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ABSTRACT To improve the programming efficiency of automatic assembly system, a novel skill
programming framework based on task learning is proposed for modular assembly system in this paper.
In this framework, the motion sequence of assembly skills can be modeled by demonstration data. And
the assembly task is represented hierarchically. A complete assembly process of a part is divided into
several skills, and each skill is divided into several sequential assembly motion primitives (AMP) of multiple
modules. Then, a learningmethod of assemblymotion sequence based onHiddenMarkovModel is proposed,
and the maximum probability method is used to generate the optimal sequential AMP. Each AMP is input
to the assembly system in the form of instruction to complete the assembly. Aiming at the problem of
accurate positioning and trajectory planning, visual guidance and direct teaching method are used to settle
this problem. To evaluate the viability of the proposed framework, a customized modular assembly system
is used to acquire the demonstration data, and a graphical user interface (GUI) software is designed. Five
assembly skills are learned. Experimental are conducted to validate the effectiveness of the proposedmethod.

INDEX TERMS Assembly motion primitive, modular assembly system, hidden Markov model, skill
learning.

I. INTRODUCTION
With the development of automatic assembly for custom-
made and low-volume, the automatic assembly system needs
to have the ability to transfer from one task to another effi-
ciently [1]. Because different types of sensors have their own
limitations, the modular assembly system integrating multi-
ple sensors can meet the requirements of complex assembly
tasks. In addition to trajectory teaching, the modular assem-
bly system also has functions such as image processing [2],
force feedback control [3], IO control, multi-modular par-
allel or serial control, and collision detection [4]. And the
modular assembly system has the characteristics of multi-
information fusion, complex coordination, and diverse con-
trol methods [5]. In the traditional programming of automatic
assembly process, writing computer code and the use of teach
pendants are the predominant method. The programming
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experts first program according to the previous programming
expertise, and refine the assembly process through trials-
and-error. It needs tedious reprogramming to adapt to new
assembly tasks. Therefore, the existing programming mode
is difficult to quickly realize the programming of a large
number of assembly process for new tasks. The offline pro-
gramming needs complete and accurate design model, task
experts on the factory floor and development engineers to
complete.

The recent development of data-driven artificial intelli-
gence, some learning-based methods are highly improving
the efficiency of programming. In the industrial scene, a large
number of methods based on learning from demonstration
(LFD) or programming by demonstration (PBD) are widely
used in task learning and motion learning [6]. In the field
of robotics, PBD provides a new way to transfer knowledge
from human to robot, which is an important way to sim-
plify programming. And PBD provides a skill programming
method without professional computer language experts,
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which transfers low-level mechanical control to high-level
skill representation control.

Inspired by the thinking of human programming, the expe-
rience data of programming can be modeled as a nonlinear
model, and decision-making is carried out like the brain. For
the data extraction and mathematical representation of auto-
matic assembly process of various parts, there are few related
theories and models. The assembly process data is a discrete
motion sequence, and contains a variety of sensor informa-
tion, it has the characteristics of nonlinear, time-varying,
uncertainty, and so on. Hidden Markov model (HMM) [7] is
a kind of probability and statistics model about time series.
It can represent all training data in the model through its
parameters, which enables us to obtain the most likely skill
description of human demonstrated data. For example, in
the grasping skill, the manipulator first moves to the top
of the parts through path planning because parts are stored
in the grooved tray. Then the manipulators move vertically
downward to grasp. Afterwards, the manipulators lift the part
and transport the parts to the next position. At the same time,
in order to improve efficiency, other modules of the system
perform independent assembly motion or assistance motion.
The modular assembly system needs a very interweaved
assembly sequence to complete the assembly skills, which is
different from the robot system.

To autonomously execute the above-mentioned tasks,
the motivation of this article is to design and implement
a rapid programming framework that can be learned from
demonstration. This means the modular assembly system
needs to have the ability to adapt to new tasks, and then it
can map the demonstration data into mathematical model.
Instruction and PBD are combined in our work to express
and learn high-level task skills. This framework provides
an accessible method for non-experts to quickly and easily
program. The main contributions of this work are as follows.

(1) Modular and reconfigurable assembly components
which integrates multiple sensors are designed.

