
Received March 30, 2021, accepted May 6, 2021, date of publication May 17, 2021, date of current version May 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081353

Analysis of Edge-Optimized Deep Learning
Classifiers for Radar-Based
Gesture Recognition
MATEUSZ CHMURSKI 1,2, MARIUSZ ZUBERT 2, (Member, IEEE),
KAY BIERZYNSKI1, AND AVIK SANTRA 1, (Senior Member, IEEE)
1Infineon Technologies AG, 85579 Neubiberg, Germany
2Department of Microelectronics and Computer Science, Lodz University of Technology, 90924 Łódź, Poland

Corresponding author: Mateusz Chmurski (mateusz.chmurski@infineon.com)

This work was supported in part by the Electronic Components and Systems for European Leadership Joint Undertaking (Tempo) under
Agreement 826655, in part by the European Union’s Horizon 2020 Research and Innovation Program and Belgium, France, Germany,
Switzerland, and Netherlands, and in part by the Internal University Grant of the Lodz University of Technology.

ABSTRACT The increasing significance of technology in daily lives led to the need for the development of
convenient methods of human-computer interaction (HCI). Given that the existing HCI approaches exhibit
various limitations, hand gesture recognition-based HCI may serve as a more intuitive mode of human-
machine interaction in many situations. In addition, the system has to be deployable on low-power devices
for applicability in broadly defined Internet of Things (IoT) and smart home solutions. Recent advances
exhibit the potential of deep learning models for gesture classification, whereas they are still limited to high-
performance hardware. Embedded neural network accelerators are constrained in terms of available memory,
central processing unit (CPU) clock speed, graphics processing unit (GPU) performance, and a number of
supported operations. The aforementioned problems are addressed in this paper by namely two approaches
- simplifying the signal processing pipeline to avoid recurrent structures and efficient topological design.
This paper employs an intuitive scheme allowing for the generation of the data in the compressed form from
the sequence of range-Doppler images (RDI). Thus, it allows for the design of a neural classifier avoiding
the usage of recurrent layers. The proposed framework has been optimized for Intel R© Neural Compute Stick
2 (Intel R© NCS 2), at the same time achieving promising classification accuracy of 97.57%. To confirm the
robustness of the proposed algorithm, five independent persons have been involved in the algorithm testing
process.

INDEX TERMS Accelerator, data augmentation, edge computing, FMCW, gesture recognition, neural
networks, DNNs, optimization, radar, intel NCS2.

I. INTRODUCTION
Currently, artificial intelligence (AI) has led to rise in
smart sensors and devices in the market [1]. It is leveraged
in big data to Internet of Things (IoT) devices to smart
homes to autonomous cars [2]. This growth is manifested
in their increasing performance in pattern recognition tasks.
DNNs and their varieties, namely, convolutional neural net-
works (CNNs), Recurrent Neural Networks (RNNs), Gener-
ative Adversarial Networks (GANs) [3], are becoming the
most important methods in pattern recognition problems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao-Yang Chen .

Deep Learning methods have made distinct breakthroughs in
a broad spectrum of fields, including computer vision, speech
recognition, natural language processing, medical diagnosis,
and board games [3]–[5].

In the last few years, researches carried out by numerous
teams in R&D centers have led to the remarkable devel-
opment of architectures such as AlexNet [6], VGGNet [7],
and ResNet [8], which can learn a deep representation of
the data and have become one of the most popular archi-
tectures in the field of computer vision. Recent advances
in deep learning are the driving force for further research
heading towards optimizing those solutions and deployment
on the edge devices. According to Ericsson [4], 45.00%

74406 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5442-4744
https://orcid.org/0000-0001-7924-7724
https://orcid.org/0000-0002-8156-3387
https://orcid.org/0000-0002-8095-399X


M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

of the global internet congestion will be generated by IoT
devices, which confirms the need for thorough research in this
direction.

Neural network optimization, including both architectural
design and post training optimization, gives the develop-
ers the possibility to convert a very complex deep learning
model into a streamlined implementation [9]. Architectural
optimization in mobile deep learning models are based on
the replacement of traditional convolutions with depthwise
separable convolutions, squeezing the output channels of the
network using 1 × 1 convolution [10], or splitting up the
channels into groups and applying a depthwise convolution
with a different kernel size to each group [10]. Such architec-
tural optimizations are part of several renowned architectures
such as MobileNetV1 [10], SqueezeNet [11], MixNet [12],
andGoogleLeNet [13], [14]. Other approaches involve hyper-
parameter configuration and automatic architecture search
[15], [16]. Post-training quantizations involve network
pruning, quantizations, format optimization [17], [18].
Furthermore, another challenge is the choice of appropri-
ate optimization strategy that highly depends on the data
characteristics. In this regard, system optimization gives the
developers the capacity to tune the system for the best system
performance [19], [20].

The main idea behind the notion of edge computing is
pushing the computational and communication resources
from the cloud to the edge of networks to perform com-
putations [3], [4], [21], [22], thereby avoiding unneces-
sary communication latencies, providing a privacy protection
capability, and enabling faster response for the end-users
[3], [4], [21], [22]. Thus, the necessity to optimize neural
network models for such edge devices is of fundamental
significance towards the improvement of an overall system
performance.

The typical machine learning pipeline consists of the
following steps: data collection, model training, and infer-
ence [23], [24]. For resource constrained embedded devices,
an important aspect to be considered is an appropriate data
processing, which allows for a low-dimensional represen-
tation of the data [25]. Low-dimensional data allows for
the design of the less computationally complex algorithm.
During the prototyping of the intelligent systems, one of the
major concerns in designing a robust system is the amount
of available data [26], [27]. It is unfeasible for the system
designed to provide a huge source of data to train the system
that does not over fit. For that reason, to avoid this problem,
it is necessary to use data augmentation to increase the num-
ber of training examples [26], [27]. However, the data aug-
mentation is very application-specific. For instance, the same
data augmentation applied to images does not fit the model
training for radar images or medical images.

The next steps in model generation are model training and
optimization, where optimization involves appropriate hyper-
parameters tuning that lead to the best results [28]. Once a
model is finalized, the model is deployed for inference on
the edge device. Post-training optimization involves weight

quantizations, node fusions, and network pruning for opti-
mized performance for the specific embedded deployment.

Gesture sensing technology is one of the most intuitive and
common approaches in the field of human-computer inter-
action (HCI) giving computers the possibility to understand
human gestures and analyze human intentions [29]–[31].

Recent advances in this field are mainly vision-based
products, (i.e., they use camera sensors, e.g., RGB and
ToF) [29]–[31]. These systems are mainly based on ana-
lyzing the spatially-temporal relations between consecutive
frames using CNN3D and long short-term memory (LSTM)
[32], [33]. The analysis of consecutive frames is a compu-
tationally complex task which cannot be implemented on
resource-constrained devices such as contemporary neural
network accelerators [34]–[38]. In the era of continuously
increasing privacy needs, personal data protection, and the
popularity of energy-efficient solutions, the development of
algorithms that can be deployed on the edge of the network is
a significant challenge [5], [22]. Therefore, the main focus
of this paper is placed on the design of an intuitive signal
processing scheme allowing for optimization and deployment
of deep learning gesture classifier on the edge.

