
Received May 5, 2021, accepted May 11, 2021, date of publication May 17, 2021, date of current version May 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081024

Complexity Analysis of Three-Dimensional
Fractional-Order Chaotic System Based
on Entropy Theory
GUOHUI LI , XIANGYU ZHANG , AND HONG YANG
School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China

Corresponding authors: Guohui Li (lghcd@163.com) and Hong Yang (uestcyhong@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 51709228.

ABSTRACT Complexity analysis of fractional-order chaotic system is an interesting topic in recent years.
How to measure the complexity of fractional-order chaotic system correctly and effectively is the basis of its
theoretical analysis and engineering application. In this paper, complexity analysis of three-dimensional
fractional-order chaotic system based on multivariate multiscale fuzzy entropy (mvMFE), multivariate
multiscale sample entropy (mvMSE) and multivariate multiscale dispersion entropy (mvMDE) respectively
is proposed. In the case of single parameter change, different entropy such as mvMFE, mvMSE and mvMDE
are used to analyze how complexity varies with parameter. In the case of two parameters change, the change
of complexity is analyzed by the chromatomap which takes two parameters as independent variable, and
mvMFE, mvMSE, and mvMDE as the dependent variable when the two parameters change simultaneously.
Aiming at the performance problem when the complexity of three-dimensional fractional-order chaotic
system is analyzed by mvMFE, mvMSE, and mvMDE, the maximum complexity under single parameter
and the detection area under two parameters are used as indicators. The result shows that the performance
of mvMDE is the best, and the nonlinear term in the mathematical model of fractional-order chaotic
system is positively correlated with the complexity of the system. This will provide a new method for
measuring the complexity of fractional-order chaotic system, and lay the basis of theoretical analysis and
practical application of fractional chaotic system in the fields of image encryption, sound encryption, image
compression-encryption technique, and secure communication.

INDEX TERMS Fractional-order chaotic system, complexity analysis, multivariate multiscale fuzzy
entropy, multivariate multiscale sample entropy, multivariate multiscale dispersion entropy.

I. INTRODUCTION
Fractional calculus as a classical mathematical theory has
been proposed over 300 years ago [1], [2]. However, due
to its long-term lack of application background, its develop-
ment is slow [3], [4]. In recent years, with the development
of computer science and the discovery of more and more
fractional-order phenomena, people have done a lot of work
in the field of fractional calculus [5]–[7]. Based on the study
of integer-order chaotic system, the fractional differential
operator is introduced into the system. It is found that when
the order is fractional, the system still shows complex chaotic
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behavior [8]–[10]. Because of its rich dynamic characteristics
and potential application value, the research on its dynamic
characteristics and application has attracted extensive atten-
tion [11]–[13]. It has been known that fractional-order
chaotic system has been used in image encryption [14], [15],
sound encryption [16], image compression-encryption tech-
nique [17]–[19], and secure communication [20]–[22].

Complexity analysis of fractional-order chaotic system is
an interesting topic in recent years [23]. How to measure
the complexity of fractional-order chaotic system correctly
and effectively is the basis of its theoretical analysis and
engineering application. The complexity of fractional-order
chaotic system refers to the possibility that chaotic sequence
is close to random sequence. The larger the complexity value
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is, the closer the sequence is to the random sequence and the
higher the corresponding security will be. Entropy measure
algorithm is an effective way to analyze the complexity of
chaotic system. So far, many entropy measure algorithms
such as Shannon entropy [24], fuzzy entropy [25], [26],
spectral entropy [27]–[29], permutation entropy [30], [31],
approximate entropy [32]–[35] and multiscale permutation
entropy [36], have been applied to measure the complex-
ity of chaotic system. Compared with multiscale entropy,
multivariate multiscale entropy can observe the dynamic
complexity of data in multiple channels [37]. Multivariate
multiscale entropy which is used in complexity analysis
of fractional-order chaotic system has not been reported,
so it is necessary to carry out this research on complexity
analysis of fractional-order chaotic system by multivariate
multiscale fuzzy entropy (mvMFE), multivariate multiscale
sample entropy (mvMSE), multivariate multiscale dispersion
entropy (mvMDE).

In order to solve the complexity problem of three-
dimensional fractional-order chaotic system, complex-
ity analysis method of three-dimensional fractional-order
chaotic system based on mvMFE, mvMSE and mvMDE is
proposed. In single parameter and double parameters respec-
tively, two three-dimensional fractional-order chaotic sys-
tems are analyzed by the proposed method. The experimental
results show that the performance of mvMDE is the best,
and the complexity of the three-dimensional fractional-order
chaotic system is positively correlated with the existence of
the nonlinear term.

