (21)

where β represents the attraction coefficient, γ indicates the
light absorption coefficient, which is a random number in
the interval [0.1, 10 ], and r manifests the Cartesian distance
between r1 and i. As the step size, α is a random number on
the interval [0, 1]. ζ is a random number generated from a
normal distribution.

3) IMPROVED UPDATE METHOD OF CHICKS
As we all know, the solution update methods of chicks are
only determined by their corresponding mother hens, which
is prone to fall into local optimum in the later iteration. This
mechanism is particularly easy to make the chicken deviate
from the optimal solution. Given this, we employ the FA
with attraction mechanism into the update method of chicks,
which will prompt the algorithm to effectively jump out of the

local optimal solution, thereby obtaining the global optimal
solution. Then, the improved update method of chicks is as
follows:

x t+1i,j = x ti,j + β ×
(
x tm,j − x

t
i,j

)
+ α × ζ (22)

4) THE OPERATION OF REMOVING DUPLICATE SOLUTIONS
Specifically, in the iterative process where the candidate
solutions are constantly updated, there may be two identical
solutions in the candidate solution set in the same itera-
tion, which will reduce the diversity and utilization of the
population, thereby leading to a poorer performance. Within
the context of the current section, in order to improve the
update efficiency of the respective solutions in CSO algo-
rithm, we introduce an operation mechanism to remove the
duplicate solutions, which finds out the duplicate solutions
by comparing the candidate solutions sorted according to the
merits and demerits of the objective function values. Then,
a new candidate solution is randomly generated to replace it,
which may enhance the effectiveness of the algorithm. The
steps of the operation mechanism to remove the duplicate
solutions are presented in Algorithm 2.

Algorithm 2 Remove Duplicate Solution Mechanism
1: for i = 1 to N do
2: Rank in descending order for each dimension of xi;
3: Acquire a new solution xii;
4: for j = i+1 to N do
5: Rank in descending order for each dimension of
6: xj;
7: Acquire a new solution xjj;
8: if xii==xjj then
9: Elect the value of xjj from the same dimension

randomly;
10: end if
11: end for
12: end for

V. COMPUTER SIMULATIONS
In order to assess the performance of the proposed ICSO
algorithm for application in the field of beamforming tech-
niques, several simulations have been carried out in the
desired scenario without steering vector mismatch and the
practical circumstances with steering vector mismatch. Here,
we suppose that a uniform linear array with M = 16 sensors
and the isotropic sensors are arranged by a half wavelength,
that is, d = λ/2, where the wavelength is denoted by
the symbol λ. All signals are independent and the noise is
Gaussian white noise. In this section, the SVM-based beam-
forming algorithm employsVapnik’s linear ε - insensitive loss
functions. The signal -to noise rate (SNR) is set to 10 dB,
and the interference-to-noise-rate (INR) is set to 30 dB. The
actual signal DOA is 90◦, and the DOAs of the interferences
are 30◦, 70◦ and 130◦. The snapshots are set to 500, the
parameters C and ε are set to 1 and 0.001, respectively. The
uncertainty regionϑ is set equal to 2◦, the observational angle
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FIGURE 1. The beam patterns.

range [0◦, 180◦] is sampled uniformly at different intervals,
L1=20 angles are set from [88◦, 92◦], and L2 = 40 angles are
obtained from (0◦, 88) ∪ (92◦, 180◦).
We utilize swarm intelligence optimization algorithms to

solve the SVM-based beamforming technique. In order to
compare the application performance of PSO algorithm, FA,
GWO algorithm, CSO algorithm and ICSO algorithm in
the beamforming field, we set the following parameter as
TABLE 1:

A. THE BEAM PATTERNS
In experiment 1, we simulate the beam patterns without
steering vector mismatch and the practical circumstance with
steering vector mismatch, respectively. Afterwards, the per-
formance of PSO algorithm, FA, GWO algorithm, CSO
algorithm and ICSO algorithm in the beamforming field
is compared in Fig. 1, where Fig. 1(a) displays the beam
pattern in an ideal scenario without steering vector mismatch,
Fig. 1(b) displays the beam pattern in an actual scenario
with 2◦ of mismatch in the signal-of-interest DOA, Fig. 1(c)

TABLE 1. The key parameters setups of five optimization methods.

shows the beam pattern in an actual scenario with 0.02λ of
mismatch in the standard deviation for position perturbation,
and Fig. 1( d) demonstrates the beam pattern in an actual
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FIGURE 2. The patterns of SINR with SNR.

scenario with 0.20λ of mismatch in the standard deviation
for position perturbation. For the sake of a simple notation,
we denote the symbols of the intelligent optimization algo-
rithms applied to robust beamforming as PSO, FA, GWO,
CSO and ICSO, respectively. For convenience, place the
sensors on the Z -axis, the position of the sensors has random
positional disturbances in the Y and Z directions, and the
disturbance is an independent zero-mean Gaussian random
variable.