In this work, we propose an optimized deep learning model
on the edge computing platform. First of all, to create the
dataset, we collect data from the BGT60TR13C FMCW
radar sensor [39]. The samples are assigned to a corre-
sponding label, and a sophisticated preprocessing scheme
is applied to raw radar signal, which allows for avoidance
of computationally complex neural network operators [38].
Secondly, the dedicated deep learning topology is trained on
the collected data and compared with state-of-the-art topolo-
gies [40]. In order to find themodel with the best hyperparam-
eters, the 5-fold cross-validation has been applied. Thirdly,
the dedicated CNN layers pruning is applied [21], [41],
the model is fine-tuned and tested. The pruned models are
deployed on Rasperry Pi4 with Intel R© NCS 2 to enable the
decentralized and embedded application. The dataset has four
gestures: up-down, down-up, left-right, rubbing. In order to
prevent our system from overfitting effect, the sophisticated
data augmentation scheme is applied during training. The
model is trained using CPU optimization and hyperparameter
tuning. Keras [42] with Tensorflow [18] backend is used as
a framework for model design and training. The dedicated
topology is proposed and benchmarked against topologies
utilized in embedded application deployment. The Model
Optimizer (MO) [43] is utilized to tune the model and deploy
it on the edge device.

The main contributions of this paper are as follows:
1) The implementation of proof-of-concept edge-efficient

gesture recognition radar system.1

2) Design of the data preprocessing, enabling the avoid-
ance of application ineffective deep learning operators.

3) Rigorous comparison among topologies for edge ges-
ture recognition solution.

1Demonstration video: https://youtu.be/TrDcmcVKpiY.

VOLUME 9, 2021 74407



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

4) Family of the deep neural classifiers optimized for the
deployment on the NCS 2.

II. RELATED WORKS
Lien et al. [44] has taken the initial steps in exploring the radar
as a new sensing modality in the field of gesture recognition,
proposing the whole gesture recognition pipeline (i.e., data
collection, digital signal pre-processing, signal transforma-
tions, feature extraction and training the classifier). They have
chosen the low-dimensional features to implement possibly
streamlined gesture sensing system. The extracted features
have been used as an input for the Random Forest Classifier.
The developed solution has been tested on two energy effi-
cient platforms such as Raspberry Pi2 running at 900 MHz
and the Qualcomm Snapdragon 400 (APQ8028) running
at 1.6 GHz.

Molchanov et al. [45] has proposed the gesture sensing
system based on the radar. They have developed the signal
processing methodology, which allowed them to generate the
range-Doppler maps (RDMs) and estimate the angle informa-
tion. The angle information has been used for the calibration
of the radar with the Time-of-Flight (ToF) camera. The result
of this work has been part of the larger multi-sensor system,
which included an RGB camera and a depth sensor [46].
They developed the multi-sensor gesture sensing system for
automotive applications basing their solution on the CNN3D
classifier. They achieved satisfactory classification results,
however their solution is undeployable on the edge device,
such as NCS 2, due to lack of support for CNN3D.

Hazra et al. [47], [48] proposed a radar gesture sensing
system based on Long Recurrent All Convolutional Neu-
ral Network (LRACN) making use of time-distributed layer
wrapper, which applies the same set of convolutional lay-
ers to each input time step. The extracted feature vector is
passed to an LSTM layer for temporal feature modeling in
the next phase. They show in their results, satisfying recog-
nition accuracy 94.0%; however, the proposed algorithm is
not deployable on resource-constrained devices (i.e., NCS 2,
Edge TPU). The inference time is 1.0 s, which prevents it
from providing a real-time interactive experience.

Zhang et al. [33] suggested an alternative solution. Their
approach relies on the utilization of CNN3D with LSTM.
They use CNN3D for short spatial-temporal modeling and
LSTM for global temporal feature extraction.

Their results exhibit a satisfying average recognition capa-
bility of 94.00%. However, this classifier utilizes the opera-
tions, which significantly increase the memory footprint, and
resource-constrained devices (i.e., NCS 2, Edge TPU) do not
support them [38].

Hazra et al. [32], [48] suggested the classifier based on
CNN3D feature embedding. This work essentially proposes
the use of CNN3D with triplet loss for learning the embed-
ded feature vectors, which are subsequently utilized by kNN
(k-Nearest Neighbours) algorithm for classification. This
approach exhibits similar limitations to the mentioned above.

Ahmed et al. [49] propose a hand gesture recognition sys-
tem using an IR-UWB radar with an inception module based
classifier. In this work, they implement a neural network
classifier with nine 3D inception modules. The results of
this research outperform state-of-the-art solutions. The com-
plicated signal processing scheme results in high resource
consumption, and it imposes the utilization of operations not
supported by the OpenVINO framework [38].

III. BACKGROUND REVIEW
This section presents the used tools, optimizations for edge
deployment, and model assessment methods. The next sub-
sections discuss each of the components in more detail.

A. DEEP LEARNING FRAMEWORK
Keras [42]with TensorFlow [18] backend is used as a baseline
framework for the design of our classifier. It is an open-
source tool that supports fast prototyping with numerous
auxiliary tools for efficient model analysis. In this work,
we use the dedicated version of TensorFlow for Intel proces-
sors [50], which is built on top of the Intel R© Math Kernel
Library for Deep Neural Network (Intel R© MKL-DNN) [51].
Furthermore, TensorFlow can be efficiently deployed on a
wide range of devices such as CPUs, GPUs, and low-power
devices with minimum effort.

B. TOPOLOGY DESIGN AND OPTIMIZATIONS
There are several aspects to be considered designing
the topology, which must be deployable on a resource-
constrained device, i.e., training time, model size, memory
footprint during model execution, accuracy, the instruction
set of the target device, and inference time. Those limitations
generate the topology design problem, which must be taken
into account during experimentations and system deploy-
ment. InceptionV1 and MobileNetV1 are the topologies sup-
ported by the edge device used in this work (i.e., Intel R©

NCS 2). This paper proposes a family of custom deep learn-
ing classifiers, which have been designed and optimized for
the embedded deployment and benchmarked against baseline
classifiers.

The number of trainable parameters is critical for resource-
constrained devices and needs to be carefully optimized.
While a shallow neural network leads to underfitting, a deeper
neural network with a large number of trainable parameters
can lead to overfitting and poor generalization if enough
training data are not available. An optimized embedded sys-
tem design needs to account for both accuracy and smaller
memory footprint.

C. MODEL ANALYSIS
This section lists the classification metrics used in this work
for the assessment of the model performance.
• Precision. This metrics is defined in the following way:

P =
TP

TP+ FP
(1)

74408 VOLUME 9, 2021



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

where: P is a Precision, TP is the number of true posi-
tives, and FP is the number of false positives. Precision
is the measure of the ability to label the sample as truly
positive. The worst value is 0, and the best is 1.

• Recall. This metrics is defined in the following way:

R =
TP

TP+ FN
(2)

where: R is a Recall, TP is the number of true positives,
and FN is the number of false negatives. Recall is the
measure of what percentage of the positive samples
is correctly classified. The worst value is 0, and the
best is 1.

• F1 score. This metrics is described with the following
equation:

F1 =
2(P× R)
P+ R

(3)

where: F1 is an F1 score, P is the precision, and R is the
recall. Intuitively, this is the combination of precision
and recall in a single number. The F1 score is the
number between 0 and 1, which is a harmonic mean of
precision and recall.

IV. SYSTEM DESCRIPTION AND IMPLEMENTATION
This section considers system components and implemen-
tation details (i.e., hardware details, operating parameters,
experimental setup, proposed signal processing, data aug-
mentation and gesture vocabulary).