(2) An autonomous modular software system was devel-
oped, which can be programmed via script commands.

(3) A skill learning framework is proposedwhich expresses
the assembly skills as learned HMMs. The assembly action
primitive (AMP) is proposed in this article for the first time.
The assembly process is decomposed into AMPs, which
are expressed by instructions. The demonstration assembly
sequence is used as the training data of HMM.

(4) Some innovation experiments were shown for the first
time. The assembly action data of various parts is extracted
based on themodular assembly system. The proposedmethod
is compared with other learning methods, and the method is
applied to the actual assembly of new parts.

In this work, 12 kinds of motion instructions are recorded.
And 5 kinds of skill learning are completed, which are grasp-
ing, handover, alignment, and two kinds of insertion skills.
The generated optimal motion sequence is input into themod-
ular assembly system as a skill. The proposed methods were
evaluated through the implementation of multiple, real-life

industrial production processes involving modular assembly
system.

The organizational structure of this article is as follows:
In Section II, the related works are reviewed. In Section III,
The configuration of the modular assembly system is pre-
sented. In Section IV, the skill learning framework and the
general motion learning scheme is proposed; In Section V,
the mathematical model of this paper is introduced;
In section VI, the experimental results of the new framework
are revealed. Finally, the conclusions are given in Section VII.

II. RELATED WORK
In assembly scenario, PBD can be divided into motion-based
(low-level) PBD and task-based (high-level) PBD [8]. The
low-level representation of the skill, taking the form of a
non-linear mapping between sensory and motor information.
The high-level representation of the skill that decomposes the
skill in a sequence of motion units, which we will refer to as
symbolic encoding.

A. MOTION-ORIENTED PROGRAMMING
BY DEMONSTRATION
In order to quickly realize the programming of the assem-
bly process, many PBD methods of assembly motions have
been produced. According to the data acquisition method,
PBD can be divided into observation learning, kinesthetic
teaching and teleoperation. The learning method of obtain-
ing demonstration data through computer vision is currently
more popular [9]–[11]. These approaches had completed the
actions of grasping, moving, and screwing into the hole.
However, these methods are not suitable for scenarios requir-
ing high assembly accuracy and systems with compact struc-
tures. On the other hand, kinesthetic teaching and data glove
teleoperation [12]–[14] provide an feasible method for non-
expert to quickly and easily program robots. A data glove
and force sensors are used to collect teaching data. Most of
these methods aimed at achieving path optimization and local
replanning. Nevertheless, these methods cannot deal with the
multi-modular movement and are not sufficient to describe
the semantics in the task level.

In the aspect of motion trajectory planning and collision
detection, many motion-oriented studies have come into play.
Traditionally, dynamicmovement primitives (DMPs) [15] are
represented low-level motion primitives which can be stored
in a library. And then DMPs are called by high-level planner.
Though the use of Gaussian mixture model (GMM) [16],
the statistical characteristics of the set of trajectories can be
extracted. The robot can reuse the learned skills to handle new
tasks. In the recent years, a new type of admittance-based
control method [17] is used to generate collision avoidance
trajectories, which can be effectively applied to physical
human-robot interaction systems. Another [18] trajectory
generation method is based on imitation learning, which
designs a neural network-based strategy module to infer
the desired motion in the image space. Additionally, some
hybrid methods have been proposed. In [12], HSMM-GMR
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was used to handle multimodal learning with position and
force constraints, and showed good performance. The above
studies had shown that the control strategy that decomposes
movement into a series of motion primitives is feasible.
However, the above methods focus on the single robot that
moves freely, the existing learning programming can only
complete the simple position and trajectory learning, so it
is difficult to apply to a compact multi-module assembly
system.

For precision assembly of micro and small parts, it is
difficult to meet the high-precision assembly requirements
with a single robot guidance. Multi-module and multi-sensor
integration can accomplish such tasks. In order to imple-
ment the assembly skills of grasp, handover, alignment, and
insertion, a multi-modal control method is proposed in this
paper. In grasping skill, to obtain the desire position of the
part, the visual guidance method [19] is adopted. For obstacle
avoidance in the movement process, the method of adding
avoidance points is presented. In handover skill, the desired
position is recorded through the demonstration of the teach
pendant. In insert skills, a compliance controller is designed.

