
Received April 18, 2021, accepted May 4, 2021, date of publication May 17, 2021, date of current version June 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3080926

Spatial-Temporal Hidden Markov Model
for Land Cover Classification Using
Multitemporal Satellite Images
CHUNLIN LIU 1,4, WEI SONG 2, CHUNXIA LU3, AND JIANXIN XIA 1,4
1College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
2School of Information Engineering, Minzu University of China, Beijing 100081, China
3Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
4Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing 100081, China

Corresponding author: Jianxin Xia (jxxia@vip.sina.com)

This work was supported by the National Major Science and Technology Program for Water Pollution Control and Treatment under
Grant 2017ZX07101002.

ABSTRACT Land cover is of great significance for the study of global ecological environmental change.
Multitemporal land cover can help us to understand the change process of the regional environment and
formulate corresponding protection policies. For single-period image classification, the spatial-temporal
information is often ignored, and the classification accuracy is difficult to improve. In this paper, an iterative
hidden Markov model (STHMM) is proposed to optimize the multitemporal classification, in which a
stacked autoencoding classifier is used to calculate the initial class probability, and the extended random
walker-based spatial optimization technique is adopted to optimize the class probability. Finally, the hidden
Markov model with expectation maximization is built by exploiting postprocessing temporal optimization.
Experimental results show that the proposed method can outperform other classification techniques, and the
spatial-temporal hidden Markov model proposed in this paper exhibits more stable and reliable performance
and can be widely used in multitemporal classification.

INDEX TERMS Hidden Markov model, land cover classification, multitemporal satellite images,
spatial-temporal information.

I. INTRODUCTION
Land cover is a sensitive indicator of eco-environmental
change, which plays an essential role in global climate
change [1]–[3]. With the development of the social economy
and the continuous intensification of industrial activities,
air pollution and soil erosion have become more serious.
Multitemporal classification is the basis for the study of
the global ecological environment, and the purpose is to
better understand the change in land cover. Therefore, it is
of considerable significance to study the multitemporal land
cover classification method and analyze the law of land cover
change to improve the protection and restoration of the global
environment and promote the construction of an ecological
civilization [4]–[7].

The traditionalmanual collection of land cover information
requires high cost and labor, and it is difficult to obtain
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large-scale and multiperiod land cover distribution infor-
mation. With the continuous development of remote sens-
ing technology, satellite remote sensing technology has the
advantages of extensive area monitoring, short cycles, and
low cost and has been widely used in land cover classifica-
tion [8]–[13]. At present, when remote sensing images are
used for large-scale land cover classification, the classifica-
tion accuracy cannot be significantly improved [14], [15].
The reason for this is that most of the existing classification
technologies only focus on single temporal images and do not
make full use of the temporal information of multitemporal
images, so the improvement of classification accuracy is
limited. Therefore, the multitemporal classification method
will be an important research direction of the new classifi-
cation strategy [16]–[20]. There are two kinds of land cover
classification methods considering temporal context infor-
mation. The first method is to make a standard land cover
classification map, and then the classification map is updated
dynamically by spectral change information. This method is
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FIGURE 1. Flow chart of the proposed classification method.

simple and more conducive to multitemporal land cover clas-
sification [21]; its premise is that the change in spectral infor-
mation can truly reflect the change in different land types.
However, the imaging conditions and processing methods
in different periods will have adverse effects [22]. Another
method is to add multiperiod land cover change information
to classification and independently produce the land cover
products of each period [23]. For example, Friedl et al. [24]
applied a multitemporal enhanced vegetation index to pro-
duce global land cover products and used spatial information
to optimize the classification results. In [25], a spatial MRF
framework was extended by a temporal energy term based on
a transition probability matrix. In [26], the maximum a pos-
terior probabilistic Markov random field model (MAP-MRF)
was proposed, and some researchers improved MAP-MRF
by using spatial-temporal context information [27]. In [28],
conditional randomfields (CRFs)were expanded by temporal
interaction terms that link neighboring epochs via transition
probabilities between different classes. In addition, Aber-
crombie et al. [29] proposed a method that used a hidden
Markov model to help distinguish real land cover change
from spurious land cover changes in classification time series,
and a hidden Markov model (HMM) as used as postpro-
cessing to optimize the initial classification results. However,
in the study of land cover classification based on time series,
it is difficult to consider temporal correlation and spatial
continuity. Although some methods consider the temporal
and spatial relationship at the same time, too many param-
eters make the model difficult to widely use, the transfer
matrix is obtained by experience setting, and the flexibility is
limited.