FIGURE 1. BGT60TR13C radar board [39].

A. RADAR
The radar used in this work is the BGT60TR13C frequency
modulated continuous wave (FMCW) radar sensor manufac-
tured by Infineon Technologies AG with a center frequency
of 60.0 GHz. The BGT60TR13C is a low-cost, low-power,
and high-resolution solution. Fig. 1 depicts the radar board.
Fig. 2 presents the block diagram of radar sensor. Radar chip
is equipped with three receive channels RX, and one transmit
channel TX. The core functionality of BGT60TR13C is to
transmit the FMCW signal via the TX channel and receive
the echo signals from the target object via one of the three
RX channels. Both transmitted and received signals aremixed
and passed to a baseband chain and an analog to digital
converter (ADC) with 12 bits resolution and up to 4 MSps
sampling rate. Each baseband chain consists of a high pass
filter, a voltage gain amplifier (VGA), and antialiasing filters.

FIGURE 2. BGT60TR13C radar sensor block diagram [39].

The digitized signal is stored in a FIFO buffer. The data is
transferred to an external host for further signal processing.

B. RADAR SIGNAL MODEL
A transmitted FMCW waveform can be expressed in the
following form [52]:

sT (t) = AT cos
(
2π fct + 2π

∫ t

0
fT (τ ) dτ

)
(4)

where fT = B
T ·τ is the transmit frequency as a linear function

of time, fc is the carrier frequency, B is the bandwidth, AT is
the transmitted signal amplitude, and T is the time duration.

Reflected signal is received with the following time
delay td :

td = 2 ·
R0 + vt

c
(5)

with the Doppler shift:

fD = −2 ·
fcv
c

(6)

The receive frequency can be formulated as follows [52]:

fR(t) =
B
Tc

(t − td )+ fD (7)

where R0 is the range at t = 0, v is the target velocity, and
c is the speed of light.

The received signal can be described as follows [52]:

sR(t) = AR cos
(
2π fc(t − td )+ 2π

∫ t

0
fR(τ ) dτ

)
(8)

where AR is the received signal amplitude. An intermediate
frequency (IF) signal is generated as a result of mixing the
received signal and the transmitted signal. The IF signal is

VOLUME 9, 2021 74409



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

forwarded to the low-pass filter and it is expressed with the
following formula [52]:

sIF (t)=
1
2
cos

(
2π
(
fc ·

2R0
c

)
+2π

(
2R0
c
·
B
T
+
2fcv
c

)
t
)
(9)

C. RADAR OPERATING PARAMETERS
The BGT60TR13C operates in the 60 GHz unlicensed band
and it provides a resolution in centimeters. This featuremakes
this device suitable for the hand gesture recognition applica-
tion. Since BGT60TR13C is operating in the V-band and it
is transmitting signal of up to 6 GHz (57 GHz - 63 GHz)
bandwidth, thereby it may provide a range resolution 1r
of 2.5 cm and a Doppler resolution 1v of about 122 cm/s.
1r and 1v can be calculated using the following equations:

1r =
c
2B
= 2.5 cm (10)

1v =
c
2fc
·

1
ncTc

= 122 cm/s (11)

where c is the speed of light, approximately 3 × 108 m/s,
and fc is the center frequency between 57 and 63 GHz,
which is set to 60 GHz. Accordingly, B is the bandwidth
of the chirp signal and it is calculated as 6 GHz. Tc is the
chirp duration, nc is the number of repeatedly transmitted
chirp signals, and they are set to 37 µs and 64, respectively.
In our application, the BGT60TR13C sends a periodic chirp
signal through a transmitting antenna, and it receives a signal
reflected from an object using one receiving antenna. The
transmitted chirp signal is frequencymodulated by a sawtooth
wave function and the time delay τ and the Doppler shift fD
occur between the transmitted signal and the received signal,
as shown in Fig. 3. The blue and red line in Fig. 3 represent the
transmitted signal and reflected signal, respectively. In this
work, the chirp signal consists of 32 samples. The frame
frequency is configured to 10 Hz. The time delay τ is caused
by the distance between the radar and the object reflecting the
signal, the Doppler shift fD is caused by the movement of the
object relative to radar.

FIGURE 3. FMCW waveform in the frequency domain.

D. EXPERIMENTAL SETUP
The experimental setup consists of BGT60TR13C radar sen-
sor, 3D-printed case which is fixed to the camera tripod,
Raspberry Pi4 and NCS 2. Fig. 4 presents the experimental
setup.

FIGURE 4. Experimental setup.

FIGURE 5. Detailed signal processing workflow.

E. RADAR SIGNAL PROCESSING
The radar signal is processed inmultiple steps. First, the inter-
mediate frequency signal sIF (t) corresponding to time within
a chirp, also referred to as fast time, is brought to zero
by subtracting the mean value of the chirp from each of
the samples. Then, the raw intermediate frequency signal is
multiplied with the Hann window function. The range rt of
the target in front of the radar is computed with the first
order fast Fourier transform (FFT) along the fast time with
an FFT size of 128, from which the positive part is taken.
Next, in order to resolve the signal in velocity vt , the result of
first order FFT is multiplied with the Hann function along the
slow time direction, and the second order FFT is calculated
with an FFT size of 64 along the slow time direction, forming
the range-Doppler image (RDI) with 64 x 64 dimensions.
In order to increase the signal to noise ratio, the absolute value
of RDI is smoothened with wiener and median filter. Then to
remove ghost targets, RDI is thresholded with OS-CFAR in
both directions. Fig. 5 and 6 illustrate detailed and general
signal processing workflow, respectively.

In this work, we introduce an approach allowing for the
transformation of the data from a high-dimensional space

74410 VOLUME 9, 2021



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

FIGURE 6. Signal processing workflow.

into a low-dimensional space and the formation of the range-
time dependency map. Derived RDIs make up the volume
SR ∈ Rt×x×y×f where t ≥ 1. Each timestep stores an RDI
denoted by 8 ∈ Rx×y×f , where x × y are range and Doppler
dimensions and f is the number of feature channels, which is
in our case 1, as only one RX channel is used. A single RDI
is a matrix of dimensions m × n, where x ∈ {1, ..,m} and
y ∈ {1, .., n}.

8m,n =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


We have to find an index (i, j) of the largest element amaxi,j

in the matrix, denoting I = {1, . . . ,m} and J = {1, . . . , n}
as sets of row and column indices. There is an index i, j,
∃i ∈ I and ∃j ∈ J such that aij is the maximum element
of the matrix. The next phase is slicing the C t

1×n vector
representing the distance of the object in the given time step of
the gesture. Subseqently, theC t

1×n vector is transposedC
t
1×n

T

and concatenated with the subsequent time slices forming
range-time plot. The steps of the projection algorithm are
depicted in Fig. 7. As it is illustrated in Fig. 7, the projection
algorithm produces the unique 2D gesture signature, which
can be used for training ML classifier.

FIGURE 7. Projection of the extracted RDIs into 2D radar image.

F. THE GESTURE VOCABULARY
The system defines four gestures: Up-down, Down-up,
Left-right, Rubbing
• Up-down
• Down-up
• Left-right
• Rubbing

FIGURE 8. Exemplary data samples.