B. TASK-ORIENTED PROGRAMMING BY
DEMONSTRATION
In task learning, the task is encoded according to a pre-
defined sequence of motion elements. A series of encoding
sequences are regarded as assembly skills. It is necessary
to understand and reason about the acquired information,
and can apply it to the similar task. According to differ-
ent types of tasks, task-oriented programming by demon-
stration has various representation methods. In recent years,
task-oriented PBD methods based on reinforcement learning
(RL) [20] have received more attention. This method offers a
new paradigm for acquiring skill by maximizing the overall
reward. But this method requires a lot of demonstration data
and is only suitable for simple tasks. In [21], a closed-loop
learning method through demonstration, feedback, and trans-
fer is proposed. The GUI is designed to allow users to opti-
mize the knowledge of high-level tasks and low-level tasks.
To solve the manipulation task, a task planning and execu-
tion framework [22] oriented to service robots was designed,
which completed the deployment of multiple skills through
empirical knowledge modules. In task learning, the task can
be coded according to a pre-defined sequence of motion
elements, and a series of coding sequences can be regarded as
assembly skills. In [23], a syntactic approach was described
that captures important task structures in the form of prob-
abilistic activity grammars from a reasonably small number
of samples. Bernardin et al. [24] presented a symbolic and
semantic representations approach which stores the sequence
of activities in a directed task graph. The new task process
is generated by reasoning. In [25], an assembly sequence
learning method based on demonstration programming and
active exploration is proposed. This method studies the learn-
ing problems of priority constraints, object relative size and
position constraints in automatic assembly planning. The task

of inserting shaft holes with various shapes in the method
is finished. Unfortunately, the above-mentioned semantic-
based learning methods require a complicated modeling pro-
cess for complex tasks and new tasks.

To adapt to the changes of environments, an assembly
sequence classification algorithm [26] based on a hierar-
chical bidirectional Long Short Term Memory network is
proposed, which divides the motion data into therbligs. This
method is used to represent 7 common tasks successfully.
Sasabuchi et al. [27] proposed a complex task sequence learn-
ing method combining motion knowledge and task knowl-
edge. This method integrated both task constraints of each
individual task and human motion mimicking and completed
the task of opening the refrigerator and picking objects.
However, the above methods also require a large amount of
demonstration data, and cannot address the problem of multi-
modal motion sequence encoding. Because it is unrealistic
and expensive to obtain a large number of skill data of auto-
matic assembly [28], the HMM based on a small number of
samples training is feasible. In terms of data modeling for
motion-oriented PBD, Hidden Markov Model is a general
method of processing time series data in the field of robot
PBD [29]–[31]. By describing the motions as a sequence
of observations corresponding to a series of hidden state
sequences, this method can have a good accuracy rate when
the amount of data is small.

FIGURE 1. Modular assembly system.

III. OVERVIEW OF MODELAR ASSEMBLY SYATEM
A modular assembly system that can assemble a variety
of parts is shown in Fig. 1, consisting of a multi-joint
robot module (MJRM), an assembly execution manipula-
tor module (AEMM), a coaxial processing module (CAM),
a 3 degree-of-freedom (DOF)micro-motion adjustment mod-
ule (MAM), a screwdriver module, and a clamping module.
The system has multiple sensors and controllers.

The MJRM consists of one translational stage, one vertical
lifting stage, and three rotational stages. The MJRM is driven
by stepped motors. The non-coupling of linear motion and
rotation can effectively reduce movement errors when mov-
ing in a certain direction.

The AEMM consists of a vertical motion axis with high
straightness and a rotation axis. A manipulator is equipped
with on the rotation axis, which can grip various parts.

The CAM is a high-precision alignment system [32] devel-
oped by our research team. It consists of two horizontal axes,
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a camera, two light sources, and a prism. The target part and
the basal part are imaged on the same image plane, which
reduces the calibration error.

The 3-DOF MAM includes linear movement along the
X and Y directions and rotation around Z. The control
method adopts a closed-loop mode, and error compensation
is performed to make it have micrometer-level positioning
accuracy. The force sensor is installed on the module.