The rest of this paper is arranged as follows. In Section II,
the definitions of the fractional derivatives are presented.
In Section III, two types of fractional-order chaotic sys-
tems are presented. In Section IV, complexity analysis of
three-dimensional fractional-order chaotic system based on
entropy theory is proposed, and its performance is stud-
ied. Finally, discussion and conclusions are summarized in
Section V.

II. THE DEFINITIONS OF THE FRACTIONAL DERIVATIVES
In recent years, fractional-order differential operators are
introduced into nonlinear dynamical system, and the study
of chaos in fractional-order nonlinear dynamical systems
becomes a hot topic. At present, there are many definitions
of the fractional derivatives, including Grünwald-Letnikov
(G-L) definition [38], [39], Riemann-Liouville (R-L) defini-
tion [40], [41] and Caputo definition [42], [43].

(1) The Grünwald-Letnikov fractional differential is
defined as [44]:

aD
q
t f (t) =

dqf (t)
d(t − a)q

= lim
N→∞

[
t − a
N

]−q

×

N−1∑
j=0

(−1)j
(
q
j

)
f (t − j[

t − a
N

]) (1)

where, aD
q
t is the fractional calculus operator. aD

q
t can simul-

taneously represent the derivative of the fractional order and

the integral of the fractional order. When q > 0, aD
q
t repre-

sents the derivative. When q < 0, aD
q
t represents the integral.

(2) The Riemann-Liouville fractional differential is
defined as [45]:

aD
q
t f (t) =


1

0(−q)

t∫
a

(t − τ )−q−1f (τ )dτ q < 0

f (t) q = 0
Dn[aD

q−n
t f (t)] q > 0

(2)

The power series and constant of q-order differential are
defined respectively as:

Dqt0 t
r
=

0(r + 1)
0(r + 1− q)

(t − t0)r−q (3)

Dqt0C =
C

0(1− q)
(t − t0)−q (4)

where 0(·) is the Gamma function.
(3) The Caputo fractional differential is defined as [46]:

aD
q
t0 f (t) =


1

0(m−q)

t∫
0

f (m)(τ )dτ
(t−τ )q+1−m

m− 1 < q < m

dm
dtm f (t) q = m

(5)

The power series and constant of q-order differential are
defined respectively as:

Dqt0 t
r
=

0(r + 1)
0(r + 1− q)

(t − t0)r−q (6)

Dqt0C = 0 (7)

Among them, Caputo definition is more utilized in practi-
cal application research due to its more clear physical signif-
icance and easy implementation in engineering [31]. So the
Caputo definition is used in this paper.

III. TWO TYPES OF FRACTIONAL-ORDER CHAOTIC
SYSTEMS
A. FRACTIONAL-ORDER A CHAOTIC SYSTEM
In 2013, Jafari [47] et al. proposed a series of three-
dimensional chaotic systems. One of the integer-order chaotic
systems is selected, which is called integer-order a chaotic
system in the following for the convenience of presentation.
Its mathematical model is:

dx
dt
= y

dy
dt
= −x + yz

dz
dt
= −x − axy-bxz

(8)

On the basis of integer-order a chaotic system, fractional
operator is introduced, and fractional-order a chaotic system
can be obtained. Its mathematical model is:

Dqt0x1 = x2
Dqt0x2 = −x1 + x2x3
Dqt0x3 = −x1 − ax1x2 − bx1x3

(9)

VOLUME 9, 2021 73013



G. Li et al.: Complexity Analysis of Three-Dimensional Fractional-Order Chaotic System Based on Entropy Theory

The most common methods for solving fractional-order
chaotic systems are frequency domain method (FDM)
[48], [49], predictor-corrector method (PCM) [50], [51], and
Adomian decomposition method (ADM) [52], [53]. As a
numerical resolution algorithm, ADM is more accurate than
FDM and PCM numerically and theoretically [53]. So, ADM
is used to solve fractional-order chaotic system. The analyzed
data set is a data set obtained by numerical analysis by
ADM. When a = 15, b = 1, initial value (x0, y0, z0) =
(0, 0.5, 0.5), order q = 0.999, the phase trajectory diagram
of each plane is shown in Figure 1. The purpose of choosing
q = 0.999 in this paper is to verify the correctness of Ado-
mian decomposition method. When simulating in MATLAB,
the order q can be chosen at will.