The training sampleswere collected in different environments
by five different individuals to ensure the maximum variance
of the dataset. Each sample represents unique gesture signa-
ture, which is used for training. The examples of the gesture
signatures are depicted in the Fig. 8.

G. DATA AUGMENTATION
To increase the number of training samples and handle the
imbalance of the dataset, we have applied data augmentation
techniques allowing to avoid the overfitting and increase the
overall performance of themodel. To generate one augmented
sample, we iterate over the whole dataset and randomly
choose one of the techniques mentioned below, i.e., one data
augmentation procedure generates one augmented sample.
We apply randomly the following procedures:
• Random shifting of the 2D Radar Images:
2D Radar image is shifted randomly in the time and
range dimension (±0.05x, ±0.1y). The empty space is
filled with zeros.

• Zeroing out regions:
Random selection of square area (patch) in the 2D Radar
Image, which is filled with zeros. Patch sizes are from
one pixel up to a square of 5 x 5 pixels.

• Adding constants to the sequence:
To reduce the impact of numerical values, a random
integer with a value up to 10% of the maximum pixel
value is added to the 2D Radar Image.

The examples of augmented samples are illustrated in Fig. 9.

FIGURE 9. Augmented examples.

V. TOPOLOGY AND EMBEDDED OPTIMIZATION
This section discusses the proposed topology and the embed-
ded optimization. First of all, we present the details of the
training environment, which has been used for the model

VOLUME 9, 2021 74411



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

FIGURE 10. Training environment.

optimization and training. Secondly, we show the details
of the training procedure. Thirdly, we present the details
of the proposed topology and the design challenges, which
have to be met with regards to the model optimizer. Finally,
we present the optimization workflow, which has been done
on the x86 platform.

A. TRAINING ENVIRONMENT
The training environment of the system is shown in Fig. 10.
The computational farm is based on Red Hat Enterprise
Linux Server 7.7, twenty seven Intel R© Xeon processors with
503 GB RAMmemory. The system utilizes Python program-
ming language with the TensorFlow version [53] dedicated
for Intel processors based on Intel R© MKL-DNN library,
which replaces the default Eigen kernels by MKL kernels,
optimizes default TensorFlow operations, and offers graph
fusion capabilities for faster graph computation.

B. TRAINING PROCEDURE
Fig. 11 shows the steps to train the model. The first step
is the data collection. The second step is a choice of one
of the supported frameworks to build the model according
to MO requirements. In the next step, model is trained and
optimized. Then the system retrains the model and gener-
ates intermediate representation (IR) in the form of .bin and
.xml files.

FIGURE 11. Training steps.

TABLE 1. Model Requirements for NCS 2. 3D: CNN3D, BN: Batch
Normalization, 2D: CNN2D, TS: Time Distributed. Symbols: FS - fully
supported, NO - not supported, PS - partially supported.

C. PROPOSED TOPOLOGY
To meet the requirements related to the set of operations
supported by the NCS 2. We had to design possibly stream-
lined topology, avoiding the utilization of such operations as
LSTM, TimeDistributed, CNN3D and RNN. Table 1 outlines

FIGURE 12. Proposed topology.

the set of operations supported by the neural network accel-
erator used in this project. We can distinguish between three
groups of support. Full support, not supported and partially
supported. In this case, Batch Normalization is partially sup-
ported due to lack of the capability of the MO to fuse the
Batch Normalization and CNN2D into one operation, what is
manifested in the bigger model size.

The proposed topology is depicted in the Fig. 12. The
model is comprised of six convolutional layers extracting
the visual features. All convolutional layers are followed by
ReLu activation and MaxPooling2D to decrease the dimen-
sionality of the data. To make our classifier more robust
and prevent it from the overfitting effect, we have applied
the dropout after the first two convolutions and before the
classification layer. The first convolution utilizes kernel size
7× 7 with stride 1 to increase field of view of the kernel and
extract the most significant features, the next four convolu-
tional layers make use of the kernel size 3 × 3 and stride 1.
The successive convolutional layers increase the number of
filters, however the last convolution uses 1× 1 kernel size to
decrease the dimensionality. The activation function of the
classification layer is the softmax. The overall number of
parameters is 386614.

FIGURE 13. System workflow.

D. SYSTEM WORKFLOW
Fig. 13 presents the system workflow diagram consisting of
two stages. The first stage is localized in the cloud, it includes
data acquisition and labelling process, followed by the data
preprocessing. The preprocessed data have been augmented
to increase the number of the training samples. In the next

74412 VOLUME 9, 2021



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

FIGURE 14. Optimization workflow.

step, the model is trained and optimized for the NCS 2.
During the training process, we use the ADAM optimizer
with the Crossentropy loss function. To optimize and convert
the model, first we prune the selected filters of the classi-
fier, then we perform the fine tuning and finally we per-
form the final conversion with the dedicated optimizations,
i.e., weights quantization. In the second stage, the converted
model is deployed on the edge device and tested.

E. OPTIMIZATIONS
Fig. 14 describes the model optimization environment used
in the system development. The system implements the data
augmentation to increase the number of training samples
and to improve the model performance. The system applies
dedicated MKL-DNN kernels, to speed-up the calculations.
To decrease the number of training parameters, the model
is pruned and its training variables are converted into con-
stants. The freezed models are converted into IR using Intel R©

OpenVino Toolkit for inference on the target device. The
detailed optimization workflow is shown in Fig. 14. To prune
the model, we calculate L1 norm of the convolutional filters.
Then, the results are sorted in the ascending order and the
least significant filters are removed.

F. PRUNING DETAILS (NO OPTIMIZATION FOR
Intel R© NCS 2)
According to [54], the filters with smaller kernel weights
produce feature maps with weak activations as compared
to the filters with high activations. To decrease the number
of training parameters, we calculated the L1 norm of each

FIGURE 15. L1 norms: a) Conv1 - L1 norm, b) Conv2 - L1 norm, c) Conv3 -
L1 norm, d) Conv4 - L1 norm, e) Conv5 - L1 norm, f) Conv6 - L1 norm.

TABLE 2. Pruning summary (no optimization).

convolutional filter’s weights. Subsequently, the result of an
L1 norm has been plotted. Basing on those plots, we have
been able to choose the filters with the least value of an
L1 norm, which do not contribute a lot to the network. Fig. 15
shows an L1 norm of each of filter’s weight. After experimen-
tations, we have decided to prune the second, third, fourth
and fifth convolutional layer filter. Table 2 shows the number
of convolutional filters in different variants of the proposed
classifier. It can be seen that the number of convolutional
filters is decreased gradually. From the plot, it can be noticed
that the first ten channels do not store any important informa-
tion. For that reason, we cut ten filters from the second, third,
fourth and fifth layer. Subsequently, we pruned 12 filters in
the second layer, 15 filters in the third and fourth layer and
10 filters in the fifth layer. In the next model, we increased the
number of pruned filters to 18 in the third and fourth layer and
to 20 in the fifth layer. In the last model, we removed 32 filters
in fourth and fifth layer.

G. EDGE ENVIRONMENT
On the edge side, the RaspberryPi 4 and NCS 2 are used.
RaspbianOS has been chosen as an operating system. On the
software side, the TensorFlow with Keras backend is used as

VOLUME 9, 2021 74413



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

FIGURE 16. Edge environment.

a base tool for inference. In order to run our model on the
NCS 2, OpenVino package is used as a library for optimizing
the inference process. The BGT60TR13C radar sensor is
applied as device performing the measurements. The edge
environment is illustrated in Fig. 16.