The screwdriver can automatically absorb and screw two
types of small screws through input/output (IO) signal
control.

The manipulators can realize the grasping and releasing of
various parts though IO signal control.

FIGURE 2. System hardware setup.

The modular assembly system has a manual-operation
interface on the host computer, which provides the image
display, the system state display, the instruction parse, and the
manual-control buttons. The connection and control methods
of each module are shown in the Fig. 2. The template match-
ing algorithm in the software development kit Mil developed
by Matrox is used to calculate the pose of the part. The
integrated control of the system is completed on an industrial
computer. The software of control system is programmed
through C++. And the software is also a software platform
that can write action sequences instructions. A series of
instructions are written to complete the entire assembly task.
For the control of each axis, we adopt the traditional PID
control method.

IV. ASSEMBLY SKILL PROGRAMMING FRAMEWORK
A. TASK DESCRIPTION
For assembly tasks, the constraint of the assembly object in
this article is that the part moves from top to down. In addi-
tion, we assume that the parts to be assembled have some
pre-defined task constraint. Such as, assembly skills set is
generated according to the attributes of the parts (i.e. first to
grab, second to align, final to insert). In addition to the skill
constraints of assembly, a certain skill also contains motion
constraints of a multi-step sequence. For example, in the
grasping skill, the manipulator must move directly above the
part before grabbing the part. And the MJRM needs to pass
through the obstacle avoidance points before transporting the
parts to the assembly area. However, some motion sequences

FIGURE 3. Example of parts assembly.

are random, such as the single-axis motion sequence in a
certain module. Although the skill constraints are prede-
fined, the motion constraints are not explained and must be
extracted from the demonstration. The designed framework
uses the entire system state for compact movement learning.

Fig. 3 shows an example application that has our problem
setting. Below we explain in more detail the motion con-
straints of a certain skill in the modular assembly system.

1) THE GRASPING SKILL
As mentioned above, the tray camera obtains the pose of
the part through the template matching algorithm. Then the
grasping position of MJRM is calculated. The MJRM and
the manipulators move to the position of the part, and grab the
part by clamping or adsorption. Then the MJRM transports
the parts to the assembly area. Meanwhile, the 3-DOF MAM
and the AEMM move to the desired position to prepare for
the next assembly skill.

2) THE HANDOVER SKILL
Because the AEMM has higher motion accuracy than the
MJRM, the parts are handed over to the AEMM fromMJRM.

3) THE ALIGNMENT SKILL
To ensure that the basal parts and target parts have good
assembly accuracy, the CAM is used to align the positions of
the two parts. First, the CAM is move to the assembly area.
Second, the upper light source is opened, and the image of
the target part is captured. Similarly, the lower light source
is opened, and the image of basal part is also captured. The
template matching algorithm is used to calculate the pose
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error of the two parts. Third, the 3-DOF MAM is adjusted
based on the above results.

4) THE INSERT1 SKILL
When the assembly accuracy of the two parts is relatively low,
the MJRM controlled the manipulator move the target part
downward. Then the manipulator releases the part and then
leaves.

5) THE INSERT2 SKILL
The second insert skill is that the AEMM controlled the
manipulator move the target part downward, meanwhile
adjusting its vertical position to keep the contact force within
the allowed range. Similarly, the manipulator releases the part
and then leaves.

B. ASSEMBLY MOTION PRIMITIVE
Previous research shows that decomposing a motion
sequence into a series of motion primitives can lead to a pos-
itive impact on designing the control strategy and analyzing
the motion sequence [33]. The assembly motion primitive is
the basic element of a series of assembly actions. It is a way to
classify and express various assembly actions. In this paper,
the AMPs includes eight action instructions and 12 action
numbers, as shown in Table. 1.

TABLE 1. Description of assembly motion primitive.

In the above primitive, the axes and IOs of each module
are individually numbered. Each Skill is composed of a set
of AMPs. The speed and acceleration of axes is set before
assembly. The relationship between module and primitive is
shown in Fig. 4. Such as the instruction of ‘‘RobotMove’’,
the control object of this instruction is the MJRM. The
instruction of ‘‘IO’’, the control object of this instruction is
the manipulators, fixture, and the screwdrivers.