B. FRACTIONAL-ORDER B CHAOTIC SYSTEM
A class of integer-order b chaotic systems with a structure
similar to integer-order a chaotic systems [47] is introduced.
Its mathematical model is:

dx
dt
= y

dy
dt
= −x + yz

dz
dt
= x2 − axy-bxz

(10)

On the basis of the integer-order b chaotic system, frac-
tional operator is introduced, and fractional-order b chaotic
system can be obtained. Its mathematical model is

Dqt0x1 = x2
Dqt0x2 = −x1 + x2x3
Dqt0x3 = x21 − ax1x2 − bx1x3

(11)

Comparison formula (9) and formula (11), we can clearly
see that the fractional-order b chaotic system has only one
more nonlinear term compared with the fractional-order a
chaotic system, and other structures are the same. Therefore,
these two chaotic systems are chosen for convenience of
comparison to explore the influence of nonlinear term on the
complexity of fractional-order chaotic system.

In this paper, ADM is used to numerically analyze
fractional-order chaotic system. Only the numerical results
of fractional-order b chaotic system are obtained here, and
the fractional-order a chaotic system is similar and will not
be described again. After decomposing nonlinear term x2x3
and nonlinear term x21 − ax1x2 − bx1x3, we can get:
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A03 = x01x
0
1 + a(−x

0
1x

0
2 )− bx

0
1x

0
3
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0
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The collation result of derivation process are as follows:
c11 = c02
c12 = [−c01 + c

0
2c

0
3]

c13 = [c01c
0
1 − ac

0
1c

0
2 − bc

0
1c

0
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When a = 18, b = 1, initial value (x0, y0, z0) =
(0,−0.4, 0.5), order q = 0.999, the phase trajectory diagram
of each plane phase is shown in Figure 2.

IV. COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
ENTROPY THEORY
A. COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
MULTIVARIATE MULTISCALE FUZZY ENTROPY
1) MULTIVARIATE MULTISCALE FUZZY ENTROPY
ALGORITHM
Multivariate multiscale fuzzy entropy (mvMFE) [54] is not
easy to cause data loss when analyzing higher scale and
shorter data, and it has a low dependence on the threshold,
so it has a strong advantage compared with fuzzy entropy.
The calculation steps are as follows:

(1) For a multivariate signal
{
xk,i
}N
i=1 , k = 1, 2, . . . , p

containing p sub-signal of length L, a new time series
can be obtained by coarse-graining at any scale τ =

1, 2, . . . , (τ ≥ 1):

y(τ )k,j =
1
τ

jτ∑
i=(j−1)τ+1

xk,i (12)

(2) Reconstruct multiple phase space of y(τ )k,j , and get:

Xm(i) = [x1,i, . . . , x1,i+(m1−1)t1
, . . . , xp,i, . . . , xp,i+(mp−1)tp ]

(13)

where, M = [m1,m2, . . . ,mp] and t = [t1, t2, . . . , tp] are
the embedding dimension and delay time respectively, n =
max{M} ×max{t}, i = 1, 2, . . . ,L − n.
(3) Use the maximum norm to define the distance

between any two phase spaces Xm(i) and Xm(j). When
d[Xm(i),Xm(j)] > r , find all the values Ni of A(x). Calculate
the sum ofMi and Ni:

Ei = Mi + Ni (14)

Solve the ratio ofEi and L−n−1, and obtain the frequency:

8m
i (r) =

1
L − n− 1

Ei (15)

The conditional probability at this time is:

8m
i (r) =

1
L − n

L−n∑
i=1

8m
i (r) (16)

According to the above derivation, when extended tom+1
dimensions, the conditional probability is:

8m+1
i (r) =

1
L − n

L−n∑
i=1

8m+1
i (r) (17)

(4) Find the natural logarithm of 8m
i (r) and 8

m+1
i (r), and

get multivariate multiscale fuzzy entropy:

mvMFE = ln

[
8m
i (r)

8m+1
i (r)

]
(18)

2) COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
MULTIVARIATE MULTISCALE FUZZY ENTROPY
When order q = 0.96, system parameters a ∈ (12, 20),
b = 1, N = 15000, complexity of fractional-order a chaotic
system is shown in Figure 3(a). The complexity value is the
exact value obtained by using vernier caliper tool in simula-
tion diagram. When a = 13.84, the complexity reaches its
maximum value. When a ∈ (12, 15.2), the complexity is in
a violent oscillation state with the increase of parameter a.
When a ∈ (15.2, 20), the complexity tends to be stable and
no longer changes. When the parameters a = 15, b = 1,
q ∈ [0.2, 1], the complexity of fractional-order a chaotic
system is shown in Figure 3(b). When q = 0.5813, the com-
plexity reaches its maximum value. When q ∈ (0.2, 0.5813),
the complexity almost tends to 0 and is smooth and stable.
As the order increases until q = 1, the complexity tends to
decrease. When the system parameters a = 15, q = 0.96,
b ∈ (0.2, 1.2), the complexity of fractional-order a chaotic
system is shown in Figure 3(c). When the parameter b =
0.6, the complexity reaches its maximum value. When the
parameter b ∈ (0.2, 0.6), the complexity increases slowly.
Until b = 1.2, the complexity is basically stable with slow
oscillation.