As can be seen from Fig. 1, due to the existence of the
desired signal in the training data cell, the performance of
the LCMV beamformer turns extremely worse, yet it always
has deep nulls at the DOAs of the interferences in any case.
Under the ideal scenario without mismatch, the other five
SVM-based intelligence algorithms can obtain prominent
main lobe beam pointing. In terms of sidelobe level, the FA
obtains the weakest performance with the highest sidelobe
level. On the contrary, ICSO achieves the lowest sidelobe
level with the greatest performance. In the aspect of inter-
ference suppression, the strength of the GWO and ICSO are

neck and neck, and both of them the outstanding interference
suppression ability. Although the other three algorithms can
suppress interference, their ability to suppress interference
is not strong. The other three algorithms also have the abil-
ity to suppress interference, whereas the effect is obviously
inferior to those two algorithms. In the actual situation of
mismatch, the sidelobe of the beam will be distorted to vary-
ing degrees as the position disturbance deviation increases,
and in the meanwhile, the ability to suppress interference
is also declined. Nevertheless, the ICSO still has the lowest
sidelobe level. In summary, it is proved that the applica-
tion of ICSO to robust beamforming is based on inheriting
the characteristics of the conventional LCMV algorithm and
combining the merits of SVM to make the method more
robust.

B. THE PATTERNS OF SINR WITH SNR
The simulation scenario of experiment 2 is the same as exper-
iment 1, which expresses the relationship between output
SINR and input SNR.
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FIGURE 3. The patterns of SINR with interferences.

Observing the diagrams in Fig. 2, we can highlight that
the swarm intelligence optimization algorithms achieve a
superior performance than LCMV under the higher input
SNR with the mismatch in the steering vectors, especially
the ICSO method. However, there is no doubt that LCMV
displays an extremely powerful performance with the highest
output SINR in an ideal scenario. Once the mismatch occurs,
the output SINR of LCMV gradually decreases with the input
SNR increase, thereby generating performance degradation.
However, the preponderances of the other five SVM-based
swarm intelligence optimization algorithms are manifested in
the scenario of the higher input SNRwith the mismatch in the
steering vectors, and the output SINR is gradually increased
along with the increase of the SNR no matter an ideal
scenario without mismatch or an actual condition with the
mismatch. Compared with the other four swarm intelligence
optimization algorithms, ICSO has a better performance with
the highest output SINR. It is found that the output SINR of

the SVM-based ICSO beamforming method has a superior
robust performance when the SNR is higher.

C. THE PATTERNS OF SINR WITH INTERFERENCES
The objective in our third experiment is to verify the variation
between output SINR and the number of interference, where
the simulation scenario is the same as experiment 1.

As for Fig. 3, it is found that the performance of LCMV in
a scenario without mismatch is quite stable, and the output
SINR of the beamformer is hardly affected by the num-
ber of interference. In addition, for the 2◦ angle error in
the steering vector, the LCMV method still has significant
stability, while the output SINR of the beamformer is not
as superior as before. However, once the mismatch occurs,
the output SINR gradually decreases with the increase of
the number of interference, which makes the performance
of the beamformer worse. In view of the other five swarm
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FIGURE 4. The patterns of SINR with Snapshots.

intelligence optimization algorithms, we can demonstrate that
their output SINR exhibits a downward trend as the number
of interference increases. Besides, whether the scenario is
perfect or not, all of them can display superior performance
in a scenario with less interference. In the aspect of searching
for the optimal solution, ICSO is the leader of the other
four algorithms. It directly indicates that the output SINR of
ICSO for SVM-based has superior robust performance under
a small amount of interference.

D. THE PATTERNS OF SINR WITH SNAPSHOTS
Similar to the scenario of the previous three experiments,
in our fourth experiment, which reveals the changes between
output SINR and the number of snapshots.