For the multi-sensing modular automated assembly sys-
tem, it is still at the stage of special planes, and it is impos-
sible to expand the application scenarios. Therefore, similar

FIGURE 4. Hierarchical representation of assembly skills.

to the robot programming language, this article develops
a set of easy-to-understand natural language-like assembly
instruction set and GUI. This type of instruction set integrates
instructions such as visual feedback, force feedback, axis
motion, IO response, light source control, status query, and
robot movement. The editing interface of the instruction is
shown in Fig. 5. The system software can parse each instruc-
tion and complete the corresponding action.

C. ASSEMBLY ACTION GENERATION
Aiming at the above-mentioned complex programming prob-
lem of automatic assembly of parts, a rapid programming
method of assembly action sequence based on HMM is
proposed. For a given assembly task, the assembly skill is
regarded as a limited sequence of actions. Since the process
of part assembly involves multi-sensor sensing and path plan-
ning, the strategy adopted in this paper is to first generate an
effective action sequence through the HMM, and the precise
positions and parameters contained in the action sequence are
obtained through direct teaching. The goal of skill learning
is to establish the most probable performance model from all
recorded data and generate an AMP sequence that is closest to
themost probable performance. Here, we regard the assembly
skill instruction as an observable random process, and the
knowledge or strategy behind it is an implicit random process.

The strategy of this article is to learn assembly skills
through demonstration. After manually determining the
assembly skills required for new parts, the proposed method
automatically generates multi-step AMP for each skill. Then
the script programmingwork is completed based on the above
AMP and external input parameters. The overall process of
this part of work is shown in the Fig. 5.

V. METHODOLOGY
For a given task, human demonstrations represent the skills
and intentions, which can be coded by multiple hidden
Markov models. The hidden Markov model is used to model
the probabilistic transition between discrete. The optimal
action sequence is obtained by the maximum probability
method and used as the action input of the new task, thereby
simplifying complicated manual programming tasks.

A. ASSEMBLY MOTION SEQUENCE REPRESENTATION
In the field of precision assembly, grasping, aligning,
handover, and inserting [1], [9], [29], [30] are common
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FIGURE 5. Learning framework of assembly skills.

assembly skills. Hidden Markov model is used to learn the
above 5 skills. Consider a skill which can be described at any
time as being in one of a set ofN distinct states S1,S2 . . . ,SN,
and the states are unobservable. The actual at time t measured
from observation is denoted by it . When the skill is in state
it = St , M distinct output symbols V1,V2, . . . ,VM can
be observed. For each skill, there is a state sequence I =
(i1, i2, . . . , iT ) of length T and a corresponding observation
instruction sequence O = (o1, o2, . . . , oT ). A = [aij] repre-
sents the state transition matrix, and B = [bj(k)] represents
the observation probability matrix.

At time t+1, the skill goes to state it+1 = Sj with transition
probability aij, and

∑
j(aij) = 1, where

aij = P[it+1 = Sj|it = Si], 1 ≤ i, j ≤ N (1)

B is associated with each state, and
∑

k bj(k) = 1,where

bj(k) = P(ot = Vk |it = Sj), j = 1, 2, . . . ,N (2)

Here, π is used to represent the probability vector of the
initial state. Therefore, a unique and definite hidden Markov
model is obtained. In order to evaluate the parameters of the
model, we need to obtain detailed action sequence data. For
a given skill, the human intention can be expressed by the

trained model. Assume that the skill contains m sub-actions
and uses n states from left to right.

B. LEARNING SKILL THOUGH HMM
Since the current automated assembly of parts is still in the
exploratory stage, there is no publicly available automated
assembly data set. The data in this article is obtained by
extracting the automated action sequence of a variety of parts
in the modular assembly system, which is a series of discrete
data points. Using a multiple HMM, learning is achieved by
adjusting the model parameters to maximize the probability
of the observation sequence. λ = {A,B, π} is the complete
parameter set of the HMM.