VI. OPTIMIZATION AND INFERENCE ON THE EDGE
This section introduces the utilities used for model optimiza-
tion. It presents the model types offered by the MO. We also
discuss the inference steps.

A. MODEL OPTIMIZATION FOR THE EDGE
The system utilizes MO to convert the model to IR. MO
removes from the NN graph unnecessary operations, fuses
some of the mathematical operations into one node. In this
project, there are two types of IR model: FPS32 and FPS16.

B. INFERENCE ON THE EDGE
Inference on the Edge creates the topology design problem,
due to lack of support of all layers by the MO and limitations
of hardware resources. For that reason, the data representation
must meet the specific requirements imposed by the basic NN
operations. The inference workflow proceeds as follows:

1) The core object is created, initialized and, the required
device plugins are loaded, depending on the required
device (e.g., VPU, CPU, GPU, NCS2).

2) The core object instance reads an IR file into the
CNNNetwork object.

3) The input and output data format is set to be compliant
with the NN topology.

FIGURE 17. Inference steps.

FIGURE 18. 5-fold Cross-Validation - accuracy.

FIGURE 19. 5-fold Cross-Validation - loss.

FIGURE 20. Accuracies (no optimization - x86 architecture).

4) The model is compiled, configured and loaded into the
host device memory.

5) The inference request is created to allocate the buffers
for the input data.

6) The input data is copied into the input data buffers.
7) The inference mode is selected (i.e., synchronous,

asynchronous) and the inference request is executed.
8) The output of the inference request is read and

processed.

The list of NN operations is given in the table 1 and the steps
included in the inference process are described in the Fig. 17.

74414 VOLUME 9, 2021



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

FIGURE 21. Accuracies (optimized - FPS16).

FIGURE 22. Accuracies (optimized - FPS32).

FIGURE 23. Time vs model size (x86).

FIGURE 24. Time vs model size (FPS16).

In the case of the optimized versions, loading times exhibit
similar behaviour, however they are much shorter than in the
non-optimized versions.

VII. EXPERIMENTAL RESULTS
This section discusses the experimental results. First, we anal-
yse the 5-fold cross-validation which gives us the general

FIGURE 25. Time vs model size (FPS32).

FIGURE 26. Accuracy vs inference time (x86).

FIGURE 27. Accuracy vs inference time (FPS16).

FIGURE 28. Accuracy vs inference time (FPS32).

FIGURE 29. Loading time (x86).

information about model performance. Second, we analyse
the accuracies before and after optimization. Third, we inves-
tigate the relationship between the model size, the accuracy,

VOLUME 9, 2021 74415



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

FIGURE 30. Loading time (FPS16).

FIGURE 31. Loading time (FPS32).

inference time (i.e., inference time vs model size and accu-
racy vs inference time) and load time. Fourth, we analyse
classification report giving the detailed information about
the classification metrics, i.e., accuracy, precision, F1 score,
recall (model test classification metrics before and after opti-
mization). Lastly, we study the end-to-end system latency for
each kind of gesture.

A. 5-FOLD CROSS-VALIDATION
To prove the stability of our classifier, we performed the
5-fold cross-validation. Basing on 5-fold cross-validation,
we are able to determine an average performance of each
model. It can be seen that proposed classifier achieves signif-
icantly better performance than the Inception family models
with an average accuracy of 97.57%. Proposed algorithm
achieves comparable performance with MobileNetV1 mod-
els. Whereas accuracies of MobileNetV1 for decreasing
values of α parameter are 98.12%, 98.08%, 96.33%, and
90.24%, proposed classifier offers comparable performance
maintaining low number of training parameters, what has
a direct impact on the model size. Classifiers exhibit sim-
ilar behaviour in each fold. The performance of Inception
family networks deteriorates with the decreasing number of
Inception modules. The best performance exhibits Inception
network with three Inception modules achieving an average
accuracy of 88.67%. The average accuracy of Inception net-
work with one and two inception modules is 74.65% and
78.39%, respectively. Classifier accuracies and losses for
each k-fold are presented in Fig. 18 and 19.

B. ACCURACY
Fig. 20-22 present accuracies for the optimized and non-
optimized variants of our classifier. From the plots for

TABLE 3. Accuracy - all topologies. N: no pruning, F16: NCS2 FPS16, F32:
NCS2 FPS32, B: NCS2 FPS16/FPS32.

non-optimized as well as optimized versions, it can be seen
that classifiers exhibit the promising tendency together with
decreasing number of training parameters, i.e., the test accu-
racy improves (Proposed topology (x86) - 97.4%, Pruned 1
(x86) - 98.1%, Pruned 2 (x86) - 98.0%, Pruned 3 (x86) -
97.7%, Pruned 4 (x86) - 97.6%).

From Fig. 21-22, it can be seen that the test accuracy in
the case of optimized versions attains acceptable trade-off
between classifier performance, model size and inference
time with respect to the non-optimized versions, what has
been depicted in Fig. 23-28. In case of optimized versions,
the tendency is similar, namely the test accuracy slightly
increases in comparison to variant which is not optimized

74416 VOLUME 9, 2021



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

TABLE 4. Precision - all topologies. N: no pruning, F16: NCS2 FPS16, F32:
NCS2 FPS32, B: NCS2 FPS16/FPS32.

(i.e., Proposed topology - 98.0%, Pruned 1 - 98.1%, Pruned
2 - 98.0%, Pruned 3 - 97.6%, Pruned 4 - 97.5%).

C. DETAILED MODEL PERFORMANCE
Fig. 23-25 presents the plots representing the relation
between inference time and the model size. Green, orange
and pink rectangles group the classifier families. Green cor-
responds to MobileNetV1, pink to Inception and orange to
the proposed classifier.

From the plots, we can observe that optimized versions of
the classifiers offer significantly shorter inference times in
comparison with non-optimized versions. FPS32 version of
each model is slightly bigger than the standard size versions,

TABLE 5. Recall - all topologies. N: no pruning, F16: NCS2 FPS16, F32:
NCS2 FPS32, B: NCS2 FPS16/FPS32.

what is caused by MO, whereas FPS16 versions are much
smaller and they preserve a good performance.

Fig. 26-28 represent the dependency between the accu-
racy and the inference time. It can be noticed that the pro-
posed classifier and its derivatives achieve the best trade-off
between accuracy and inference time.

Fig. 29-31 representmodel loading times. As it can be seen,
loading times in the case of optimized versions are much
shorter than in the case of non-optimized versions. For the
proposed classifier (non-optimized version), loading times
vary from 7.21 s to 8.86 s, what makes them comparable with
loading times of MobileNetV1 family models and Inception
family models.

VOLUME 9, 2021 74417



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

TABLE 6. F1 score - all topologies. N: no pruning, F16: NCS2 FPS16, F32:
NCS2 FPS32, B: NCS2 FPS16/FPS32.

D. CLASSIFICATION REPORT
Tables 3-6 present the classification report representing the
classification metrics (i.e., Accuracy, Precision, Recall and
F1 Score) for each classifier.

E. STUDY OF THE END-TO-END SYSTEM LATENCY
This section investigates the end-to-end system latency. For
each kind of gesture, we measured the duration of the gesture
sample - ts, data processing time - tp, inference time - ti
and we summed those times, obtaining the total time - Tt .
The measurements have been repeated 10 times for each
gesture type then the average times have been calculated.