As can be obviously understood from Fig. 4, in an ideal
scenario without mismatch in the steering vector, the output
SINR of LCMV appears an upward trend as the number
of snapshots increases, and the performance of the beam-
former is fine. Once there is a mismatch, the output SINR
drops sharply as the number of snapshots increases, and the
performance of the beamformer deteriorates. Nevertheless,
regardless of an ideal scenario without mismatch or an actual

situation with the mismatch, the output SINR of the other
five SVM-based swarm intelligence optimization algorithms
will not change significantly as the number of snapshots
increases, thereby showing the extremely stable performance.
Compared with the other four swarm intelligent optimization
algorithms, the SVM-based ICSO algorithm has the highest
output SINR. It shows that the beamforming method based
on SVM is not sensitive to the variation of the snapshots, and
the perfect cooperation with the ICSOmakes the beamformer
demonstrate more superior performance.

VI. CONCLUSION
In this study, the conventional LCMV beamformer is
redesigned as a support vector regression problem, and then
the proposed ICSO approach is employed to settle the robust
beamforming. The target includes the following contents: a)
enhancing the robustness of the beamformer against errors
in array response caused by misalignment in the steering
vector. b) restraining and controlling the sidelobe level of the
beam. We consider using the linear ε - insensitive loss func-
tion, and selecting the appropriate penalty parameter. Then,
the proposed ICSO method is adopted to solve the robust
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beamforming ultimately. Computer simulation indicates that
regardless of whether the steering vector is mismatched,
the ICSO for SVM-based has satisfactory performance. Espe-
cially in the situation of higher SNR and lower number of
interference signals.

The authors believe this study is just a small step in the
design of robust beamforming solutions. Future work should
improve the robustness of beamforming in multiple interfer-
ence situations.

REFERENCES
[1] J. Xu, G. Liao, L. Huang, and H. C. So, ‘‘Robust adaptive beamforming for

fast-moving target detection with FDA-STAP radar,’’ IEEE Trans. Signal
Process., vol. 65, no. 4, pp. 973–984, Feb. 2017.

[2] H. Cho, J. Gu, and S.-C. Yu, ‘‘Robust sonar-based underwater object
recognition against angle-of-view variation,’’ IEEE Sensors J., vol. 16,
no. 4, pp. 1013–1025, Feb. 2016.

[3] J. Dang, Z. Zhang, and L. Wu, ‘‘Joint beamforming for
intelligent reflecting surface aided wireless communication using
statistical CSI,’’ China Commun., vol. 17, no. 8, pp. 147–157,
Aug. 2020.

[4] H. R. Johnson and T. M. Khoshgoftaar, ‘‘Robust adaptive
beamforming based on low-rank and cross-correlation techniques,’’
IEEE Trans. Signal Process., vol. 64, no. 15, pp. 3912–3919,
Aug. 2016.

[5] F. Shen, F. Chen, and J. Song, ‘‘Robust adaptive beamforming based on
steering vector estimation and covariance matrix reconstruction,’’ IEEE
Commun. Lett., vol. 19, no. 9, pp. 1636–1639, Sep. 2015.

[6] M. Wax and Y. Anu, ‘‘Performance analysis of the minimum variance
beamformer,’’ IEEE Trans. Signal Process., vol. 44, no. 4, pp. 928–937,
Apr. 1996.

[7] J. Capon, ‘‘High-resolution frequency-wavenumber spectrum analysis,’’
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[8] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, ‘‘A stochastic model of
the temporal and azimuthal dispersion seen at the base station in outdoor
propagation environments,’’ IEEE Trans. Veh. Technol., vol. 49, no. 2,
pp. 437–447, Mar. 2000.

[9] L. Godara, ‘‘The effect of phase-shifter errors on the performance of
an antenna-array beamformer,’’ IEEE J. Ocean. Eng., vol. OE-10, no. 3,
pp. 278–284, Jul. 1985.

[10] J. Zheng, T. Yang, H. Liu, and T. Su, ‘‘Efficient data transmission strategy
for IIoTs with arbitrary geometrical array,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 5, pp. 3460–3468, May 2021.

[11] M. Wax and Y. Anu, ‘‘Performance analysis of the minimum
variance beamformer in the presence of steering vector errors,’’
IEEE Trans. Signal Process., vol. 44, no. 4, pp. 938–947,
Apr. 1996.

[12] Y. Zhang, D. Sun, and D. Zhang, ‘‘Robust adaptive acoustic vector sensor
beamforming using automated diagonal loading,’’ Appl. Acoust., vol. 70,
no. 8, pp. 1029–1033, Aug. 2009.