The HMM is trained by S assembly action sequences of
length T . This paper uses an unsupervised learning method to
solve the HMMmodel parameters. One action sequence is D
observation sequence {(O1, I1), (O2, I2), . . . , (OD, ID)} with
length T . The unknown hidden state sequence corresponding
to observation sequencesOd = {od1 , o

d
2 , . . . , o

d
T } is expressed

as Id = {id1 , i
d
2 , . . . , i

d
T }. An iterative algorithm is used to

update the model parameters. Consider any model λ with
non-zero parameters. We first define the posterior probability
of transitions ξt (i, j), from state i to state j, given the model
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and the observation sequence,

ξt (i, j) = P(St = i, St+1 = j|O, λ) =
αt (i)aijbj(Ot+1)βt+1(j)

P(O|λ)
(3)

where αt (i) = P(O1,O2, . . . ,Ot , St = i|λ) is defined as
the forward variable, a backward variable can be defined as
βt (i) = P (Ot+1,Ot+2, . . . ,OT |St = i, λ).
Similarly, the posterior probability of being in state i at

the time t , γt (i), given the observation sequence and model,
is defined as

γt (i) = P(St = i|O, λ) =
αt (i)βt (j)∑N
k=1 αt (i)βt (j)

(4)

The Baum-Welch [34] algorithm can be extended to the
case based on the signal independence assumption. We can
establish the following formula to re-estimate the HMM
parameters:

πi =

∑D
d=1 γ1(i)
D

(5)

aij =

∑D
d=1

∑T−1
t=1 ξ

(d)
t (i, j)∑D

d=1
∑T−1

t=1 γ
(d)
1 (i)

(6)

bj(k) =

∑D
d=1

∑T−1
t=1,o(d)t =Vk

γ
(d)
t (i)∑D

d=1
∑T−1

t=1 γ
(d)
t (j)

(7)

The model parameters are adjusted in such a way that
they can maximize the likelihood P(O|λ) for the given set of
training data. The trained HMM represents the model of the
best trajectory.

C. GENERATION OF ASSEMBLY ACTION SEQUENCE
Having determined the model representing the most likely
human performance, we now look for the time sequence
which best matches the trained model. The generation func-
tion decodes motion sequence from the HMM. Then outputs
probability that the data is generated by the HMM.

φt = arg max
1≤k≤M

P(ot = Vk |it = Si) (8)

9t+1 = arg max
1≤j≤N

P(it+1 = sj|it = Si) (9)

where 9t+1 represents the next state with the maximum
probability in the ith state of the model, φt represents the
action data O with the maximum probability of output in the
ith state under the model. Suppose the number of actions for
a certain skill is n, and finally a specified number (n) of skill
actions are generated as

Mn = {motion(η), η = 0, 1, . . . , n} (10)

VI. EXPERIMENTS AND RESULTS
A. SKILL LEARNING EXPERIMENT
In this section, the experiment was built based on the design
system in Section III. The software system allows flexibly
modification of action instructions according to the different
parts to be assembled, and can also output the action sequence
data demonstrated by humans in the form of text. In this
demonstration experiment, the modules of the assembly sys-
tem cooperated to complete the assembly tasks of 13 kinds
of parts. Firstly, according to the characteristics of the parts,
the assembly tasks were performed by experienced system
engineers. Such as complex position teaching, image pro-
cessing, and assembly process writing. And the automated
assembly experiment was completed on the modular assem-
bly system. Then, the successful action sequence was artifi-
cially expressed numerically and segmented. The principle
of numerical representation is to use numbers to represent
the action instructions. The representation rules are shown
in Table 1. The segmentation of assembly task is composed
of two parts. First, the entire assembly sequence is seg-
mented according to different parts. Second, the assembly
action sequence of each part is represented by five skills.
The 13 kinds of parts are shown in Fig. 6(a) and (b). After
skill segmentation and numerical representation, the result is
shown in the Fig. 7. The assembly skills of the 13 types of
parts assembly are as follows. The assembly skills of parts 1,
2, 3, 6, 7, and 8 are {grasp, handover, alignment, insert1}, and
part 4 is {grasp, handover, insert2}, part 5 is {grasp, insert2),
part 9 and 10 are {grasp, insert1}, parts 11, 12, and 13 are
{grasp, alignment, insert1}. The demonstration process is
shown as Fig. 3.