TABLE 7. Down-up gesture - end-to-end latency.

TABLE 8. Left-right gesture - end-to-end latency.

TABLE 9. Rubbing gesture - end-to-end latency.

Depending on the gesture type, the duration of the gesture
sample is different. We assume that the gesture can maxi-
mally last 3.2 s, i.e., in case of shorter sample duration, it is

74418 VOLUME 9, 2021



M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

TABLE 10. Up-down gesture - end-to-end latency.

zero padded. The measurements have been performed for the
proposed topology (non-pruned version - FPS16) deployed
on the NCS 2. The tables 7-10 present the end-to-end latency
for each kind of gesture.

VIII. SUMMARY
This paper demonstrates an optimized radar gesture classifi-
cation model with the dedicated signal processing scheme.
The conducted experiments covered training process on
the cloud, pruning, optimization for the edge and infer-
ence. The results of the experiments exhibit the significant
improvements in the widely understood model performance.
We examined the model performance before and after
optimization (i.e., 5-fold cross-validation, test accuracy,
classification report, relations between accuracy, model size,
inference time and loading time). From the accuracy analysis
and classification report, it can be noticed that the pruned
versions (x86) of our classifier exhibit a better performance
than the non-pruned version. With regards to classification
performance of all classifiers, classification report shows
that the inference results are comparable with FPS16 and
FPS32 versions. Whereas the classification performance of
all classifiers (both optimized as well as non-optimized alter-
natives) remain on the similar level, the more detailed analy-
sis of model sizes, inference times and loading times allows
to observe the benefits of pruning and optimization for the
Intel R© NCS 2. In terms of accuracy and model size, we can
observe that each alternative (x86, FPS16 and FPS32) of
our classifier preserves the most beneficial relation between
accuracy and the model size. The optimized version of the
proposed classifier achieves in the worst case 97.50% accu-
racy, it provides the most beneficial relation between the
model performance and the model size. Especially in the
case of FPS16 version. Another aspect worth of considera-
tion is the relationship between the inference time and the
model size. This relationship has been depicted in Fig. 23-25.
Comparing the relationship between the inference time and

the model size, we can notice the significant improvement of
each variant of the proposed classifier. Another significant
issue from the deployment on the edge perspective is the
dependency between the accuracy and the inference time.
This relationship has been presented in the Fig. 26-28. As we
can see, the optimized versions of the classifiers exhibit the
tendency in the direction of decreasing inference time and
preserving the good accuracy, what is particularly important
in the domain of model execution on the edge and providing
the real time inference time. The next examined issue are the
model loading times, which have been depicted in Fig. 29-31.
In the case of non-optimized classifiers, model loading times
vary from 7.21 s to 9.65 s. In the case of optimized versions
of the classifiers, the optimization results are particularly
visible regarding the proposed classifier and Inception family
models. The loading times of MobileNet family classifiers
are significantly worse in comparison to the proposed and
Inception family models. The last considered aspect is the
end-to-end latency of the system. The tables 7-10 list end-
to-end latencies measured for each kind of gesture. It can be
noticed that the average times for down-up, left-right, rubbing
and up-down gestures are 1.660 s, 0.674 s, 2.472 s, 1.013 s,
respectively. Those results prove the real-time operation of
our system.

To sum up, we proposed the optimized radar gesture classi-
fier with the dedicated radar signal processing scheme allow-
ing for deployment on the edge device. To the best of our
knowledge, we have proposed the first radar gesture classi-
fication model which has been deployed on the edge device
such as NCS 2. The proposed solution has been compared
with the InceptionV1 and MobileNetV1 family models in
various variants. All topologies have been assessed in terms
of various aspects, i.e., classification performance, inference
times, model sizes. The proposed models (i.e., No Pruning,
Pruned 1, Pruned 2, Pruned 3, Pruned 4) achieve the best
results in terms ofmodel sizes and inference times. In terms of
accuracy, our classifier achieves better results than in case of
the classifiers with 3 Inceptionmodules, 2 Inceptionmodules,
1 Inception module, and MobileNetV1 with α = 0.25.
MobileNets with α = 0.50, α = 0.75 and α = 1.00 offer
slightly better classification results, at the same time offering
bigger model size and longer inference time, what is of great
significance in the case of the deployment on the edge. In the
future, we are going to increase the number of recognized
gestures and implement our solution on the other accelerators
(i.e., NVIDIA Jetson Nano, RockPi, Edge TPU). Moreover,
we will also extend our optimization ideas and computing
approaches to process full 3D data [55]–[57].

REFERENCES
[1] A. Shehab and S. Al-Janabi, ‘‘Edge computing: Review and future direc-

tions (computación de borde: Revisión y direcciones futuras),’’ REVISTA
AUS J., vol. 5, nos. 2–26, pp. 368–380, 2019. Accessed: Dec. 15, 2020.

[2] F. Alemuda and F. J. Lin, ‘‘Gesture-based control in a smart home
environment,’’ in Proc. IEEE Int. Conf. Internet Things (iThings), IEEE
Green Comput. Commun. (GreenCom), IEEE Cyber, Phys. Social Comput.
(CPSCom), IEEE Smart Data (SmartData), Jun. 2017, pp. 784–791, doi:
10.1109/iThings-GreenCom-CPSCom-SmartData.2017.120.

VOLUME 9, 2021 74419

http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.120


M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intel-
ligence: Paving the last mile of artificial intelligence with edge com-
puting,’’ Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019, doi:
10.1109/JPROC.2019.2918951.

[4] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, ‘‘Edge
intelligence: The confluence of edge computing and artificial intelligence,’’
IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469, Aug. 2020, doi:
10.1109/JIOT.2020.2984887.

[5] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient process-
ing of deep neural networks: A tutorial and survey,’’ Proc. IEEE,
vol. 105, no. 12, pp. 2295–2329, Dec. 2017, doi: 10.1109/JPROC.2017.
2761740.

[6] (2020). ImageNet Classification With Deep Convolutional Neural
Networks | Communications of the ACM. Dl.acm.org. Accessed:
Dec. 15, 2020. [Online]. Available: https://dl.acm.org/doi/10.
1145/3065386

[7] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional net-
works for large-scale image recognition,’’ 2014, arXiv:1409.1556.
Accessed: Dec. 15, 2020. [Online]. Available: http://arxiv.org/abs/1409.
1556

[8] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778, doi:
10.1109/CVPR.2016.90.