To solve these problems, this paper proposed an iterative
HMM to optimize the multitemporal classification, in which
a stacked autoencoding (SAE) classifier is used to calculate
the initial class probability, and the extended random walker
(ERW)-based spatial optimization technique is adopted to
optimize the class probability. Lan M et al. [30] proposed
using three remaining expansion blocks to construct an
expanded convolutional neural network encoder, which can
effectively extract roads. The ERW is considered to model
the spatial information between neighboring pixels. Finally,
an HMM with expectation maximization (EM) is built by
exploiting postprocessing temporal optimization, and the EM
is used to solve the transfer matrix to obtain more realistic
land cover change. Fig. 1 presents the flow chart of the pro-
posed method, which is comprised of three key steps: initial
classification probability, spatial optimization, and temporal
optimization. The detailed steps are shown below.

II. MATERIALS AND METHODS
A. OVERVIEW OF THE RESEARCH AREA
We chose the Chongli District as the study area (Fig 2).
The area is located between 40◦47’-41◦17’ N and 114◦17’-
115◦34’ E, the area is rich in natural resources, and it is one
of the counties with the largest natural forest area in Hebei
Province. According to the actual situation of the study area,
we followed the classification standard of the International
Geosphere-Biosphere Programme (IGBP). The study area is
divided into seven types: cropland (CL), built-up lands (BL),
needleleaf forests (NF), broadleaf forests (BF), shrublands
(SL), grasslands (GL) and water bodies (WB). Through a
field survey in 2019, 37 points were selected in the study
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FIGURE 2. The study area and distributions of survey stations.

area. Each measuring point contained three sub measuring
points, and a polygon of the sample label was drawn in each
sub measuring point contained about 200 pixels on average,
the total number of pixels in the image is 22,000. The uniform
distribution of measuring points in the study area recorded
the latitude and longitude coordinates. We used two-thirds of
the data for training, and the remaining data were used for
accuracy verification.

B. DATA SELECTION AND PROCESSING
The data used in the study are landsat5 and landsat8. The
revisit period of the data is 16 days, and its spatial resolution
is 30 m. Radiometric calibration and atmospheric correction
have been performed before using the data. Due to the com-
plexity and diversity of land cover types in the study area,
different features may have similar spectral characteristics,
and the same features may also have different spectral char-
acteristics. A single period of remote sensing images is not
conducive to land cover classification. In this paper, we chose
the data from 1995 to 2019 to include as many seasons as pos-
sible, the images of multiple periods in a year are combined,
and then principal component analysis is performed, which
is conducive to more accurate classification. Figure 3 shows
the display result of standard false color.

C. HMM MODEL
The hiddenMarkovmodel (HMM) is a probabilistic model of
a timing sequence that describes the process of generating a
nonobservable state random sequence from a hidden Markov
chain and then generating an observed random sequence
from various states [33]. The initial probability distribution
mainly determines it, transition probability and observation
probability distribution. The form of HMM is defined as
follows: Q is a set of all possible states, V is all the observation
set V = {v1, v2, · · · ,vM }, and M is the number of possible

FIGURE 3. Remote sensing distribution map of the study area.

observations. I is the sequence of the length T state I ={
i1, i2,··· ,iT

}
, and O corresponds to the sequence of observa-

tions O = {o1, o2, · · · ,oT }. A is the state transition matrix
A = [aij]N×N , where aij = P(it+1 = qj|it = qi), indicating
the probability of transition to state qj at time t+1 under the
condition of qi at time t, where bik = P (ot = vk |it = qi) , bik
is the probability of producing the observed vk under the
condition of qi at time t. πi = P(i1 = qi), the probability
of qi at t = 1.
In general, HMM applications include two prerequisites.