By using the method proposed in section V of this article to
learn the parameters of the HMM model, the state transition

A =



0.002 0.998 0 0 0 0 0 0 0 0 0
0 0.021 0.979 0 0 0 0 0 0 0 0
0 0 0.441 0.559 0 0 0 0 0 0 0
0 0 0 0.255 0.745 0 0 0 0 0 0
0 0 0 0 0.241 0.789 0 0 0 0 0
0 0 0 0 0 0.259 0.741 0 0 00 0
0 0 0 0 0 0 0.035 0.965 0 0 0
0 0 0 0 0 0 0 0.355 0.645 0 0
0 0 0 0 0 0 0 0 0.145 0.855 0
0 0 0 0 0 0 0 0 0 0.016 0.984
0 0 0 0 0 0 0 0 0 0 1


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FIGURE 6. Parts to be assembled.

TABLE 2. The observation probability matrix of grasp skill.

matrix of grasping skill is obtained. Among them, the initial
parameters π of training are set to 0.4, 0.2, 0.2, 0.2, 0, 0, 0, 0,
0, 0, 0, matrix A, as shown at the bottom of the previous page.

For each state, we get the probabilities of the commanded
action from the observation symbol probability matrix B. B is
shown in Table. 2.

From these parameters we can easily find the most
likely action sequence based on the proposed method in
section V. The generated grasping skill sequence containing
11 actions is 12 → 5 → 2 → 2 → 3 → 1 → 5 →
1 → 1 → 1 → 5. Similarly, the assembly sequences of the
alignment skill, handover skill, insert1 skill, and insert2 skill
generated respectively are 4 → 4 → 8 → 9 → 8 → 8 →
9 → 10 → 9 → 10 → 4 → 4 1 → 3 → 7 → 5 → 1 →
1→ 3→ 2→ 3→ 3 1→ 5→ 1→ 1→ 1 15→ 5→
7→ 3→ 3→ 3.

B. EVALUATION
To prove the effectiveness of the proposed algorithm, we use
our data and compare the proposed algorithm with dif-
ferent methods, including the Gaussian mixture regression
(GMR) [16] and the local weight regression (LWR) [35] FIGURE 7. Motion process data of 13 kinds of parts.
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FIGURE 8. (a)–(e) show the learning results of five skills based on the LWR method, respectively. The values (green lines) are computed by LWR model
based the demonstration data (red dots). (f)-(j) are the learned results of five skills based on GMR.

FIGURE 9. The precision score of five skills.

algorithm. We used the same data for learning in Section 5.1.
Based on the above two methods, the action sequences of five
different skills are generated. During the GMR experiment,
the number of Gaussian mixture models for the five skills
were set to 35, 13, 20, 7 and 10, respectively. The calculation
results of GMR and LWR are shown in Figure 8. Finally,
the action sequences of the five skills obtained based on
the LWR method are 2-3-3-3-2-2-2-3-3-2-2, 1-3-5-5-3-1-2-
2-3-3,4-5-6-6-7-8-9-10-10-9-8-6-4, 2-3-2-1-1, 11-4-5-4-4-3.
Similarly, based on the GMR method, the action sequences
of the five skills are 10-4-3-4-3-3-3-2-4-1-2, 1-3-7-5-2-1-1-
2-3-3,4-4-8-8-9-8-8-9-10-9-10-4-4,1-5-1-1-1, 11 -5-7-4-3-4.

Based on the above results, we will evaluate and compare
the generated data. BLEU (bilingual evaluation understudy)
[36] is a popular evaluation method, used to evaluate the
difference between two strings, and can also be used to
evaluate the accuracy of the generated assembly sequences.
The BLEU evaluation standard here is to compare the degree
of similarity between the generated assembly action sequence
and the sample action sequence. BLEU compares and counts
the number of n-gram that co-occur in the generated action
sequence and the sample action sequence. His calculation
formula is as follows

BLEU = BP× exp(
N∑
n=1

ωn log pn) (11)

FIGURE 10. Trajectories of each module.

where BP is the brevity penalty, ωn is positive weight, pn
represents a modified precision score of n-gram. When the
similarity between the generated sequence and these sample
sequences is higher, the BLEU is higher. Through calcula-
tion, the BLEU calculation results of five assembly skills are
obtained as shown in Fig. 9.