When order q = 0.96, system parameters a ∈ (14, 22),
b = 1, and N = 15000, complexity of fractional-order b
chaotic system is shown in Figure 4(a). When a = 17.71,
the complexity reaches its maximum value. When a ∈
(14, 15.79), the complexity increases and then stays in a
violent oscillation state. Until a = 22, the complexity no
longer changes significantly and is in a smooth and stable
state. When a = 18, b = 1, q ∈ (0.2, 1), complexity of
the fractional-order b chaotic system is shown in Figure 4(b).
When q = 0.4187, the complexity reaches its maximum,
and the overall trend is that the complexity first increases to
the maximum and then decreases as the order q increases.
When a = 18, q = 0.96, b ∈ (0.2, 1.2), the complexity
of fractional-order b chaotic system is shown in Figure 4(c).
When a ∈ (0.22, 0.38), the complexity is extremely small
and almost tends to 0. With the increase of parameter b until
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FIGURE 1. Phase trajectory diagram of fractional-order a chaotic system.

FIGURE 2. Phase trajectory diagram of fractional-order b chaotic system.
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FIGURE 3. Change trend of mvMFE complexity of fractional-order a chaotic system under single parameter.

FIGURE 4. Change trend of mvMFE complexity of fractional-order b chaotic system under single
parameter.
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b = 0.9333, the complexity change trend is violent oscilla-
tion.When b = 0.7467, the complexity reaches themaximum
value. When b ∈ (0.9333, 1.11), the complexity basically
no longer changes and tends to stabilize. Until b = 1.2,
the complexity oscillates violently.

For fractional-order a chaotic system, when a ∈ (12, 20)
and q ∈ (0.2, 1), the chromatogram of the complexity change
is shown in Figure 5(a). When q ∈ (0.576, 0.5973) and
a ∈ (12, 20), the color is the darkest, that is, the com-
plexity is the largest. As the order q increases, the overall
complexity trend shows a grid-like decrease. When b ∈
(0.2, 1.2), and q ∈ (0.2, 1), the chromatogram of the com-
plexity change is shown in Figure 5(b). The overall shape
is a fan, and the bottom is q ∈ (0.5733, 0.5973). When
b ∈ (0.9267, 1.2), the complexity is the largest, and the
overall change trend is to decrease with the increase of the
order q. When a ∈ (12, 20) and b ∈ (0.2, 1.2), the chro-
matogram of the complexity change is shown in Figure 5(c).
It can be clearly seen that the entire area is divided into the
lower part and the upper part. The lighter overall color of the
lower part indicates that the complexity of this area is low,
and the darker overall color of the upper part means higher
complexity.

For fractional-order b system, when a ∈ (14, 22) and
q ∈ (0.2, 1), the complexity change chromatogram is shown
in Figure 6(a). When q > 0.3733, the complexity decreases
with the increase of q, and the complexity of the bottom area
is the largest. When b ∈ (0.2, 1.2) and q ∈ (0.2, 1), the com-
plexity change chromatogram is shown in Figure 6(b). When
q > 0.4107, the complexity decreases with the increase of q.
The area with the largest complexity is at the bottom. When
a ∈ (14, 22) and b ∈ (0.2, 1.2), the complexity change
chromatogram is shown in Figure 6(c), and the complexity is
mainly concentrated in the upper right area and the boundary
is the most complicated.

B. COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
MULTIVARIATE MULTISCALE SAMPLE ENTROPY
1) MULTIVARIATE MULTISCALE SAMPLE ENTROPY
ALGORITHM
Multivariate multiscale sample entropy (mvMSE) [55] can
evaluate the complexity of multi-channel data on multiple
time scales and obtain more accurate results, and has a high
degree of freedom. The main calculation steps are as follows:

(1) The time series {x1, x2, . . . , xN } is coarse-grained
according to formula (19), and the time series is continu-
ously coarse-grained under the time scale factor τ . Get the
coarse-grained data y(τ )j :

y(τ )j =
1
τ

jτ∑
i=(j−1)τ+1

xi(1 ≤ j ≤ N/τ ) (19)

(2) For each scale τ , calculate MSE of the coarse-grained
data y(τ )j , and for p time series

{
xk,i
}N
i=1 , k = 1, 2, . . . , p,

FIGURE 5. mvMFE complexity chromatogram of fractional-order a chaotic
system.

generate a composite delay vector as:

Xm(i) = [x1,i, x1,i+τ1 , . . . , x1,i+(m1−1)τ1
, . . . ,

xp,i, xp,i+τp , . . . , xp,i+(mp−1)τp ] (20)

d[Xm(i),Xm(j)] = max
l=1,2,...,m

{|yτ (i+ l − 1)− yτ (j+ l − 1)|}

(21)

where Xm(i) is the multivariate delay vector, M =

[m1,m2, . . . ,mp] is the embedding vector, and τ =

[τ1, τ2, . . . , τp] is the delay vector.
(3) Generate N − n composite delay vectors Xm according

to the formula (20), and substitute them into the formula (21)
to calculate the distance between the Xm(i) and Xm(j) vectors.
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FIGURE 6. mvMFE complexity chromatogram of fractional-order b chaotic system.