First, the state at any moment is only dependent on the state
at the previous moment and has nothing to do with the state
at other moments. Second, the observed value at any time
depends only on the state at that time and is independent of the
state at other times. In a given model λ = (A,B, π) and the
observation sequence O = {o1, o2, · · · ,oT }, the probability
of occurrence of the observation sequence is P (O|λ). The
probability calculation problem in an HMM can be solved
by a forward-backward algorithm.

The probability that the partial observation sequence is
o1, o2, · · · ,ot and the state is qi at the moment is called the
forward probability, which is expressed as:

αt (i) = P (o1, o2, · · · ,ot , it = qi | λ) (1)

Initial value: α1 (i) = πibio1 , when t = 1, 2, · · · ,T − 1,
then

αt+1 (i) =

 N∑
j=1

αt (j)a

ji

 biot+1 (2)

Probability of observation sequence:

P (O|λ) =
N∑
i=1

αT (i) (3)

Backward algorithm: For a given backward algorithm λ,
on the premise that the state at moment t is defined qi,
the partial observation sequence from to is ot+1, ot+2, · · · ,oT
and the probability is called the backward probability, which
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is expressed as:

βt (i) = P (ot+1, ot+2, · · · ,oT | it = qi, λ) (4)

Initial value βT (i) = 1, when t = T − 1,T − 2, · · · , 1,
then

βt (i) =
N∑
j=1

(
aijbjot+1βt+1 (j)

)
(5)

The observation sequence can finally be expressed as:

P (O|λ) =
N∑
i=1

πibio1β1 (i) (6)

According to the definition of the forward and backward
algorithm, we know:

P (it = qi,O|λ) = αt (i) β t (i) (7)

Therefore, given a model λ and observation sequence O,
the probability of being in a state qi at moment t can be
expressed as:

Pt (it = qi|O, λ) =
αt (i) β t (i)∑N
i=1 αt (i) β t (i)

(8)

D. SPATIAL-TEMPORAL HMM
1) SPATIAL OPTIMIZATION
It is easy to produce some small objects during the classi-
fication process. To alleviate this problem, a postprocessing
spatial probability optimization method is proposed, which is
an effective supplementary method that can avoid the exces-
sive smoothing caused by feature extraction. ERW is used to
optimize the initial probability [31]. Specifically, the classifi-
cation probability can be optimized by the following formula:

E (it |O) = Es (it |O)+ γEas (it |O) (9)

where Es is the spatial term, Eas is the aspatial term, and γ is
the equilibrium parameter. The spatial term can be calculated
by adjacent pixels:

Es (it |O) = P (it |O)TLP (it |O) (10)

where L is the normalized Laplacian matrix. The second term
can be expressed as the integral of the initial probability:

Eas (it |O) =
∑

jt=1,jt 6=it

P (jt |O)T ∧jt P (jt |O)

+ (P (it |O)− 1)T ∧it (P (it |O)− 1) (11)

where ∧ is the diagonal matrix, and the diagonal value is
composed of the initial probability. Finally, the refined prob-
ability P (it |O) is obtained by optimizing Eq (12). The
weighted fusion is considered to merge the class probabilities
of the two stages:

P (it |O) = (1− µ)Ps (it)+ µPt (it |O) (12)

where µ is a super parameter used to adjust the weight
balance spatial-temporal stability. Finally, the state of the
maximum posterior probability is solved.

2) PARAMETER ESTIMATION
(1) The initial probability: the initial probability represents

the probability that the pixel belongs to each category
in the initial year. The SAE classifier is used to calculate
the probability of land cover classification in each year,
in which SoftMax cross entropy is used to construct
the loss function, which satisfies the constraint that
the sum of probability of each category is 1. In this
paper, the initial probability is calculated by the average
probability of each year.