[9] Improving TensorFlow Inference Performance on Intel Xeon Processors.
Intel. Accessed: Dec. 18, 2020. [Online]. Available: https://www.
intel.com/content/www/us/en/artificial-intelligence/posts/improving-
tensorflow-inference-performance-on-intel-xeon-processors.html

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
Accessed: Dec. 15, 2020. [Online]. Available: http://arxiv.
org/abs/1704.04861

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size,’’ 2016, arXiv:1602.07360.
Accessed: Dec. 15, 2020. [Online]. Available: http://arxiv.org/abs/1602.
07360

[12] M. Tan and Q. V. Le, ‘‘MixConv:Mixed depthwise convolutional kernels,’’
2019, arXiv:1907.09595. Accessed: Dec. 16, 2020. [Online]. Available:
http://arxiv.org/abs/1907.09595

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA,
USA, Jun. 2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
‘‘Rethinking the inception architecture for computer vision,’’ 2015,
arXiv:1512.00567. Accessed: Dec. 15, 2020. [Online]. Available: http://
arxiv.org/abs/1512.00567

[15] T. Elsken, J. Hendrik Metzen, and F. Hutter, ‘‘Neural architecture search:
A survey,’’ 2018, arXiv:1808.05377. Accessed: Dec. 18, 2020. [Online].
Available: http://arxiv.org/abs/1808.05377

[16] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
‘‘A comprehensive survey of neural architecture search: Challenges and
solutions,’’ 2020, arXiv:2006.02903. Accessed: Dec. 18, 2020. [Online].
Available: http://arxiv.org/abs/2006.02903

[17] (2020). OpenVINOToolkit Overview—OpenVINO Toolkit.
Docs.openvinotoolkit.org. Accessed: Dec. 14, 2020. [Online]. Available:
https://docs.openvinotoolkit.org/latest/index.html

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, and M. Kudlur,
‘‘TensorFlow: A system for large-scale machine learning,’’ 2016,
arXiv:1605.08695. Accessed: Dec. 14, 2020. [Online]. Available:
http://arxiv.org/abs/1605.08695

[19] S. Sun, Z. Cao, H. Zhu, and J. Zhao, ‘‘A survey of optimization methods
from a machine learning perspective,’’ IEEE Trans. Cybern., vol. 50, no. 8,
pp. 3668–3681, Nov. 2019.

[20] R. Sun. (2019). Optimization for Deep Learning: Theory and Algo-
rithms. NASA/ADS. Accessed: Dec. 27, 2020. [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2019arXiv191208957S/abstract

[21] J. Chen and X. Ran, ‘‘Deep learning with edge computing: A review,’’
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019, doi:
10.1109/JPROC.2019.2921977.

[22] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
‘‘Convergence of edge computing and deep learning: A comprehensive
survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904,
2nd Quart., 2020, doi: 10.1109/COMST.2020.2970550.

[23] Overview of ML Pipelines | Testing and Debugging in Machine Learning.
Google Developers. Accessed: Dec. 16, 2020. [Online]. Available: https://
developers.google.com/machine-learning/testing-debugging/pipeline/
overview

[24] (2020). What is an ML Pipeline and Why is it Important? |
Algorithmia Blog. Algorithmia Blog. Accessed: Dec. 16, 2020.
[Online]. Available: https://algorithmia.com/blog/ml-pipeline#
:~:text=One%20definition%20of%20a%20machine,the%20ML%20
model%20fully%20automated

[25] A. Bernstein and A. Kuleshov, ‘‘Low-dimensional data representation
in data analysis,’’ in Proc. IAPR Workshop Artif. Neural Netw. Pattern
Recognit., 2014, pp. 47–58.

[26] M. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, ‘‘A state-
of-the-art survey on deep learning theory and architectures,’’ Electronics,
vol. 8, no. 3, p. 292, 2019.

[27] Y. Roh, G. Heo, and S. E. Whang, ‘‘A survey on data collection for
machine learning: A big data—Ai integration perspective,’’ IEEE Trans.
Knowl. Data Eng., vol. 33, no. 4, pp. 1328–1347, Apr. 2021, doi:
10.1109/TKDE.2019.2946162.

[28] T. Yu and H. Zhu, ‘‘Hyper-parameter optimization: A review of algorithms
and applications,’’ 2020, arXiv:2003.05689. Accessed: Dec. 27, 2020.
[Online]. Available: http://arxiv.org/abs/2003.05689

[29] J. S. Sonkusare, N. B. Chopade, R. Sor, and S. L. Tade, ‘‘A review
on hand gesture recognition system,’’ in Proc. Int. Conf. Comput.
Commun. Control Autom., Pune, India, Feb. 2015, pp. 790–794, doi:
10.1109/ICCUBEA.2015.158.

[30] M. Oudah, A. Al-Naji, and J. Chahl, ‘‘Hand gesture recognition based on
computer vision: A review of techniques,’’ J. Imag., vol. 6, no. 8, p. 73,
Jul. 2020.

[31] M. Yasen and S. Jusoh, ‘‘A systematic review on hand gesture recogni-
tion techniques, challenges and applications,’’ PeerJ Comput. Sci., vol. 5,
p. e218, Sep. 2019.

[32] S. Hazra and A. Santra, ‘‘Short-range radar-based gesture recogni-
tion system using 3D CNN with triplet loss,’’ IEEE Access, vol. 7,
pp. 125623–125633, 2019, doi: 10.1109/ACCESS.2019.2938725.

[33] Z. Zhang, Z. Tian, and M. Zhou, ‘‘Latern: Dynamic continuous hand
gesture recognition using FMCW radar sensor,’’ IEEE Sensors J., vol. 18,
no. 8, pp. 3278–3289, Apr. 2018, doi: 10.1109/JSEN.2018.2808688.

[34] C. F. Rodrigues, G. Riley, and M. Luján, ‘‘Exploration of task-
based scheduling for convolutional neural networks accelerators under
memory constraints,’’ in Proc. 16th ACM Int. Conf. Comput. Fron-
tiers, 2019, pp. 366–372. Accessed: Dec. 16, 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3310273.3323162

[35] Z. Li, Y. Wang, T. Zhi, and T. Chen, ‘‘A survey of neural network acceler-
ators,’’ Frontiers Comput. Sci., vol. 11, no. 5, pp. 746–761, 2017.

[36] D. Xu, K. Xing, C. Liu, Y. Wang, Y. Dai, L. Cheng, H. Li, and
L. Zhang, ‘‘Resilient neural network training for accelerators with com-
puting errors,’’ in Proc. IEEE 30th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), New York, NY, USA, Jul. 2019, pp. 99–102, doi:
10.1109/ASAP.2019.00-23.

[37] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, ‘‘A survey of acceler-
ator architectures for deep neural networks,’’ Engineering, vol. 6, no. 3,
pp. 264–274, Mar. 2020.

[38] Supported Framework Layers—OpenVINO Toolkit.
Docs.openvinotoolkit.org. Accessed: Dec. 16, 2020. [Online]. Available:
https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_prepare_
model_Supported_Frameworks_Layers.html#tensorflow_supported_
operations

[39] BGT60TR13C Shield 60GHz Radar System, Infineon Technol. AG Internal
Tech. Documentation, Munich, Germany, 2019.

[40] Overview of OpenVINO Toolkit Public Models—OpenVINO Toolkit.
Docs.openvinotoolkit.org. Accessed: Dec. 27, 2020. [Online]. Available:
https://docs.openvinotoolkit.org/latest/omz_models_public_index.html

[41] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
‘‘Pruning filters for efficient ConvNets,’’ 2016, arXiv:1608.08710.
Accessed: Dec. 16, 2020. [Online]. Available: http://arxiv.org/
abs/1608.08710

[42] F. Chollet. (2015). Keras. Keras.io. Accessed: Dec. 15, 2020. [Online].
Available: https://keras.io

74420 VOLUME 9, 2021

http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/TKDE.2019.2946162
http://dx.doi.org/10.1109/ICCUBEA.2015.158
http://dx.doi.org/10.1109/ACCESS.2019.2938725
http://dx.doi.org/10.1109/JSEN.2018.2808688
http://dx.doi.org/10.1109/ASAP.2019.00-23


M. Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition

[43] Model Optimizer Developer Guide—OpenVINO Toolkit.
Docs.openvinotoolkit.org. Accessed: Dec. 27, 2020. [Online].
Available: https://docs.openvinotoolkit.org/latest/openvino_docs_MO_
DG_Deep_Learning_Model_Optimizer_DevGuide.html

[44] J. Lien, N. Gillian, M. Karagozler, P. Amihood, C. Schwesig,
E. Olsen, H. Raja, and I. Poupyrev, ‘‘Soli: Ubiquitous gesture
sensing with millimeter wave radar,’’ ACM Trans. Graph., vol. 35,
no 4, pp. 1–19, 2016. Accessed: Jan. 17, 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/2897824.2925953

[45] P. Molchanov, S. Gupta, K. Kim, and K. Pulli, ‘‘Short-range FMCW
monopulse radar for hand-gesture sensing,’’ in Proc. IEEE Radar Conf.
(RadarCon), Arlington, VA, USA, May 2015, pp. 1491–1496, doi:
10.1109/RADAR.2015.7131232.