(4) Count the number Pi of d[Xm(i),Xm(j)] ≤ r(j 6= i), and
its probability is:

Pmi (r) =
Pi

N − n− 1
(22)

The average of Pi is:

Pm(r) =
1

N − n

N−n∑
i=1

Pmi (r) (23)

where n = max{Mm} ×max{τ }.
(5) Expand Xm(i) dimension, that is, make its dimension be

m + 1. p × (N − n) multivariate delay vectors Xm(i) can be
obtained in the m+ 1 dimensional space.
(6) Pi with embedded vectorMm+1(i) can be obtained, and

its average value is:

Pm+1(r) =
1

p(N − n)

p(N−n)∑
i=1

Pm+1i (r) (24)

(7) Pm(r) and Pm+1(r) respectively represent the condi-
tional probability of variables similarity in them dimensional
and m+ 1 dimensional. mvMSE can be expressed as:

mvMSE = − ln[
Pm+1(r)
Pm(r)

] (25)

2) COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
MULTIVARIATE MULTISCALE SAMPLE ENTROPY
When order q = 0.96, system parameters a ∈ (12, 20), b = 1,
N = 15000, complexity of the fractional-order a chaotic sys-
tem is shown in Figure 7(a). When a ∈ (12, 14.21), the com-
plexity starts to vibrate violently with the increase of parame-
ter a.When a = 13.84, the complexity reaches themaximum,
and the complexity gradually stabilizes until a = 20. When
the parameters a = 15, b = 1, and q ∈ (0.2, 1), complexity of
the fractional-order a chaotic system is shown in Figure 7(b).
When q ∈ (0.2, 0.5787), the complexity is relatively low
and basically tends to 0. When q = 0.5813, the complexity
rises linearly to reach the maximum value of the area. Until
q = 1, the complexity gradually decreases with the increase
of order q. When system parameters a = 15, q = 0.96, and
b ∈ (0.2, 1.2), complexity of the fractional-order a chaotic
system is shown in Figure 7(c). When b ∈ (0.2, 0.5967),
complexity is low, and it is in a smooth state. When b =
0.6, it increases sharply and reaches the maximum until the
complexity is in an oscillating state when b = 1.2.

When order q = 0.96, system parameters a ∈ (14, 22), b =
1, N = 15000, complexity of the fractional-order b chaotic
system is shown in Figure 8(a). When a ∈ (14, 15.57),
the complexity is low and basically tends to 0. When a ∈
(15.57, 17.39), the complexity fluctuates sharply and reaches
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FIGURE 7. Change trend of mvMSE complexity of fractional-order a chaotic system under single parameter.

the maximum when a = 17.17. When a ∈ (17.39, 20.35),
complexity no longer has obvious changes and tends to be
stable. Until a = 22, the complexity first increases, then
basically remains unchanged, and then gradually decreases.
When a = 18, b = 1, q ∈ (0.2, 1), complexity of the
fractional-order b chaotic system is shown in Figure 8(b).
When q ∈ (0.2, 0.4133), the complexity is basically a straight
line tending to 0.When q = 0.4187, the complexity increases
sharply and reaches the maximum value until q = 1 when
the complexity decreases as a whole. When system param-
eters a = 18, q = 0.96b ∈ (0.2, 1.2), complexity of the
fractional-order b chaotic system is shown in Figure 8(c).
When b ∈ (0.2, 0.3567) the complexity basically tends to 0.
When b ∈ (0.3567, 0.9367), the complexity changes sharply
in an oscillating state and reaches the maximum value at
b = 0.7467. When b ∈ (0.9367, 1.103), the complexity
changes from a severely oscillating state to a stationary state.
When b ∈ (1.103, 1.2), the complexity is in an oscillating
state and the oscillation frequency is faster than that when
b ∈ (0.3567, 0.9367).