(2) The transition matrix: The transition matrix represents
the transition probability between different land cover
types in two adjacent years. In [29], the author ana-
lyzed the change law of global map coverage and found
that the 90% probability of surface coverage type did
not change. However, the parameters of the transfer
matrix need to be set artificially, and the method is
inflexible. Therefore, this paper uses the expectation
maximization (EM) algorithm to calculate the transfer
matrix. In [32], the author proves the effectiveness of
the method:

P (it+1 | jt)

= P (it+1, jt) /P (jt) (13)

Pit+1 (it+1, jt)

=
1

S · P (it+1)P (jt)
·

N∑
n=1

Pit
(
int+1, j

n
t
)
P
(
int+1|On

)
P
(
jnt |On

)
∑

kε�
∑

hε�
P
(
knt+1,h

n
t
)

P
(
knt+1

)
P(hnt )

P
(
knt+1|On

)
P
(
hntt |On

)
(14)

where it is the current iteration, S is the number of pixels, N is
the number of classes, and � is the set of all labels.

To consider the correlation between neighboring pixels and
remove small objects, the EWR algorithm is used to optimize
the initial probability. In each calculation, the new transition
matrix and spatial probability are recalculated, and the three
elements of the hidden Markov model are input into the
forward backward algorithm to update the classification prob-
ability dynamically. Finally, we output labels by maximizing
the posterior probability.

III. RESULTS
A. EQUATIONSTIME SERIES CLASSIFICATION
In this paper, we compare three methods: the first is the
SAE without postprocessing. The hidden layer is 3 layers,
the number of nodes in each layer is 200, the learning rate is
3e-4, and the regularization parameter is 1e-6.the other is the
classification result processed by the hidden Markov model,
and the last is the result processed by the method proposed in
this paper. The classification results are shown in Fig 4. The
accuracy of the results after the STHMMmethod is improved.
We also found that over the years, construction land has
gradually increased, but the cultivated land area has exhibited
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FIGURE 4. Vegetation classification results in each period from 1995 to 2019: (a) indicates the classification results of the original classifier,
(b) indicates the classification results after HMM processing, and (c) indicates the spatial and temporal HMM classification result.

almost no change,mainly because the ecological environment
has been significantly changed by human beings, which leads
to the expansion of urban areas. In Fig 5, the classification
results with NPP are not continuous in temporal distribution.
For the HMM, each type shows a stable correlation in the time
series, but some classification results show small objects in
the spatial distribution, which shows the best advantage with
the STHMM considering the spatial-temporal relationship,
and the temporal and spatial distributions are reasonable.
In the initial classification results, Fig 5 contains some illogi-
cal transformations among cultivated land, construction land,
water bodies, and forests, while the updatedmap dramatically
improves the results. Due to the influence of image qual-
ity, environmental change, classifier performance and other
factors, there are some unreliable patches in the multitem-
poral classification image, such as the classification results
changing frequently after a period of time. This phenomenon
is obviously improved after considering the temporal and
spatial neighborhood relations.

B. PRECISION INSPECTION AND EVALUATION
The quality evaluation of multitemporal classification is nec-
essary to describe the reliability of classification results.

However, traditional evaluation methods often verify the
accuracy by selecting some measured sample data. They
cannot fully reflect the spatial and temporal correlation of
coverage types. Therefore, this kind of evaluation method
is not sufficiently representative. To fully evaluate the pros
and cons of this method, this paper evaluates the classifica-
tion results from two aspects. First, the overall classification
accuracy of the measured data test results, and second, a joint
probability index is proposed to reflect the time and space
between categories.

1) ACCURACY EVALUATION
To evaluate the classification accuracy and stability of
STHMM, two-thirds of the samples are used for training, and
the remaining one-third of the samples are used for accu-
racy verification. These test samples are evenly distributed
throughout the study area. It can better represent the surface
coverage of the entire study area. We select two commonly
used evaluation indexes, the overall accuracy and kappa coef-
ficient, and the statistical results are shown in the table.