Obviously, the method can accurately characterize the
knowledge from the data. The precision score of the proposed
method is closed to 0.9. On the contrary, the precision score of
GMR and LWR are much lower than 0.9. The hiddenMarkov
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FIGURE 11. The assembly process of gear-piece and gear-shaft.

model can better represent the relationship between the front
and back actions, while GMR and LWR are more sensitive
to different actions at the same time. It is the reason why our
method outperforms two comparative methods.

C. ACCURACY POSITION AND TRAJECTORY
Additionally, a small amount of human knowledge in the
process of generating and deploying to the actual assembly
system is integrated in this paper. In the process of skill
execution, the precise position is combined with the action
primitive in the form of parameters. The precise position
of the parts in the tray is calculated by image processing.
The grasping position, collision avoidance points and release
position of MJRM are obtained by teaching through the teach
pendant. The trajectory control of each module is realized
in an end-to-end strategy. In addition, some processes are
carried out manually in the preparation stage. Such as, the
position where the CAM extends, the posture adjusted by
the 3 DOFs MAM, the movement position of the AMM.
The sample trajectory of each module is shown in the Fig. 10.

The trajectories from 1 to 5 are the movement trajectories
of the end of the robot, which are described as fellow: 1) the
robot moves directly above the part based on vision guidance;
2) the robot moves down and grabs the part based on the
calibration; 3) the robot grabs the part and moves it up to the
specified position; 4) the robot carries the parts and moves to
the space avoidance point; 5) the robot carries the parts and
moves to the position to be assembled.

The trajectories from 6 to 8 represent the movement tra-
jectories of the micro-motion platform, which respectively
represent movement in the X-axis direction, movement in the
Y-axis direction, and rotation around the Z-axis.

The trajectories 9 and 10 respectively represent the
movement of the assembly execution manipulator in the
X and Z directions.

The trajectories 11 and 12 respectively represent the move-
ment of the coaxial alignment module. The trajectories 11
represents the horizontal movement of the entire module, and
the trajectories 12 represents the horizontal movement of the
prism relative to the camera.

The asterisk indicates the IO action, and the circle indicates
that the track carries the parts to be assembled.

The manipulators and fixtures of the modular assembly
system are simply replaced to assemble new parts. For the

assembly of gear and pinion parts, the instruction stream
combined with the generated action sequence and position
parameters is deployed to the assembly system after fine-
tuning. The part of the gear-piece and gear-shaft is shown
in Fig. 6(c). The automated assembly of the gear-piece and
gear-shaft is effectively implemented, and the fit clearance of
the gear shaft is 10micrometers. The assembly process of this
part is shown in Fig. 11, which verifies the feasibility of the
method.

VII. CONCLUSION
In this paper, we develop a reconfigurable assembly system to
realize the modularization of hardware and software, ensur-
ing rapid response to new types of parts. A new skill learning
framework is presented, which regards the skill as a serial
of assembly motion primitive for modular assembly system.
Our primitives include not only common motion commands
such as axis movement, IO control, and robot movement,
but also force feedback control and visual feedback control.
Additionally, in the aspect of high-level structured demon-
stration and learning, the proposed method is successfully
applied in a modular assembly system for new task. Though
the demonstration of the assembly process of 13 parts, a data
set was created to train the proposed algorithm in this paper.
The results show that the proposed multiple HMM method
can effectively express motion constraints. The comparative
experiment shows that the proposed method has high accu-
racy for the representation of the motion sequence of the
modular assembly system. Finally, the assembly experiment
of the gear and shaft was verified through our platform,
which showed that the algorithm has good application value
and can reach an assembly accuracy of 10 microns. In sum-
mary, the assembly skills learning framework proposed in
this article can provide a good example for assembly tasks
in factories.

In the future work, we will focus on precision automated
assembly for diverse parts. Through the collection of a large
amount of data in actual and simulation, the quality of
algorithm generation is further improved. In addition, some
sim-to-real learning techniques, such as deep reinforcement
learning, are used to solve the problem of precise position
calibration of each module, thereby improving the ability of
the assembly system to learn action strategies.
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