[46] P. Molchanov, S. Gupta, K. Kim, and K. Pulli, ‘‘Multi-sensor system
for driver’s hand-gesture recognition,’’ in Proc. 11th IEEE Int. Conf.
Workshops Autom. Face Gesture Recognit. (FG), Ljubljana, Slovenia,
May 2015, pp. 1–8, doi: 10.1109/FG.2015.7163132.

[47] S. Hazra and A. Santra, ‘‘Robust gesture recognition using millimetric-
wave radar system,’’ IEEE Sensors Lett., vol. 2, no. 4, pp. 1–4, Dec. 2018,
doi: 10.1109/LSENS.2018.2882642.

[48] A. Santra and S. Hazra, Deep Learning Applications of Short-Range
Radars. Norwood, MA, USA: Artech House, 2020.

[49] S. Ahmed and S. H. Cho, ‘‘Hand gesture recognition using an IR-UWB
radar with an inception module-based classifier,’’ Sensors, vol. 20, no. 2,
p. 564, Jan. 2020.

[50] Intel Optimization for TensorFlow Installation Guide. Intel. Accessed:
Dec. 18, 2020. [Online]. Available: https://software.intel.com/
content/www/us/en/develop/articles/intel-optimization-for-tensorflow
-installation-guide.html

[51] Intel Math Kernel Library for Deep Learning Networks: Part. Intel.
Accessed: Dec. 18, 2020. [Online]. Available: https://software.
intel.com/content/www/us/en/develop/articles/intel-mkl-dnn-part-1-
library-overview-and-installation.html

[52] J. Lin, Y. Li, W. Hsu, and T. Lee. (2016). Design of an FMCW
Radar Baseband Signal Processing System for Automotive Applica-
tion. Accessed: Mar. 30, 2021. [Online]. Available: https://link.springer.
com/content/pdf/10.1186/s40064-015-1583-5.pdf

[53] (2018). Introduction to TensorFlow With Intel Optimizations.
Accessed: Mar. 2, 2021. [Online]. Available: https://indico.cern.ch/event/
762142/sessions/290684/attachments/1752969/2841010/Tensorflow.pdf

[54] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710. Accessed: Mar. 2, 2021.
[Online]. Available: http://arxiv.org/abs/1608.08710

[55] Y. Liang, F. He, and X. Zeng, ‘‘3Dmesh simplification with feature preser-
vation based on whale optimization algorithm and differential evolution,’’
Integr. Comput.-Aided Eng., vol. 27, no. 4, pp. 417–435, Sep. 2020.

[56] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or,
‘‘MeshCNN,’’ ACM Trans. Graph., vol. 38, no. 4, pp. 1–12, Jul. 2019.

[57] Y. Wu, F. He, D. Zhang, and X. Li, ‘‘Service-oriented feature-based
data exchange for cloud-based design and manufacturing,’’ IEEE Trans.
Services Comput., vol. 11, no. 2, pp. 341–353, Mar./Apr. 2018, doi:
10.1109/TSC.2015.2501981.

MATEUSZ CHMURSKI received the B.Sc. degree
in embedded system design and the M.Sc. degree
in artificial intelligence from the Technical Uni-
versity of Lodz (TUL), Łódź, Poland, in 2016 and
2018, respectively, where he is currently pursuing
the Ph.D. degree in artificial intelligence on the
edge. From 2015 to 2018, hewas a ResearchAssis-
tant with the Laboratory of Infineon Technologies
AG, Deggendorf, Germany. Since 2018, he has
been employed with the Headquarter of Infineon

Technologies AG, Munich, Germany.

MARIUSZ ZUBERT (Member, IEEE) received the
Ph.D. degree in electronic from the Lodz Univer-
sity of Technology (TUL), Łódź, Poland, in 1999,
and the D.Sc. degree in computer science from the
SilesianUniversity of Technology (SUT), Gliwice,
Poland, in 2011. Since 1999, he has been employed
with TUL, where he is currently a University
Professor. He is the author or coauthor of over
100 publications. His research interests include
heat transfer problems; VLSI, MEMS/MOEMS

and nano technologies; the multi-domain modeling and simulation of ASIC
and SiC PiN Schottky Diodes; the design and modeling of ASICs for
mobile industry; the real-time monitoring system of high voltage power
lines for Ontario Hydro, Kinectrics Inc., and New York City and Ontario
(grant NATO); modeling of electromagnetic interactions in modern (More-
Than-Moore) 3-D integrated semiconductor structures; the image processing
and diagnosis of neurodegenerative diseases (e.g., BSE–Mad cow disease
and Alzheimer); the 3-D ultrastructural amyloid plaque reconstruction and
proliferation model using Gaussian Hidden Markov Random Fields; and
the biometric identification of people using the iris pattern, the automatic
translation of multi-physical problems described by PDE/DAEs to Hardware
Description Languages (VHDL-AMS and HDL-A) and the complex inter-
disciplinary research including informatics, electronic, higher mathematics,
physics and health informatics and biometrics.

KAY BIERZYNSKI received the M.Sc. degree in
computer science from the Dresden University of
Technology. He is currently pursuing the Ph.D.
degree in artificial intelligence at the network edge
with Infineon Technologies AG. Since Decem-
ber 2018, he works as a Technical Project Lead
with Infineon Technologies AG and is responsible
for the technical management of funding projects
in the area of machine learning.

AVIK SANTRA (Senior Member, IEEE) received
the M.S. degree (Hons.) in signal processing from
Indian Institute of Science, Bangaluru, in 2010.
He is currently leading signal processing and deep
learning algorithm/solutions research and develop-
ment for radar and depth sensors processing for
human–machine interface applications with Infi-
neon Technologies AG, Neubiberg. Earlier in his
career, he has worked as a System Engineer for
LTE/4G modem with Broadcom Inc., and also has

worked as a Research Engineer developing cognitive radars with Airbus.
He is the author of the book titled Deep Learning Applications of Short-
Range Radars (Artech House). He has filed over 50 patents and published
more than 35 research articles related to various topics of radar waveform
design, radar signal processing, and radar machine/deep learning topics.
He is a reviewer at various IEEE and Elsevier journals, and a recipient of
several outstanding reviewer awards.

VOLUME 9, 2021 74421

http://dx.doi.org/10.1109/RADAR.2015.7131232
http://dx.doi.org/10.1109/FG.2015.7163132
http://dx.doi.org/10.1109/LSENS.2018.2882642
http://dx.doi.org/10.1109/TSC.2015.2501981