For fractional-order a chaotic system, when a ∈ (12, 20)
and q ∈ (0.2, 1), the chromatogram of complexity change
is shown in Figure 9(a). The overall discrimination is better
and the complexity of this area is the largest when q ∈
(0.576, 0.616), and the overall complexity decreases as the

order q increases when q > 0.576. When b ∈ (0.2, 1.2)
and q ∈ (0.2, 1), the chromatogram of complexity change
is shown in Figure 9(b). The overall discrimination is better
and the complexity is the largest when b ∈ (0.8734, 1.2) and
q ∈ (0.5698, 0.6181). When q > 0.5698, as the number q
increases, the complexity decreases. When a ∈ (12, 20) and
b ∈ (0.2, 1.2), the chromatogram of complexity change is
shown in Figure 9(c). The complexity is the largest at the left
boundary and decreases as the system parameter a increases.

For fractional-order b chaotic system, when a ∈ (14, 22)
and q ∈ (0.2, 1), the chromatogram of complexity change is
shown in Figure 10(a). The obvious colors at the bottom edge
and the upper left edge are darker than that in other areas,
indicating that this area has the deepest complexity. When
q > 0.3733, the complexity decreases with the increase of the
order q and the discrimination is better. When b ∈ (0.2, 1.2)
and q ∈ (0.2, 1), the chromatogram of complexity change is
shown in Figure 10(b). It is obvious that the overall discrim-
ination is poorer than that in Figure 10(a), and the area with
the largest complexity is at the bottom. When q > 0.4133,
the complexity decreases with the increase of the order q.
When a ∈ (14, 22) and b ∈ (0.2, 1.2), the chromatogram of
complexity change is shown in Figure 10(c). It can be seen
that the complexity change trend is more complicated and
has no specific rules. The color is the darkest at the edge,
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FIGURE 8. Change trend of mvMSE complexity of fractional-order b chaotic system under single parameter.

that is, the complexity is the largest in the area. And the
complexity on the left is greater than the complexity on the
right.

C. COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
MULTIVARIATE MULTISCALE DISPERSION ENTROPY
1) MULTIVARIATE MULTISCALE DISPERSION ENTROPY
ALGORITHM
In 2019, Azami et al. proposed multivariate multiscale dis-
persion entropy (mvMDE), which has the advantages such
as fast calculation speed, good stability, and few storage
elements [56]. The main calculation steps are as follows:

a: COARSE-GRAINED PROCESS OF MULTIPLE SIGNALS
It is assumed that a time series U =

{
uk,b

}b=1,2,··· ,L
k=1,2,··· ,p has p

variables and its length is L. For each variable, the original
signal is divided into non-overlapping segments of length
τ . Then, the average value of each segment is calculated to
derive the coarse-grained signal:

x(τ )k,i =
1
τ

iτ∑
b=(i−1)τ+1

uk,b, 1 ≤ i ≤
⌊
L
τ

⌋
= N , 1 ≤ k ≤ p

(26)

where N represents the length of the coarse-grained signal.

b: CALCULATE MULTIVARIATE MULTISCALE DISPERSION
ENTROPY
The steps are as follows:

(1) The multivariate signal X =
{
xk,i
}i=1,2,··· ,N
k=1,2,··· ,p is mapped

into [1, 2,. . . , c].
(2) In order to consider the space domain and time domain

at the same time, a multivariate embedding vector is created
based on the Takens embedding theorem Zm(j), 1 ≤ j ≤
N−(m−1)d . For simplicity, we assume that dk = d,mk = m.
(3) All combinations of

∑p
k=1 mk elements take once in

Zm(j) and are called φq(j)(q = 1, · · · , p). The number of
combinations is equal to p. Therefore, there are (N − (M −
1)d)p dispersion modes for all variables.

(4) For the latent dispersion mode πv0···vm−1 corresponding
to each cm and 1 ≤ q ≤ p, the relative frequency is as follows:

p(πv0···vm−1)

=
#
{
j
∣∣j ≤ N − (m− 1)d, φq(j) has typeπv0···vm−1

}
(N − (m− 1)d) p

(27)

(5) According to the definition of Shannon entropy,
mvMDE can be expressed as:

mvMDE(X ,m, c, d) = −
cm∑
π=1

p(πv0···vm−1 ) · ln(p(πv0···vm−1))

(28)
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FIGURE 9. mvMSE complexity chromatogram of fractional-order a chaotic system.

2) COMPLEXITY ANALYSIS OF THREE-DIMENSIONAL
FRACTIONAL-ORDER CHAOTIC SYSTEM BASED ON
MULTIVARIATE MULTISCALE DISPERSION ENTROPY
When order q = 0.96, system parameters a ∈ (12, 20),
b = 1, and N = 15000, the complexity of fractional-order
a chaotic system is shown in Figure 11(a). When a ∈
(12.14.13), the complexity oscillates violently and the com-
plexity reaches the maximum when a = 13.84, and the com-
plexity does not change and tends to be smooth until a = 20.
When a = 15, b = 1, and q ∈ (0.2, 1), the complexity of the
fractional-order a chaotic system is shown in Figure 11(b).
When q ∈ (0.2, 0.5787), the complexity is in a slow growth
trend.When q = 0.584, the complexity increases linearly and
reaches the maximum, until the complexity decreases slowly
when q = 1. When a = 15, q = 0.96, and b ∈ (0.2, 1.2),
the complexity of fractional-order a chaotic system is shown
in Figure 11(c). When b ∈ (0.2, 0.5967), the complexity
increases slowly. When b = 0.6, the complexity increases
sharply and reaches the maximum. Until b = 1.2, the com-
plexity basically no longer changes and tends to be stable.