[13] H. Cox, R. Zeskind, and M. Owen, ‘‘Robust adaptive beamforming,’’
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-35, no. 10,
pp. 1365–1376, Oct. 1987.

[14] O. Besson and F. Vincent, ‘‘Performance analysis of beamformers using
generalized loading of the covariance matrix in the presence of random
steering vector errors,’’ IEEE Trans. Signal Process., vol. 53, no. 2,
pp. 452–459, Feb. 2005.

[15] J. Li, P. Stoica, and Z. Wang, ‘‘On robust capon beamforming and diagonal
loading,’’ IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1702–1715,
Jul. 2003.

[16] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, ‘‘Robust adaptive beam-
forming using worst-case performance optimization: A solution to the
signal mismatch problem,’’ IEEE Trans. Signal Process., vol. 51, no. 2,
pp. 313–324, Feb. 2003.

[17] R. G. Lorenz and S. P. Boyd, ‘‘Robust minimum variance beamform-
ing,’’ IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684–1696,
May 2005.

[18] J. Li, P. Stoica, and Z. Wang, ‘‘On robust capon beamforming and diag-
onal loading,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 5, Apr. 2003, pp. 334–337.

[19] J. Zheng, R. Chen, T. Yang, X. Liu, H. Liu, T. Su, and L. Wan,
‘‘An efficient strategy for accurate detection and localization of UAV
swarms,’’ IEEE Internet Things J., early access, Mar. 8, 2021, doi:
10.1109/JIOT.2021.3064376.

[20] J. Zheng, T. Yang, H. Liu, T. Su, and L. Wan, ‘‘Accurate detection and
localization of UAV swarms-enabled MEC system,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 7, pp. 5059–5067, Jul. 2021, doi: 10.1109/TII.
2020.3015730.

[21] Y. Chen, F. Wang, J. Wan, and G. Li, ‘‘Convex optimization based
robust adaptive beamforming for underwater sensor array,’’ in
Proc. IEEE 13th Int. Conf. Signal Process. (ICSP), Nov. 2016,
pp. 1661–1665.

[22] K. L. Bell, Y. Ephraim, and H. L. Van Trees, ‘‘A Bayesian approach to
robust adaptive beamforming,’’ IEEE Trans. Signal Process., vol. 48, no. 2,
pp. 386–397, Feb. 2000.

[23] A.Morell, A. Pascual-Iserte, andA. I. Pérez-Neira, ‘‘Fuzzy inference based
robust beamforming,’’ Signal Process., vol. 85, no. 10, pp. 2014–2029,
Oct. 2005.

[24] J. Liu, A. B. Gershman, Z.-Q. Luo, and K. M. Wong, ‘‘Adaptive
beamforming with sidelobe control: A second-order cone programming
approach,’’ IEEE Signal Process. Lett., vol. 10, no. 11, pp. 331–334,
Nov. 2003.

[25] G. Mahmoud, A. Omar, and O. Mohmoud, ‘‘Novel overlap method
to eliminate vector deviation error in SVM of current source invert-
ers,’’ IEEE Trans. Power Electron., vol. 33, no. 1, pp. 299–312,
Jan. 2018.

[26] G. M. Borkar, L. H. Patil, D. Dalgade, and A. Hutke, ‘‘A novel clus-
tering approach and adaptive SVM classifier for intrusion detection in
WSN: A data mining concept,’’ Sustain. Comput., Informat. Syst., vol. 23,
pp. 120–135, Sep. 2019.

[27] F. Javier, D. L. Calle, D. F. Garcia, and R. Usamentiaga, ‘‘Feature subset
selection for support vector machines through discriminative function
pruning analysis,’’ IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 34,
no. 1, pp. 60–67, Feb. 2004.

[28] M. Böhland, W. Doneit, L. Gröll, R. Mikut, and M. Reischl, ‘‘Auto-
mated design process for hybrid regression modeling with a one-
class SVM,’’ At-Automatisierungstechnik, vol. 67, no. 10, pp. 843–852,
Oct. 2019.

[29] X. Ren, Y. Wang, T. Guo, and Q. Wang, ‘‘Robust adaptive beamforming
using support vector machines,’’ IEEE Access, vol. 8, pp. 137955–137965,
2020.

[30] S. Todnatee and C. Phongcharoenpanich, ‘‘Iterative GA optimization
scheme for synthesis of radiation pattern of linear array antenna,’’ Int. J.
Antennas Propag., vol. 2016, pp. 1–8, Jun. 2016.