Table 2 shows the overall classification accuracy and
Kappa coefficient of the three methods in different periods.
The overall classification accuracy (overall accuracy, OA) is
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FIGURE 5. Local visualization comparison of postprocessing results from 1995 to 2019 (a) and (b): Landsat satellite images, NPP: no postprocessing
classification results, HMM: classification results with HMM processing, STHMM: classification results of STHMM postprocessing.

a general standard for evaluating the classification of remote
sensing images, mainly from a global perspective, to eval-
uate the accuracy of the classification results. The kappa
coefficient represents the ratio of error reduction between
classification and completely random classification, which
can be used to evaluate the consistency and credibility of
multiclassification results of remote sensing images. At the
same time, the mean and standard deviation of the accuracy
of all years are also listed. The mean reflects the accuracy of
the classification results. The standard deviation reflects the
stability of the classification results. In Table 1, it can be seen
that the average overall accuracy of NPP is 0.89, the standard
deviation is 0.39, and the original classifier has high classifi-
cation accuracy and stability. The classification accuracywith
HMM is significantly higher than that of NPP. The overall
accuracy and Kappa coefficient are improved by 2.02 and
2.21, respectively. The HMM considers the multitemporal
correlation between coverage types in different periods. The
results of HMM processing can reflect more real features of
ground change, but this method does not consider the spatial

relationship between different coverage types; that is, the sim-
ilarity between coverage types with similar spatial distances
is higher. The results of the spatial and temporal relation-
ships show the best classification advantages compared to
the other two methods. It has higher classification accuracy
(OA = 92.76, Kappa = 92.74) and lower root mean square
error (0.13). Overall, the STHMM shows the best classifica-
tion accuracy.

2) TEMPORAL AND SPATIAL DISTRIBUTION EVALUTION
In fact, the accuracy of the classification results depends
largely on the distribution of the samples and does not fully
reflect the similarity between the real features and the classi-
fication results. Multitemporal land cover results often have a
certain correlation in spatial-temporal distribution. For most
feature types, the type of land cover changes with time is
largely unchanged, and only a small number of feature types
will change, as will the type of land cover changes in space.
The closer the space is, the greater the similarity of the
features. Therefore, a joint probability is used to judge the
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FIGURE 6. The distribution of indicators, the smaller the reliability of the results, the greater the spatial and temporal distribution of the
decomposition results is in line with the actual situation, where the graphs on the diagonal represent the histogram distribution of the three
indicators L_NPP, L_HMM, and L_STHMM. The graphs on the nondiagonal line are two-dimensional scatter plots with different classification indexes,
and the colors in the graphs indicate the density of the scatter plots.

time series classification results, and the joint probability is
calculated by the joint probability of classification results in
each period, which reflects the continuity of pixels in space
and time. The evaluation index is calculated by the following
formula:

P =
∏T−1

t=1
P (it |O)Ps (it)P (it+1 | it) (15)

To avoid the joint probability value being too small,
the logarithm is taken as:

L (P) = −
T−1∑
t=1

(logP (it |O)+ logPs (it)+ logP (it+1 | it))

(16)

where P(it+1|it ) is the transition probability of the state from
time t to time t+1, P (it |O) indicates the state it probability at
time t, and Ps(it ) is the spatial probability at time t.
To more intuitively reflect the changes in the indicators

of different methods, we compare any two results and draw
the scatter matrix. The result is shown in Figure 6. It can

be seen in the two-dimensional scatter plots constructed by
L_NPP and L_HMM that the high-density points are closer
to the L_HMM coordinate axis, indicating that the HMM
index is generally higher than the NPP index value. The
HMM considers the time relationship between images in
different periods, and whether it is the time distribution of
construction land or vegetation is more reasonable. It can
be seen in the two-dimensional scatter plots constructed
by L_STHMM and L_HMM that the high-density points
are closer to the L_STHMM coordinate axis, while the
distribution chart shows a lighter color, with 40% of the
index value near 2. STHMM also considers that to under-
stand the spatial-temporal relationship between different
types, the L_STHMM indicator showed the lowest, indicat-
ing that the spatial-temporal distribution of its classification
results is the most reliable.