When q = 0.96, system parameters a ∈ (14, 22), b =
1,N = 15000, the complexity of fractional-order b chaotic
system is shown in Figure 12(a). When a ∈ (14.14.59), the
complexity decreases slowly with the increase of parameter
a. When a ∈ (14.13.15.87), the complexity increases greatly.

When a ∈ (15.87.17.41), the complexity basically oscillates.
The maximum value of the complexity is reached when a =
17.17, and the complexity no longer changes significantly
until a = 22. When a = 18, b = 1, and q ∈ (0.2, 1), the com-
plexity of fractional-order b chaotic system is shown in Fig-
ure 12(b). When q ∈ (0.2.0.4053), the complexity increases
slowly. Until q = 0.4187, the complexity increases sharply
and reaches the maximum value, and until q = 1, the com-
plexity decreases slowly. When a = 18, q = 0.96, and
b ∈ (0.2, 1.2), the complexity of fractional-order b chaotic
system is shown in Figure 12(c). When b ∈ (0.3533, 0.9333),
the complexity is in an oscillating state. When b = 0.6467,
the complexity reaches the regional maximum. It is also in
a sharp oscillation trend until b = 1.2 and the oscillation
frequency is faster than that when b ∈ (0.3533, 0.9333).

For fractional-order a chaotic system, when a ∈ (12, 20)
and q ∈ (0.2, 1), the chromatogram of complexity change is
shown in Figure 13(a). When q ∈ (0.576, 0.8827), the color
is darker and the complexity is greater, and the complexity
decreases as the order q increases. When b ∈ (0.2, 1.2)
and q ∈ (0.2, 1), the chromatogram of complexity change
is shown in Figure 13(b). The main complexity detection
area is divided into the fan-shaped area and the left area.
The complexity is maximum at the bottom of the fan-shaped
region. Complexity decreases with the increase of order q
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FIGURE 10. mvMSE complexity chromatogram of fractional-order b chaotic system.

FIGURE 11. Change trend of mvMDE complexity of fractional-order a chaotic system under single
parameter.
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FIGURE 12. Change trend of mvMDE complexity of fractional-order b chaotic system under single parameter.

in the fan-shaped region, and complexity increases with the
increase of order q in the left area. When a ∈ (12, 20),
b ∈ (0.2, 1.2), the chromatogram of complexity change is
shown in Figure 13(c). When q ∈ (0.53, 1), the color is the
darkest, that is, the complexity is the largest. In the bottom
area, the complexity also increases with the increase of the
order q.

For fractional-order b system, when a ∈ (14, 22) and
q ∈ (0.2, 1), the complexity change chromatogram is shown
in Figure 14(a). It is easy to observe that the complexity of the
upper left edge region is greater, and the overall complexity
decreases as the order q increases. When b ∈ (0.2, 1.2)
and q ∈ (0.2, 1), the complexity change chromatogram is
shown in Figure 14(b), which is similar to Figure 14(a). The
maximum complexity is mainly concentrated at the edge of
the region and generally decreases with the increase of order
q. When a ∈ (14, 22) and b ∈ (0.2, 1.2), the complexity
change chromatogram is shown in Figure 14(c). It can be
seen that the color in the right area is the darkest, that is,
the complexity is the largest, while the complexity on the left
is small.

D. PERFORMANCE COMPARISON OF DIFFERENT
COMPLEXITY
This paper focuses on the performance of different algo-
rithm when analyzing the complexity of three-dimensional
fractional-order chaotic system. In the case of a single

TABLE 1. Maximum complexity of single parameter in different algorithm
of fractional-order a chaotic system.

TABLE 2. Maximum complexity of single parameter in different algorithm
of fractional-order b chaotic system.

parameter, the maximum complexity that can be detected by
different algorithm is shown in Table 1 and Table 2. In the
case of two parameters, the maximum complexity that can
be detected by different algorithm is shown in Table 3 and
Table 4.