[31] X. Li, J. Z. Zhou, and X. L. Du, ‘‘Planar arrays synthesis for optimal
wireless power transmission,’’ IEICE Electron. Exp., vol. 12, no. 11,
Jun. 2015, Art. no. 20150346.

[32] A. Sharaqa and N. Dib, ‘‘Circular antenna array synthesis using fire-
fly algorithm,’’ Int. J. RF Microw. Comput.-Aided Eng., vol. 24, no. 2,
pp. 139–146, Mar. 2014.

[33] P. Saxena and A. Kothari, ‘‘Optimal pattern synthesis of linear antenna
array using grey wolf optimization algorithm,’’ Int. J. Antennas Propag.,
vol. 2016, pp. 1–11, Apr. 2016.

[34] H. Li, Y. Liu, G. Sun, A. Wang, and S. Liang, ‘‘Beam pattern
synthesis based on improved biogeography-based optimization for
reducing sidelobe level,’’ Comput. Elect. Eng., vol. 60, pp. 161–174,
May 2017.

[35] Y. Li, F. Yang, J. Ouyang, and P. Yang, ‘‘Synthesis of conical conformal
array antenna using invasive weed optimization method,’’ Appl. Comput.
Electromagn. Soc. J., vol. 28, no. 11, pp. 1025–1030, 2013.

[36] G. Sun, Y. Liu, J. Li, Y. Zhang, and A.Wang, ‘‘Sidelobe reduction of large-
scale antenna array for 5G beamforming via hierarchical cuckoo search,’’
Electron. Lett., vol. 53, no. 16, pp. 1158–1160, Aug. 2017.

[37] G. Sun, Y. Liu, S. Liang, Z. Chen, A. Wang, Q. Ju, and Y. Zhang,
‘‘A sidelobe and energy optimization array node selection algorithm for
collaborative beamforming in wireless sensor networks,’’ IEEE Access,
vol. 6, pp. 2515–2530, 2018.

[38] S. Deb, X.-Z. Gao, K. Tammi, K. Kalita, and P.Mahanta, ‘‘A new teaching–
learning-based chicken swarm optimization algorithm,’’ Soft Comput.,
vol. 24, no. 7, pp. 5313–5331, Apr. 2020.

[39] S. Liang, Z. Fang, G. Sun, Y. Liu, G. Qu, and Y. Zhang, ‘‘Sidelobe
reductions of antenna arrays via an improved chicken swarm optimization
approach,’’ IEEE Access, vol. 8, pp. 37664–37683, 2020.

73192 VOLUME 9, 2021

http://dx.doi.org/10.1109/JIOT.2021.3064376
http://dx.doi.org/10.1109/TII.2020.3015730
http://dx.doi.org/10.1109/TII.2020.3015730


L. Cui et al.: Robust Array Beamforming via ICSO Approach

[40] W. Di, M. Wang, and X. Sun, ‘‘Ldentification of bolt anchorage
defects based on Elman neural network optimised by improved chicken
swarm optimisation algorithm,’’ Insight, vol. 62, no. 10, pp. 588–597,
Oct. 2020.

[41] S. Liang, T. Feng, and G. Sun, ‘‘Sidelobe-level suppression for linear and
circular antenna arrays via the cuckoo search–chicken swarm optimisation
algorithm,’’ IET Microw., Antennas Propag., vol. 11, no. 2, pp. 209–218,
Jan. 2017.

LIN CUI received the B.S. degree from the Inner
Mongolia University of Science and Technology,
Baotou, China, in 2006, and the M.S. and Ph.D.
degrees from Northwestern Polytechnic Univer-
sity, Xi’an, China, in 2009 and 2013, respectively.
She is currently a Lecturer with Xi’an Polytech-
nic University. Her main research interest includes
array signal processing.

YIXIN ZHANG received the B.S. degree from the
Zhengzhou University of Economics and Busi-
ness, Zhengzhou, China, in 2018. She is currently
pursuing the M.S. degree with Xi’an Polytechnic
University, Xi’an, China. Her main research inter-
est includes array signal processing.

YAMENG JIAO received the B.S. degree from
the Henan Institute of Science and Technology,
Luoyang, China, in 2005, and the M.S. and Ph.D.
degrees from Northwestern Polytechnic Univer-
sity, Xi’an, China, in 2008 and 2013, respectively.
She is currently a Lecturer with Xi’an Polytech-
nic University. Her main research interest include
array signal processing.

VOLUME 9, 2021 73193