IV. DISCUSSION
There are two key parameters in the spatial-temporal classi-
fication method proposed in this paper, which play a decisive
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FIGURE 7. Sensitivity analysis of key parameters.

TABLE 1. Algorithm flow of spatial-temporal HMM classifier.

role in the classification results of multiple temporal phases.
Normally, the transformation probability between different
types plays a crucial role in constructing multitemporal

remote sensing classification [34]–[37]. The conversion prob-
ability is determined by the regional environment and devel-
opment. This paper refers to the design of the conversion
probability in the literature. It is a set criterion, but it can
only reflect the changing trend between images in differ-
ent periods; it is an estimate, and it cannot truly repre-
sent the actual transformation probability. At the same time,
the spatial-temporal weight parameters also affect the clas-
sification results of multitemporal remote sensing images;
too high will lose the spatial correlation between pixels,
and too low will also lose some local details. Therefore,
this paper analyzes the changes in the two parameters to
study the changes between different types of features in each
period. In the case of a given weighting factor, the transfor-
mation probability varies from 0 to 1, and in the case of a
given transformation probability, the weighting factor varies
from 0 to 1.

Fig. 7(a) represents the change rate curve of remote sensing
image classification in different periods under the given trans-
formation probability of 0.5. It can be seen in the figure that as
the weighting factor increases, the spatial correlation between
the pixels gradually weakens, and the rate of change between
different feature types shows a trend of decreasing first
and then increasing, indicating that as the weighting factor
increases, the correlation of the distribution characteristics of
features in time increases first and then decreases. Therefore,
the appropriate weighting factor is. It is very important to
determine the classification accuracy of the image to a certain
extent. In the case of 8(b) in the figure, when the weighting
factor is set to 0.5, as the transformation probability continues
to increase, the rate of change of features in different periods
shows an increasing trend, Usually, within a short period of
time, closer to 90% of the feature types will not change in
a similar time. Therefore, this paper believes that without
any prior knowledge, it is relatively reasonable to set the
transformation probability to 0.9. The smaller the weighting
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TABLE 2. NPP, HMM and STHMM classification accuracy tests for each period from 1995 to 2019.

factor is, the more spatial correlation will be considered, and
it will be appropriate. To improve the classification accuracy
of multitemporal images, it can be set in the range of 0.1-0.3

V. CONCLUSION
Time-series vegetation classification products are of great
significance in the study of regional and global changes.
Satellite remote sensing images are themainmeans to quickly
obtain large-scale time-series land cover products. This arti-
cle discusses and studies the key issues in the development
of time-series remote sensing vegetation classification using
satellite remote sensing images. The main research conclu-
sions are as follows:

(1) The forward-backward algorithm is used to solve the
optimal classification label sequence under the condition of
HMM parameter determination, and the spatial correlation
between the classification labels is statistically considered.
This paper proposes a spatial-temporal hidden Markov for
multitemporal classification. In terms of evaluation indica-
tors, this paper also proposes a new comprehensive evalua-
tion index for multitemporal remote sensing classification.
It evaluates the classification results from actual measure-
ment points, spatial and temporal distributions, and changes.
The results show that the hidden Markov model considering
the spatial-temporal relationship proposed in this paper per-
forms best in spatial-temporal continuity and accuracy.

(2) This paper conducts a sensitivity analysis of the spatial
weighting factor and transformation probability. The results
show that a smaller spatial weighting factor helps to improve
the stability of the classification results in different periods.
At the same time, in adjacent periods, the outside world is
under natural development. Most of the features in different
periods will not change, which is consistent with the current
research results. In the future, we will mine more elaborate
classification transformation laws or use more intelligent
methods to obtain more objective results. Under a more
elaborate category configuration, we will further verify the
generality of the labeling and evaluation algorithms proposed
in this paper.
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