Table 1 shows that for fractional-order a chaotic system,
in the case of fixed system parameter b and order q, fixed
system parameter a and order q, fixed system parameter a
and b, the detection complexity by mvMFE is the lowest,
and the detection complexity by mvMDE is the highest.
Table 2 shows that for fractional-order b chaotic system,
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FIGURE 13. mvMDE complexity chromatogram of fractional-order a chaotic system.

TABLE 3. Maximum complexity of two parameters in different algorithm
of fractional-order a chaotic system.

TABLE 4. Maximum complexity of two parameters in different algorithm
of fractional-order b chaotic system.

in the case of fixed system parameter b and order q, fixed
system parameter a and order q, fixed system parameter a
and b, the detection complexity by mvMFE is the lowest,
and the detection complexity by mvMDE is the highest.
Table 3 shows that for fractional-order a chaotic system,
in the case of fixed system parameter b, fixed system param-
eter a, fixed order q, the detection complexity by mvMFE
is the lowest, and the detection complexity by mvMDE
is the highest. Table 4 shows that for fractional-order b
chaotic system, in the case of fixed system parameter b, fixed

system parameter a, fixed order q, the detection complexity
by mvMFE is the lowest, and the detection complexity by
mvMDE is the highest. From Figure 5, Figure 6, Figure 9,
Figure 10, Figure 13 and Figure 14, it can be seen that in
terms of the detection complexity range, the detection area of
mvMFE is relatively small and the detection area of mvMDE
is relatively large. The calculation speed of mvMFE is the
slowest, and the calculation speed of mvMDE is the fastest.
In summary, in terms of analyzing the complexity of three-
dimensional fractional-order chaotic system, after analysis
and comparison, the performance of mvMDE can be found
to be the best.

In order to compare the influence of nonlinear term on the
complexity, when the system parameters a and b are fixed,
the complexity of fractional-order chaotic system is shown
in Table 5. Since the mathematical models of the two selected
fractional-order chaotic systems are basically similar, the dif-
ference is that in the z-plane expression, the fractional-order
a chaotic system is a linear term and the fractional-order b
chaotic system is a nonlinear term, so there is a good com-
parison. It can be seen from Table 5 that the fractional-order
b chaotic system with one more nonlinear term is compared
with the fractional-order a chaotic system, and the maximum
complexity of the fractional-order b chaotic system is greater
than that of the fractional-order a chaotic system. This shows
that the nonlinearity in the mathematical model of fractional-
order chaotic system is positively correlated with the change
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FIGURE 14. mvMDE complexity chromatogram of fractional-order b chaotic system.

TABLE 5. The complexity of different system with varying order.

in complexity. The fractional-order chaotic system with non-
linear term is more complex than the fractional-order chaotic
system without nonlinear term, and the system itself is more
chaotic.

V. DISCUSSION AND CONCLUSION
To solve the complexity problem of three-dimensional
fractional-order chaotic system, this paper proposes complex-
ity analysis of three-dimensional fractional-order chaotic sys-
tem based on entropy theory. The discussion and conclusions
are expanded as below.

(1) Complexity analysis of three-dimensional fractional-
order chaotic system based on mvMFE, mvMSE, and
mvMDE respectively is proposed.

(2) In the case of single parameter change, different entropy
such as mvMFE, mvMSE, and mvMDE are used to ana-
lyze how complexity varies with parameter. Table 1 and

Table 2 show that the detection complexity by mvMDE is the
highest.

(3) In the case of two parameters change, the change of
complexity is analyzed by the chromatomap which takes two
parameters as independent variable, and mvMFE, mvMSE,
and mvMDE as the dependent variable when the two param-
eters change simultaneously. Table 3 and Table 4 show that
the detection complexity by mvMDE is the highest.

(4) Aiming at the performance problem, when the com-
plexity of three-dimensional fractional-order chaotic system
is analyzed by mvMFE, mvMSE, and mvMDE, the maxi-
mum complexity under single parameter and the detection
area under two parameters are used as indicators. Then it
is concluded that the performance of mvMDE is the best.
It provides a new method for measuring the complexity of
fractional-order chaotic system.

(5) In order to compare the influence of nonlinear term
on the complexity, the mathematical models of the two
selected fractional-order chaotic systems are basically sim-
ilar. The difference is that in the z-plane expression, the
fractional-order a chaotic system is a linear term and the
fractional-order b chaotic system is a nonlinear term, so there
is a good comparison. It can be seen from Table 5 that
the maximum complexity of the fractional-order b chaotic
system is greater than that of the fractional-order a chaotic
system. This shows that the fractional-order chaotic system
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with nonlinear term is more complex than the fractional-order
chaotic system without nonlinear term, and the system itself
is the more chaotic. This will lay the basis of theoreti-
cal analysis and practical application of fractional chaotic
system in the fields of image encryption, sound encryp-
tion, image compression-encryption technique, and secure
communication.
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